
StarPU Handbook
for StarPU 1.4.7

Generated by Doxygen.

i

1 Introduction 3

1.1 Motivation . 3

1.2 StarPU in a Nutshell . 3

1.3 Application Taskification . 4

1.4 Research Papers . 4

2 Documentation Organization 5

3 Glossary 7

I StarPU Installation 9

4 Organization 11

5 Building and Installing StarPU 13

5.1 Installing a Binary Package . 13

5.2 Installing a Source Package . 13

5.3 Building from Source . 14

6 Compilation Configuration 17

6.1 Common Configuration . 17

6.2 Configuring Workers . 18

6.3 Extension Configuration . 19

6.4 Advanced Configuration . 20

7 Execution Configuration Through Environment Variables 23

7.1 Configuring Workers . 23

7.2 Configuring The Scheduling Engine . 28

7.3 Configuring The Heteroprio Scheduler . 29

7.4 Extensions . 30

7.5 Miscellaneous And Debug . 32

7.6 Configuring The Hypervisor . 37

8 Configuration and initialization 39

II StarPU Basics 41

9 Organization 43

10 StarPU Applications 45

10.1 Setting Flags for Compiling, Linking and Running Applications . 45

10.2 Integrating StarPU in a Build System . 46

10.3 Running a Basic StarPU Application . 47

10.4 Running a Basic StarPU Application on Microsoft Visual C . 47

10.5 Kernel Threads Started by StarPU . 48

Generated by Doxygen

ii

10.6 Enabling OpenCL . 48

10.7 Storing Performance Model Files . 48

11 Basic Examples 51

11.1 Hello World . 51

11.2 Vector Scaling . 53

11.3 Vector Scaling on an Hybrid CPU/GPU Machine . 54

12 Full Source Code for the ’Scaling a Vector’ Example 59

12.1 Main Application . 59

12.2 CPU Kernel . 60

12.3 CUDA Kernel . 61

12.4 OpenCL Kernel . 61

13 Tasks In StarPU 63

13.1 Task Granularity . 63

13.2 Task Submission . 64

13.3 Task Priorities . 64

13.4 Setting Many Data Handles For a Task . 65

13.5 Setting a Variable Number Of Data Handles For a Task . 65

13.6 Insert Task Utility . 65

13.7 Other Task Utility Functions . 67

14 Data Management 69

14.1 Data Interface . 69

14.2 Partitioning Data . 72

14.3 Asynchronous Partitioning . 73

14.4 Commute Data Access . 74

14.5 Data Reduction . 74

14.6 Concurrent Data Accesses . 76

14.7 Temporary Buffers . 76

15 Scheduling 79

15.1 Task Scheduling Policies . 79

15.2 Task Distribution Vs Data Transfer . 81

16 Examples in StarPU Sources 83

III StarPU Applications 85

17 Organization 87

18 A Vector Scaling Application 89

18.1 Base version . 89

18.2 StarPU C version . 89

Generated by Doxygen

iii

18.3 Building and Running . 91

19 A Stencil Application 93

19.1 The Original Application . 93

19.2 The StarPU Application . 93

19.3 The StarPU MPI Application . 95

19.4 Running the application . 96

IV StarPU Performances 97

20 Organization 99

21 Benchmarking StarPU 101

21.1 Task Size Overhead . 101

21.2 Data Transfer Latency . 101

21.3 Matrix-Matrix Multiplication . 102

21.4 Cholesky Factorization . 102

21.5 LU Factorization . 102

21.6 Simulated Benchmarks . 102

22 Online Performance Tools 103

22.1 On-line Performance Feedback . 103

22.2 Task And Worker Profiling . 106

22.3 Performance Model Example . 106

22.4 Performance Monitoring Counters . 109

22.5 Performance Steering Knobs . 112

23 Offline Performance Tools 117

23.1 Generating Traces With FxT . 117

23.2 Performance Of Codelets . 130

23.3 Energy Of Codelets . 136

23.4 Data trace and tasks length . 139

23.5 Trace Statistics . 140

23.6 PAPI counters . 142

23.7 Theoretical Lower Bound On Execution Time . 142

23.8 Trace visualization with StarVZ . 143

23.9 StarPU Eclipse Plugin . 145

23.10 Memory Feedback . 152

23.11 Data Statistics . 153

23.12 Tracing MPI applications . 153

23.13 Verbose Traces . 154

Generated by Doxygen

iv

V StarPU FAQ 155

24 Organization 157

25 Check List When Performance Are Not There 159

25.1 Check Task Size . 159

25.2 Configuration Which May Improve Performance . 159

25.3 Data Related Features Which May Improve Performance . 159

25.4 Task Related Features Which May Improve Performance . 160

25.5 Scheduling Related Features Which May Improve Performance 160

25.6 CUDA-specific Optimizations . 160

25.7 OpenCL-specific Optimizations . 161

25.8 Detecting Stuck Conditions . 161

25.9 How to Limit Memory Used By StarPU And Cache Buffer Allocations 161

25.10 How To Reduce The Memory Footprint Of Internal Data Structures 162

25.11 How To Reuse Memory . 162

25.12 Performance Model Calibration . 163

25.13 Profiling . 165

25.14 Overhead Profiling . 165

26 Frequently Asked Questions 167

26.1 How To Initialize A Computation Library Once For Each Worker? 167

26.2 Hardware Topology . 167

26.3 Using The Driver API . 169

26.4 On-GPU Rendering . 169

26.5 Using StarPU With MKL 11 (Intel Composer XE 2013) . 170

26.6 Thread Binding on NetBSD . 170

26.7 StarPU permanently eats 100% of all CPUs . 170

26.8 Interleaving StarPU and non-StarPU code . 170

26.9 When running with CUDA or OpenCL devices, I am seeing less CPU cores 171

26.10 StarPU does not see my CUDA device . 171

26.11 StarPU does not see my OpenCL device . 172

26.12 There seems to be errors when copying to and from CUDA devices 172

26.13 I keep getting a "Incorrect performance model file" error . 172

VI StarPU Language Bindings 175

27 Organization 177

28 Native Fortran Support 179

28.1 Implementation Details and Specificities . 179

28.2 Fortran Translation for Common StarPU API Idioms . 180

28.3 Uses, Initialization and Shutdown . 180

28.4 Fortran Flavor of StarPU's Variadic Insert_task . 181

Generated by Doxygen

v

28.5 Functions and Subroutines Expecting Data Structures Arguments 181

28.6 Additional Notes about the Native Fortran Support . 181

29 StarPU Java Interface 183

30 Python Interface 185

30.1 Installation of the Python Interface . 185

30.2 Python Parallelism . 185

30.3 Using StarPU in Python . 186

30.4 StarPU Data Interface for Python Objects . 191

30.5 Benchmark . 196

30.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library) 198

30.7 Multiple Interpreters . 202

30.8 Master Slave Support . 205

30.9 StarPUPY and Simgrid . 205

31 The StarPU OpenMP Runtime Support (SORS) 207

31.1 Implementation Details and Specificities . 207

31.2 Configuration . 207

31.3 Initialization and Shutdown . 207

31.4 Parallel Regions and Worksharing . 208

31.5 Tasks . 210

31.6 Synchronization Support . 212

31.7 Example: An OpenMP LLVM Support . 213

31.8 OpenMP Standard Functions in StarPU . 213

VII StarPU Extensions 215

32 Organization 217

33 Advanced Tasks In StarPU 219

33.1 Task Dependencies . 219

33.2 Waiting For Tasks . 220

33.3 Using Multiple Implementations Of A Codelet . 220

33.4 Enabling Implementation According To Capabilities . 221

33.5 Getting Task Children . 222

33.6 Parallel Tasks . 222

33.7 Synchronization Tasks . 224

34 Advanced Data Management 225

34.1 Data Interface with Variable Size . 225

34.2 Data Management Allocation . 226

34.3 Data Access . 227

34.4 Data Prefetch . 227

Generated by Doxygen

vi

34.5 Manual Partitioning . 228

34.6 Data handles helpers . 228

34.7 Handles data buffer pointers . 229

34.8 Defining A New Data Filter . 229

34.9 Defining A New Data Interface . 230

34.10 The Multiformat Interface . 234

34.11 Specifying A Target Node For Task Data . 235

35 Advanced Scheduling 237

35.1 Energy-based Scheduling . 237

35.2 Static Scheduling . 239

35.3 Configuring Heteroprio . 239

36 Scheduling Contexts 241

36.1 General Ideas . 241

36.2 Creating A Context . 241

36.3 Creating A Context To Partition a GPU . 242

36.4 Modifying A Context . 242

36.5 Submitting Tasks To A Context . 242

36.6 Deleting A Context . 243

36.7 Emptying A Context . 243

37 Scheduling Context Hypervisor 245

37.1 What Is The Hypervisor . 245

37.2 Start the Hypervisor . 245

37.3 Interrogate The Runtime . 245

37.4 Trigger the Hypervisor . 245

37.5 Resizing Strategies . 246

37.6 Defining A New Hypervisor Policy . 247

38 How To Define a New Scheduling Policy 249

38.1 Introduction . 249

38.2 Helper functions for defining a scheduling policy (Basic or modular) 249

38.3 Defining A New Basic Scheduling Policy . 250

38.4 Defining A New Modular Scheduling Policy . 252

38.5 Using a New Scheduling Policy . 256

38.6 Graph-based Scheduling . 256

38.7 Debugging Scheduling . 257

39 CUDA Support 259

40 OpenCL Support 261

41 Maxeler FPGA Support 263

41.1 Introduction . 263

Generated by Doxygen

vii

41.2 Porting Applications to Maxeler FPGA . 263

42 Out Of Core 267

42.1 Introduction . 267

42.2 Use a new disk memory . 267

42.3 Data Registration . 268

42.4 Using Wont Use . 268

42.5 Examples: disk_copy . 268

42.6 Examples: disk_compute . 269

42.7 Performances . 271

42.8 Feedback Figures . 271

42.9 Disk functions . 271

43 MPI Support 273

43.1 Building with MPI support . 273

43.2 Example Used In This Documentation . 274

43.3 About Not Using The MPI Support . 274

43.4 Simple Example . 275

43.5 How to Initialize StarPU-MPI . 275

43.6 Point To Point Communication . 275

43.7 Exchanging User Defined Data Interface . 276

43.8 MPI Insert Task Utility . 278

43.9 Other MPI Utility Functions . 280

43.10 Pruning MPI Task Insertion . 280

43.11 Temporary Data . 280

43.12 Per-node Data . 281

43.13 Inter-node reduction . 281

43.14 Priorities . 282

43.15 MPI Cache Support . 282

43.16 MPI Data Migration . 283

43.17 MPI Collective Operations . 283

43.18 Make StarPU-MPI Progression Thread Execute Tasks . 284

43.19 Debugging MPI . 284

43.20 More MPI examples . 286

43.21 Using the NewMadeleine communication library . 286

43.22 MPI Master Slave Support . 286

43.23 MPI Checkpoint Support . 287

44 TCP/IP Support 289

44.1 TCP/IP Master Slave Support . 289

45 Transactions 291

45.1 General Ideas . 291

45.2 Usage . 291

Generated by Doxygen

viii

45.3 Known limitations . 292

46 Fault Tolerance 293

46.1 Introduction . 293

46.2 Retrying tasks . 293

47 FFT Support 295

47.1 Compilation . 295

48 SOCL OpenCL Extensions 297

49 Hierarchical DAGS 299

49.1 An Example . 299

50 Parallel Workers 301

50.1 General Ideas . 301

50.2 Workers Creating Parallel Workers . 301

50.3 Example Of Constraining OpenMP . 302

50.4 Creating Custom Parallel Workers . 303

50.5 Parallel Workers With Scheduling . 303

51 Interoperability Support 305

51.1 StarPU Resource Management . 305

52 SimGrid Support 307

52.1 Preparing Your Application For Simulation . 307

52.2 Calibration . 308

52.3 Simulation . 308

52.4 Simulation On Another Machine . 308

52.5 Simulation Examples . 309

52.6 Simulations On Fake Machines . 309

52.7 Tweaking Simulation . 309

52.8 MPI Applications . 309

52.9 Debugging Applications . 309

52.10 Memory Usage . 309

53 Helpers 311

54 Debugging Tools 313

54.1 TroubleShooting In General . 313

54.2 Using The Gdb Debugger . 313

54.3 Using Other Debugging Tools . 314

54.4 Watchdog Support . 314

54.5 Using The Temanejo Task Debugger . 314

Generated by Doxygen

ix

VIII Appendix 317

55 The GNU Free Documentation License 319

55.1 ADDENDUM: How to use this License for your documents . 323

56 Module Index 325

56.1 Modules . 325

57 Module Documentation a.k.a StarPU’s API 327

57.1 Bitmap . 328

57.2 Hierarchical Dags . 331

57.3 Codelet And Tasks . 333

57.4 CUDA Extensions . 361

57.5 Data Interfaces . 366

57.6 Data Management . 414

57.7 Data Partition . 428

57.8 Expert Mode . 452

57.9 Explicit Dependencies . 453

57.10 FFT Support . 457

57.11 Fortran Support . 459

57.12 FxT Support . 460

57.13 Heteroprio Scheduler . 463

57.14 HIP Extensions . 466

57.15 Initialization and Termination . 469

57.16 Task Insert Utility . 480

57.17 Interoperability Support . 491

57.18 Maxeler FPGA Extensions . 502

57.19 Miscellaneous Helpers . 503

57.20 Modularized Scheduler Interface . 508

57.21 MPI Fault Tolerance Support . 526

57.22 MPI Support . 528

57.23 OpenCL Extensions . 551

57.24 OpenMP Runtime Support . 558

57.25 Out Of Core . 584

57.26 Parallel Tasks . 588

57.27 Parallel Workers . 590

57.28 Performance Monitoring Counters . 596

57.29 Performance Model . 602

57.30 Performance Steering Knobs . 613

57.31 Profiling . 620

57.32 Profiling Tool . 626

57.33 Random Functions . 628

57.34 Running Drivers . 629

Generated by Doxygen

x

57.35 Scheduler Toolbox . 631

57.36 Scheduling Contexts . 636

57.37 Scheduling Policy . 644

57.38 Scheduling Context Hypervisor - Linear Programming . 655

57.39 Scheduling Context Hypervisor - Building a new resizing policy 659

57.40 Scheduling Context Hypervisor - Regular usage . 669

57.41 Sink . 674

57.42 Standard Memory Library . 675

57.43 Task Bundles . 681

57.44 Task Lists . 683

57.45 Theoretical Lower Bound on Execution Time . 686

57.46 Threads . 688

57.47 Toolbox . 698

57.48 Transactions . 702

57.49 Tree . 703

57.50 Versioning . 704

57.51 Workers . 705

58 File Index 719

58.1 File List . 719

59 File Documentation 721

59.1 starpu.h File Reference . 721

59.2 starpu_bitmap.h File Reference . 722

59.3 starpu_bound.h File Reference . 723

59.4 starpu_config.h File Reference . 724

59.5 starpu_cublas.h File Reference . 727

59.6 starpu_cublas_v2.h File Reference . 727

59.7 starpu_cusparse.h File Reference . 727

59.8 starpu_cuda.h File Reference . 727

59.9 starpu_data.h File Reference . 728

59.10 starpu_data_filters.h File Reference . 730

59.11 starpu_data_interfaces.h File Reference . 734

59.12 starpu_deprecated_api.h File Reference . 740

59.13 starpu_disk.h File Reference . 740

59.14 starpu_driver.h File Reference . 740

59.15 starpu_expert.h File Reference . 741

59.16 starpu_fxt.h File Reference . 741

59.17 starpu_hash.h File Reference . 741

59.18 starpu_helper.h File Reference . 742

59.19 starpu_heteroprio.h File Reference . 743

59.20 starpu_hip.h File Reference . 743

59.21 starpu_scheduler_toolbox.h File Reference . 744

Generated by Doxygen

1

59.22 starpu_max_fpga.h File Reference . 745

59.23 starpu_mod.f90 File Reference . 745

59.24 starpu_mpi.h File Reference . 746

59.25 starpu_mpi_ft.h File Reference . 749

59.26 starpu_mpi_lb.h File Reference . 750

59.27 starpu_opencl.h File Reference . 750

59.28 starpu_openmp.h File Reference . 751

59.29 starpu_parallel_worker.h File Reference . 754

59.30 starpu_perf_monitoring.h File Reference . 755

59.31 starpu_perf_steering.h File Reference . 756

59.32 starpu_perfmodel.h File Reference . 757

59.33 starpu_profiling.h File Reference . 759

59.34 starpu_profiling_tool.h File Reference . 760

59.35 starpu_rand.h File Reference . 760

59.36 starpu_sched_component.h File Reference . 761

59.37 starpu_sched_ctx.h File Reference . 765

59.38 starpu_sched_ctx_hypervisor.h File Reference . 766

59.39 starpu_scheduler.h File Reference . 767

59.40 starpu_simgrid_wrap.h File Reference . 769

59.41 starpu_sink.h File Reference . 769

59.42 starpu_stdlib.h File Reference . 769

59.43 starpu_task.h File Reference . 770

59.44 starpu_task_bundle.h File Reference . 772

59.45 starpu_task_dep.h File Reference . 773

59.46 starpu_task_list.h File Reference . 773

59.47 starpu_task_util.h File Reference . 774

59.48 starpu_thread.h File Reference . 775

59.49 starpu_thread_util.h File Reference . 778

59.50 starpu_tree.h File Reference . 779

59.51 starpu_util.h File Reference . 780

59.52 starpu_worker.h File Reference . 781

59.53 starpufft.h File Reference . 783

59.54 sc_hypervisor.h File Reference . 784

59.55 sc_hypervisor_config.h File Reference . 785

59.56 sc_hypervisor_lp.h File Reference . 786

59.57 sc_hypervisor_monitoring.h File Reference . 787

59.58 sc_hypervisor_policy.h File Reference . 789

59.59 starpurm.h File Reference . 790

60 Deprecated List 793

Index 794

Generated by Doxygen

2

This manual documents the usage of StarPU version 1.4.7. Its contents was last updated on 2024-05-15.

Copyright © 2009-2024 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Generated by Doxygen

Chapter 1

Introduction

1.1 Motivation

The use of specialized hardware, such as accelerators or coprocessors offers an interesting approach to overcoming
the physical limits encountered by processor architects. As a result, many machines are now equipped with one or
several accelerators (e.g. a GPU), in addition to the usual processor(s). While significant efforts have been devoted
to offloading computation onto such accelerators, very little attention has been paid to portability concerns on the
one hand, and to the possibility of having heterogeneous accelerators and processors interact on the other hand.
StarPU is a runtime system that provides support for heterogeneous multicore architectures. It not only offers
a unified view of the computational resources (i.e. CPUs and accelerators simultaneously) but also takes care
of efficiently mapping and executing tasks onto an heterogeneous machine while transparently handling low-level
issues such as data transfers in a portable manner.

1.2 StarPU in a Nutshell

StarPU is a software tool designed to enable programmers to harness the computational capabilities of both CPUs
and GPUs, all while sparing them the need to meticulously adapt their programs for specific target machines and
processing units.
At the heart of StarPU lies its runtime support library, which takes charge of scheduling tasks supplied by applica-
tions on heterogeneous CPU/GPU systems. Furthermore, StarPU provides programming language support through
an OpenCL front-end (SOCL OpenCL Extensions).
StarPU's runtime mechanism and programming language extensions are built around a task-based programming
model. In this modell, applications submit computational tasks, with CPU and/or GPU implementations. StarPU
effectively schedules these tasks and manages the associated data transfers across available CPUs and GPUs.
The data that a task operates on are automatically exchanged between accelerators and the main memory, thereby
sparing programmers the intricacies of scheduling and the technical details tied to these transfers.
StarPU excels in its adaptness at efficiently scheduling tasks using established algorithms from the literature
(Task Scheduling Policies). Furthermore addition, it provides the flexibility for scheduling experts, such as compiler
or computational library developers, to implement custom scheduling policies in a manner that is easily portable
(How To Define A New Scheduling Policy).
The remainder of this section describes the main concepts used in StarPU.
A video, lasting 26 minutes, accessible on the StarPU website (https://starpu.gitlabpages.←↩

inria.fr/) presents these concepts.
Additionally, a serie of tutorials can be found at https://starpu.gitlabpages.inria.←↩

fr/tutorials/

1.2.1 Codelet and Tasks

One of StarPU's key data structures is the codelet. A codelet defines a computational kernel that can potentially
be implemented across various architectures, including CPUs, CUDA devices, or OpenCL devices.
Another pivotal data structure is the task. Executing a StarPU task involves applying a codelet to a data set,
utilizing one of the architectures on which the codelet is implemented. Therefore, a task describes the codelet that it
uses, the data accessed, and how they are accessed during the computation (read and/or write). StarPU tasks are

Generated by Doxygen

https://starpu.gitlabpages.inria.fr/
https://starpu.gitlabpages.inria.fr/
https://starpu.gitlabpages.inria.fr/tutorials/
https://starpu.gitlabpages.inria.fr/tutorials/

4 Introduction

asynchronous, meaning that submitting a task to StarPU is a non-blocking operation. The task structure can also
specify a callback function, which is called once StarPU succesfully completes the task. Additionally, it contains
optional fields that the application may use to provide hints to the scheduler, such as priority levels.
By default, task dependencies are inferred from data dependency (sequential coherency) within StarPU. However,
the application has the ability to disable sequential coherency for specific data, and dependencies can also be
specifically defined. A task can be uniquely identified by a 64-bit number, chosen by the application, referred to as
a tag. Task dependencies can be enforced through callback functions, by submitting other tasks, or by specifying
dependencies between tags (which can correspond to tasks that have yet to be submitted).

1.2.2 StarPU Data Management Library

As StarPU dynamically schedules tasks at runtime, the need for data transfers is automatically managed in a`‘just-
in-time’' manner between different processing units, This automated approach alleviates the burden on application
programmers to explicitly handle data transfers. Furthemore, to minimize needless transfers, StarPU retains data
at the location of its last use, even if modifications were made there. Additionally, StarPU allows multiple instances
of the same data to coexist across various processing units simultaneously, as long as the data remains unaltered.

1.3 Application Taskification

We will explain here shortly the concept of "taskifying" an application.
Before transitioning to StarPU, you must transform your application as follows:

• Refactor functions into "pure" functions that exclusively utilize data from their parameters.

• Create a central main function responsible for calling these pure functions.

Once this restructuring is complete, integrating StarPU or any similar task-based library becomes straightforward.
You merely replace function calls with task submissions, leveraging the library's capabilities.
Chapter A Stencil Application shows how to easily convert an existing application to use StarPU.

1.4 Research Papers

Research papers about StarPU can be found at https://starpu.gitlabpages.inria.←↩

fr/publications/.
A good overview is available in the research report at http://hal.archives-ouvertes.←↩

fr/inria-00467677.

Generated by Doxygen

https://starpu.gitlabpages.inria.fr/publications/
https://starpu.gitlabpages.inria.fr/publications/
http://hal.archives-ouvertes.fr/inria-00467677
http://hal.archives-ouvertes.fr/inria-00467677

Chapter 2

Documentation Organization

The documentation chapters include

• ------— StarPU Installation ------—

– Building and Installing StarPU

– Execution Configuration Through Environment Variables

– Compilation Configuration

• ------— StarPU Basics ------—

– StarPU Applications, setting up Your Own Code

– Basic Examples

– Full source code for the ’Scaling a Vector’ example

– Tasks In StarPU

– Data Management

– Scheduling

– Examples in StarPU Sources

• ------— StarPU Applications ------—

– A Stencil Application

• ------— StarPU Performances ------—

– Benchmarking StarPU

– Online Performance Tools

– Offline Performance Tools

• ------— StarPU FAQs ------—

– Check List When Performance Are Not There

– Frequently Asked Questions

• ------— StarPU Language Bindings ------—

– The StarPU Native Fortran Support

– StarPU Java Interface

– Python Interface

– The StarPU OpenMP Runtime Support (SORS)

• ------— StarPU Extensions ------—

– Configuration and Initialization

– Advanced Tasks In StarPU

Generated by Doxygen

6 Documentation Organization

– Advanced Data Management

– Advanced Scheduling

– Scheduling Contexts

– Scheduling Context Hypervisor

– How To Define A New Scheduling Policy

– CUDA Support

– OpenCL Support

– Maxeler FPGA Support

– Out Of Core

– MPI Support

– TCP/IP Support

– Transactions

– Fault Tolerance

– FFT Support

– SOCL OpenCL Extensions

– Hierarchical DAGS

– Creating Parallel Workers On A Machine

– Interoperability Support

– SimGrid Support

– Debugging Tools

– Helpers

• Appendices

– The GNU Free Documentation License

– Module Documentation

– File Documentation

– Deprecated List

Make sure to have had a look at those too!

Generated by Doxygen

Chapter 3

Glossary

A codelet stores pointers to different implementations of the same theoretical function.
A memory node can be either the main RAM, GPU-embedded memory or disk memory.
A bus represents a connection between memory nodes.
A data handle keeps track of multiple copies of the same data (registered by the application) across various
memory nodes. The data management library ensures coherency among these copies.
The home memory node of a data handle is the memory node where the data was originally registered (typically
the main memory node).
A task represents a scheduled execution of a codelet on specific data handles.
A tag is a rendez-vous point. Tasks generally have their own tag and can depend on other tags. The value of a tag
is chosen by the application.
A worker execute tasks. Typically, there is one worker per CPU computation core and one per accelerator (with a
dedicated whole CPU core).
A driver oversees a given type of worker. Currently, there are CPU, CUDA, and OpenCL drivers.
A performance model is a (dynamic or static) model of the performance of a given codelet. Codelets can have
performance model for execution time as well as energy consumption.
A data interface describes the layout of the data: for a vector, it includes a pointer for the start, the number of
elements and the size of elements ; for a matrix, it involves a pointer for the start, the number of elements per
row, the offset between rows, and the size of each element ; etc. Codelet functions receive interfaces for the local
memory node copies of data handles assigned to the scheduled task, to access their data.
Data partitioning means dividing the data of a specific data handle (referred to as the father) into several children
data handles, each representing distinct segments of the original data.
A filter is the function responsible for deriving child data handles from a father data handle, thus defining how the
partitioning should be done (e.g. horizontal, vertical, etc.)
Acquiring a data handle can be done from the main application, allowing secure access to the data of a data handle
from its home node without needing to unregister it.

Generated by Doxygen

8 Glossary

Generated by Doxygen

Part I

StarPU Installation

Generated by Doxygen

Chapter 4

Organization

This parts shows a basic usage of StarPU and how to execute the provided examples or your own applications.

• Chapter Building and Installing StarPU shows how to build and install StarPU.

• Chapter Compilation Configuration shows how to tune StarPU building process through configuration options.

• Chapter Execution Configuration Through Environment Variables lists environment variables that can be
used to tune StarPU when executing an application.

Finally, Chapter Configuration and Initialization shows a brief overview of how to configure and tune StarPU.

Generated by Doxygen

12 Organization

Generated by Doxygen

Chapter 5

Building and Installing StarPU

Depending on the level of customization required for the library installation, we offer several solutions.

1. Basic Installation or Evaluation: If you are looking to simply try out the library, assess its performance on
simple cases, run examples, or use the latest stable version, we recommend the following options:

• For Linux Debian or Ubuntu distributions, consider using the latest StarPU Debian package (see
Installing a Binary Package).

• For macOS, you can opt for Brew and follow the steps in Installing a Source Package.

• Using an already installed module on a cluster, as explained in Using a Module

2. Customization for Specific Needs: If you intend to use StarPU but require modifications, such as switching
to another version (git branch), changing the default MPI, utilizing a preferred compiler, or altering source
code, consider these options:

• Guix or Spack can be useful, as these package managers allow dynamic changes during source-based
builds. Refer to Installing a Source Package for details.

• Alternatively, you can directly build from the source using the native build system of the library (Makefile,
GNU autotools). Instructions can be found in Building from Source.

3. Experiment Reproducibility: If your focus is on experiment reproducibility, we recommend using Guix. Refer
to Installing a Source Package for guidance.

Whichever solution you choose, you can utilize the tool bin/starpu_config to view all the configuration pa-
rameters used during StarPU installation.
Please refer to the provided documentation for specific installation steps and details for each solution.

5.1 Installing a Binary Package

One of the StarPU developers being a Debian Developer, the packages are well integrated and very up-to-date. To
see which packages are available, simply type:

$ apt-cache search starpu

To install what you need, type for example:

$ sudo apt-get install libstarpu-dev

5.2 Installing a Source Package

StarPU is available from different package managers.

• Guix https://gitlab.inria.fr/guix-hpc/guix-hpc

• Spack https://github.com/spack/spack/

• Brew https://gitlab.inria.fr/solverstack/brew-repo

Documentation on how to install StarPU with these package managers is directly available from the links specified
above. We give below a brief overview of the spack installation.

Generated by Doxygen

https://gitlab.inria.fr/guix-hpc/guix-hpc
https://github.com/spack/spack/
https://gitlab.inria.fr/solverstack/brew-repo

14 Building and Installing StarPU

5.2.1 Installing the Spack Package

Here is a quick guide to install StarPU with spack.

$ git clone git@github.com:spack/spack.git
$ source ./spack/share/spack/setup-env.sh # if you use bash or zsh
$ spack install starpu

By default, the latest release will be installed, one can choose to install a specific release or even the master version.

$ spack install starpu@master
$ spack install starpu@1.3.5

We strongly advise reading the detailed reference manual at https://spack.readthedocs.←↩

io/en/latest/getting_started.html

5.2.2 Using a Module

On some clusters, StarPU is provided as a module, for example on the Jean Zay cluster. The information is available
at http://www.idris.fr/jean-zay/cpu/jean-zay-cpu-starpu.html

5.3 Building from Source

StarPU can be built and installed by the standard means of the GNU autotools. The following chapter is intended to
briefly remind how these tools can be used to install StarPU.

5.3.1 Optional Dependencies

The hwloc (http://www.open-mpi.org/software/hwloc) topology discovery library is not manda-
tory to use StarPU, but strongly recommended. It allows for topology aware scheduling, which improves perfor-
mance. hwloc is available in major free operating system distributions, and for most operating systems. Make
sure to not only install a hwloc or libhwloc package, but also hwloc-devel or libhwloc-dev to have
hwloc headers etc.
If libhwloc is installed in a standard location, no option is required, it will be detected automatically, otherwise
--with-hwloc=<directory> should be used to specify its location.
If libhwloc is not available on your system, the option --without-hwloc should be explicitly given when calling the
script configure.

5.3.2 Getting Sources

StarPU's sources can be obtained from the download page of the StarPU website (https://starpu.←↩

gitlabpages.inria.fr/files/).
All releases and the development tree of StarPU are freely available on StarPU SCM server under the LGPL license.
Some releases are available under the BSD license.
The latest release can be downloaded from the StarPU download page (https://starpu.gitlabpages.←↩

inria.fr/files/).
The latest nightly snapshot can be downloaded from the StarPU website (https://starpu.←↩

gitlabpages.inria.fr/files/testing/).
And finally, the current development version is also accessible via git. It should only be used if you need the very
latest changes (i.e. less than a day old!).

$ git clone git@gitlab.inria.fr:starpu/starpu.git

5.3.3 Configuring StarPU

Running autogen.sh is not necessary when using the tarball releases of StarPU. However, when using the
source code from the git repository, you first need to generate the script configure and the different Makefiles.
This requires the availability of autoconf and automake >= 2.60.

$./autogen.sh

Generated by Doxygen

https://spack.readthedocs.io/en/latest/getting_started.html
https://spack.readthedocs.io/en/latest/getting_started.html
http://www.idris.fr/jean-zay/cpu/jean-zay-cpu-starpu.html
http://www.open-mpi.org/software/hwloc
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/testing/
https://starpu.gitlabpages.inria.fr/files/testing/

5.3 Building from Source 15

You then need to configure StarPU. Details about options that are useful to give to configure are given in
Compilation Configuration.

$./configure

If configure does not detect some software or produces errors, please make sure to post the contents of the file
config.log when reporting the issue.
By default, the files produced during the compilation are placed in the source directory. As the compilation generates
a lot of files, it is advised to put them all in a separate directory. It is then easier to clean up, and this allows to
compile several configurations out of the same source tree. To do so, simply enter the directory where you want the
compilation to produce its files, and invoke the script configure located in the StarPU source directory.

$ mkdir build
$ cd build
$../configure

By default, StarPU will be installed in /usr/local/bin, /usr/local/lib, etc. You can specify an installa-
tion prefix other than /usr/local using the option -prefix, for instance:

$../configure --prefix=$HOME/starpu

5.3.4 Building StarPU
$ make

Once everything is built, you may want to test the result. An extensive set of regression tests is provided with Star←↩

PU. Running the tests is done by calling make check. These tests are run every night and the result from the
main profile is publicly available (https://starpu.gitlabpages/files/testing/master/).

$ make check

5.3.5 Installing StarPU

In order to install StarPU at the location which was specified during configuration:

$ make install

If you have let StarPU install in /usr/local/, you additionally need to run

$ sudo ldconfig

so the libraries can be found by the system.
Libtool interface versioning information are included in libraries names (libstarpu-1.4.so, libstarpumpi-1.←↩

4.so and libstarpufft-1.4.so).

Generated by Doxygen

https://starpu.gitlabpages/files/testing/master/

16 Building and Installing StarPU

Generated by Doxygen

Chapter 6

Compilation Configuration

The behavior of the StarPU library and tools may be tuned thanks to the following configure options.

6.1 Common Configuration

–enable-debug Enable debugging messages.

–enable-spinlock-check Enable checking that spinlocks are taken and released properly.

–enable-fast Disable assertion checks, which saves computation time.

–enable-verbose Increase the verbosity of the debugging messages. This can be disabled at runtime by setting
the environment variable STARPU_SILENT to any value. -enable-verbose=extra increase even more
the verbosity.

$ STARPU_SILENT=1 ./vector_scal

–enable-coverage Enable flags for the coverage tool gcov.

–enable-quick-check Specify tests and examples should be run on a smaller data set, i.e allowing a faster exe-
cution time

–enable-long-check Enable some exhaustive checks which take a really long time.

–enable-new-check Enable new testcases which are known to fail.

–with-hwloc Specify hwloc should be used by StarPU. hwloc should be found by the means of the tool
pkg-config.

–with-hwloc=prefix Specify hwloc should be used by StarPU. hwloc should be found in the directory spec-
ified by prefix

–without-hwloc Specify hwloc should not be used by StarPU.

–disable-build-doc Disable the creation of the documentation. This should be done on a machine
which does not have the tools doxygen and latex (plus the packages latex-xcolor and
texlive-latex-extra).

–enable-build-doc-pdf By default, only the HTML documentation is generated. Use this option to also enable
the generation of the PDF documentation. This should be done on a machine which does have the tools
doxygen and latex (plus the packages latex-xcolor and texlive-latex-extra).

–enable-icc Enable the compilation of specific ICC examples. StarPU itself will not be compiled with ICC unless
specified with CC=icc

–disable-icc Disable the usage of the ICC compiler. Otherwise, when a ICC compiler is found, some specific ICC
examples are compiled as explained above.

–with-check-flags Specify flags which will be given to C, CXX and Fortran compilers when valid

Additionally, the script configure recognize many variables, which can be listed by typing ./configure
-help. For example, ./configure NVCCFLAGS="-arch sm_20" adds a flag for the compilation of CUDA
kernels, and NVCC_CC=gcc-5 allows to change the C++ compiler used by nvcc.

Generated by Doxygen

18 Compilation Configuration

6.2 Configuring Workers

–enable-data-locality-enforce Enable data locality enforcement when picking up a worker to execute a task. This
mechanism is by default disabled.

–enable-blocking-drivers By default, StarPU keeps CPU workers awake permanently, for better reactivity. This
option makes StarPU put CPU workers to real sleep when there are not enough tasks to compute.

–enable-worker-callbacks If blocking drivers are enabled, enable callbacks to notify an external resource man-
ager about workers going to sleep and waking up.

–enable-maxcpus=count Use at most count CPU cores. This information is then available as the macro
STARPU_MAXCPUS.

The default value is auto. it allows StarPU to automatically detect the number of CPUs on the build machine.
This should not be used if the running host has a larger number of CPUs than the build machine.

–enable-maxnumanodes=count Use at most count NUMA nodes. This information is then available as the
macro STARPU_MAXNUMANODES.

The default value is auto. it allows StarPU to automatically detect the number of NUMA nodes on the build
machine. This should not be used if the running host has a larger number of NUMA nodes than the build
machine.

–disable-cpu Disable the use of CPUs of the machine. Only GPUs etc. will be used.

–enable-maxcudadev=count Use at most count CUDA devices. This information is then available as the
macro STARPU_MAXCUDADEVS.

–disable-cuda Disable the use of CUDA, even if a valid CUDA installation was detected.

–with-cuda-dir=prefix Search for CUDA under prefix, which should notably contain the file include/cuda.←↩

h.

–with-cuda-include-dir=dir Search for CUDA headers under dir, which should notably contain the file
cuda.h. This defaults to /include appended to the value given to --with-cuda-dir.

–with-cuda-lib-dir=dir Search for CUDA libraries under dir, which should notably contain the CUDA shared
libraries—e.g., libcuda.so. This defaults to /lib appended to the value given to --with-cuda-dir.

–disable-cuda-memcpy-peer Explicitly disable peer transfers when using CUDA 4.0.

–enable-maxopencldev=count Use at most count OpenCL devices. This information is then available as the
macro STARPU_MAXOPENCLDEVS.

–disable-opencl Disable the use of OpenCL, even if the SDK is detected.

–with-opencl-dir=prefix Search for an OpenCL implementation under prefix, which should notably contain
include/CL/cl.h (or include/OpenCL/cl.h on Mac OS).

–with-opencl-include-dir=dir Search for OpenCL headers under dir, which should notably contain CL/cl.←↩

h (or OpenCL/cl.h on Mac OS). This defaults to /include appended to the value given to
--with-opencl-dir.

–with-opencl-lib-dir=dir Search for an OpenCL library under dir, which should notably contain the Open←↩

CL shared libraries—e.g. libOpenCL.so. This defaults to /lib appended to the value given to
--with-opencl-dir.

–enable-opencl-simulator Enable considering the provided OpenCL implementation as a simulator, i.e. use the
kernel duration returned by OpenCL profiling information as wallclock time instead of the actual measured
real time. This requires the SimGrid support.

–enable-maximplementations=count Allow for at most count codelet implementations for the same target
device. This information is then available as the macro STARPU_MAXIMPLEMENTATIONS macro.

–enable-max-sched-ctxs=count Allow for at most count scheduling contexts This information is then available
as the macro STARPU_NMAX_SCHED_CTXS.

Generated by Doxygen

6.3 Extension Configuration 19

–disable-asynchronous-copy Disable asynchronous copies between CPU and GPU devices. The AMD imple-
mentation of OpenCL is known to fail when copying data asynchronously. When using this implementation, it
is therefore necessary to disable asynchronous data transfers.

–disable-asynchronous-cuda-copy Disable asynchronous copies between CPU and CUDA devices.

–disable-asynchronous-opencl-copy Disable asynchronous copies between CPU and OpenCL devices. The
AMD implementation of OpenCL is known to fail when copying data asynchronously. When using this imple-
mentation, it is therefore necessary to disable asynchronous data transfers.

–disable-asynchronous-hip-copy Disable asynchronous copies between CPU and HIP devices.

–disable-asynchronous-mpi-master-slave-copy Disable asynchronous copies between CPU and MPI Slave de-
vices.

–disable-asynchronous-tcpip-master-slave-copy Disable asynchronous copies between CPU and MPI Slave
devices.

–disable-asynchronous-fpga-copy Disable asynchronous copies between CPU and Maxeler FPGA devices.

–enable-maxnodes=count Use at most count memory nodes. This information is then available as the macro
STARPU_MAXNODES. Reducing it allows to considerably reduce memory used by StarPU data structures.

–with-max-fpga=dir Enable the Maxeler FPGA driver support, and optionally specify the location of the Maxeler
FPGA library.

–disable-asynchronous-max-fpga-copy Disable asynchronous copies between CPU and Maxeler FPGA de-
vices.

6.3 Extension Configuration

–enable-starpupy Enable the StarPU Python Interface (Python Interface)

–enable-python-multi-interpreter Enable the use of multiple interpreters in the StarPU Python Interface
(Multiple Interpreters)

–disable-mpi Disable the build of libstarpumpi. By default, it is enabled when MPI is found.

–enable-mpi Enable the build of libstarpumpi. This is necessary when using Simgrid+MPI.

–with-mpicc=path Use the compiler mpicc at path, for StarPU-MPI. (MPI Support).

–enable-mpi-pedantic-isend Before performing any MPI communication, StarPU-MPI waits for the data to be
available in the main memory of the node submitting the request. For send communications, data is ac-
quired with the mode STARPU_R. When enabling the pedantic mode, data are instead acquired with the
STARPU_RW which thus ensures that there is not more than 1 concurrent MPI_Isend calls accessing the
data and StarPU does not read from it from tasks during the communication.

–enable-mpi-master-slave Enable the MPI Master-Slave support. By default, it is disabled.

–enable-mpi-verbose Increase the verbosity of the MPI debugging messages. This can be disabled at runtime
by setting the environment variable STARPU_SILENT to any value. -enable-mpi-verbose=extra
increase even more the verbosity.

$ STARPU_SILENT=1 mpirun -np 2 ./insert_task

–enable-mpi-ft Enable the MPI checkpoint mechanism. See MPI Fault Tolerance Support

–enable-mpi-ft-stats Enable the statistics for the MPI checkpoint mechanism. See MPI Fault Tolerance Support

–enable-tcpip-master-slave Enable the TCP/IP Master-Slave support (TCP/IP Support). By default, it is disabled.

–enable-nmad Enable the NewMadeleine implementation for StarPU-MPI. See Using the NewMadeleine communication library
for more details.

–disable-fortran Disable the fortran extension. By default, it is enabled when a fortran compiler is found.

Generated by Doxygen

20 Compilation Configuration

–disable-socl Disable the SOCL extension (SOCL OpenCL Extensions). By default, it is enabled when an Open←↩

CL implementation is found.

–enable-openmp Enable OpenMP Support (The StarPU OpenMP Runtime Support (SORS))

–enable-openmp-llvm Enable LLVM OpenMP Support (Example: An OpenMP LLVM Support)

–enable-bubble Enable Hierarchical dags support (Hierarchical DAGS)

–enable-parallel-worker Enable parallel worker support (Creating Parallel Workers On A Machine)

–enable-eclipse-plugin Enable the StarPU Eclipse Plugin. See StarPU Eclipse Plugin to know how to install
Eclipse.

6.4 Advanced Configuration

–enable-perf-debug Enable performance debugging through gprof.

–enable-model-debug Enable performance model debugging.

–enable-fxt-lock Enable additional trace events which describes locks behaviour. This is however extremely heavy
and should only be enabled when debugging insides of StarPU.

–enable-maxbuffers Define the maximum number of buffers that tasks will be able to take as parameters, then
available as the macro STARPU_NMAXBUFS.

–enable-fxt-max-files=count Use at most count mpi nodes fxt files for generating traces. This information
is then available as the macro STARPU_FXT_MAX_FILES. This information is used by FxT tools when
considering multi node traces. Default value is 64.

–enable-allocation-cache Enable the use of a data allocation cache to avoid the cost of it with CUDA. Still exper-
imental.

–enable-opengl-render Enable the use of OpenGL for the rendering of some examples.

–enable-blas-lib=prefix Specify the blas library to be used by some of the examples. Libraries available :

• none [default] : no BLAS library is used

• atlas: use ATLAS library

• goto: use GotoBLAS library

• openblas: use OpenBLAS library

• mkl: use MKL library (you may need to set specific CFLAGS and LDFLAGS with –with-mkl-cflags and
–with-mkl-ldflags)

–enable-leveldb Enable linking with LevelDB if available

–enable-hdf5 Enable building HDF5 support.

–with-hdf5-include-dir=path Specify the directory where is stored the header file hdf5.h.

–with-hdf5-lib-dir=path Specify the directory where is stored the library hdf5.

–disable-starpufft Disable the build of libstarpufft, even if fftw or cuFFT is available.

–enable-starpufft-examples Enable the compilation and the execution of the libstarpufft examples. By default,
they are neither compiled nor checked.

–with-fxt=prefix Search for FxT under prefix. FxT (http://savannah.nongnu.org/projects/fkt)
is used to generate traces of scheduling events, which can then be rendered them using ViTE (Off-line←↩

PerformanceFeedback). prefix should notably contain include/fxt/fxt.h.

–with-perf-model-dir=dir Store performance models under dir, instead of the current user's home.

–with-goto-dir=prefix Search for GotoBLAS under prefix, which should notably contain libgoto.so or
libgoto2.so.

Generated by Doxygen

http://savannah.nongnu.org/projects/fkt

6.4 Advanced Configuration 21

–with-atlas-dir=prefix Search for ATLAS under prefix, which should notably contain include/cblas.h.

–with-mkl-cflags=cflags Use cflags to compile code that uses the MKL library.

–with-mkl-ldflags=ldflags Use ldflags when linking code that uses the MKL library. Note that the MKL
website (http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/)
provides a script to determine the linking flags.

–disable-glpk Disable the use of libglpk for computing area bounds.

–disable-build-tests Disable the build of tests.

–disable-build-examples Disable the build of examples.

–enable-sc-hypervisor Enable the Scheduling Context Hypervisor plugin (Scheduling Context Hypervisor). By
default, it is disabled.

–enable-memory-stats Enable memory statistics (Memory Feedback).

–enable-simgrid Enable simulation of execution in SimGrid, to allow easy experimentation with various numbers
of cores and GPUs, or amount of memory, etc. Experimental.

The path to SimGrid can be specified through the SIMGRID_CFLAGS and SIMGRID_LIBS environment
variables, for instance:

export SIMGRID_CFLAGS="-I/usr/local/simgrid/include"
export SIMGRID_LIBS="-L/usr/local/simgrid/lib -lsimgrid"

–with-simgrid-dir Similar to the option --enable-simgrid but also allows to specify the location to the SimGrid
library.

–with-simgrid-include-dir Similar to the option --enable-simgrid but also allows to specify the location to the
SimGrid include directory.

–with-simgrid-lib-dir Similar to the option --enable-simgrid but also allows to specify the location to the SimGrid
lib directory.

–with-smpirun=path Use the smpirun at path

–enable-simgrid-mc Enable the Model Checker in simulation of execution in SimGrid, to allow exploring various
execution paths.

–enable-calibration-heuristic Allow to set the maximum authorized percentage of deviation for the history-based
calibrator of StarPU. A correct value of this parameter must be in [0..100]. The default value of this parameter
is 10. Experimental.

–enable-mlr Allow to enable multiple linear regression models (see Performance Model Example)

–enable-mlr-system-blas Allow to make multiple linear regression models use the system-provided BLAS for
dgels (see Performance Model Example)

Generated by Doxygen

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

22 Compilation Configuration

Generated by Doxygen

Chapter 7

Execution Configuration Through Environment
Variables

The StarPU library and tools's behavior can be tuned using the following environment variables. To access these
variables, you can use the provided functions.

• starpu_getenv() retrieves the value of an environment variable.

• starpu_get_env_string_var_default() retrieves the value of an environment variable as a string. If the variable
is not set, you can provide a default value.

• starpu_get_env_size_default() retrieves the value of an environment variable as a size in bytes, or a default
value if the environment variable is not set.

These functions allow to fine-tune the behavior of StarPU according to your preferences and requirements by lever-
aging environment variables.

7.1 Configuring Workers

7.1.1 General Configuration

STARPU_WORKERS_NOBIND Setting it to non-zero will prevent StarPU from binding its threads to CPUs. This
is for instance useful when running the test suite in parallel.

STARPU_WORKERS_GETBIND By default StarPU uses the OS-provided CPU binding to determine how many
and which CPU cores it should use. This is notably useful when running several StarPU-MPI processes on
the same host, to let the MPI launcher set the CPUs to be used. Default value is 1.

If that binding is erroneous (e.g. because the job scheduler binds to just one core of the allocated cores), you
can set STARPU_WORKERS_GETBIND to 0 to make StarPU use all cores of the machine.

STARPU_WORKERS_CPUID Passing an array of integers in STARPU_WORKERS_CPUID specifies on which
logical CPU the different workers should be bound. For instance, if STARPU_WORKERS_CPUID="0 1 4
5", the first worker will be bound to logical CPU #0, the second CPU worker will be bound to logical CPU #1
and so on. Note that the logical ordering of the CPUs is either determined by the OS, or provided by the library
hwloc in case it is available. Ranges can be provided: for instance, STARPU_WORKERS_CPUID="1-3
5" will bind the first three workers on logical CPUs #1, #2, and #3, and the fourth worker on logical CPU #5.
Unbound ranges can also be provided: STARPU_WORKERS_CPUID="1-" will bind the workers starting
from logical CPU #1 up to last CPU.

Note that the first workers correspond to the CUDA workers, then come the OpenCL workers, and finally the
CPU workers. For example, if we have STARPU_NCUDA=1, STARPU_NOPENCL=1, STARPU_NCPU=2
and STARPU_WORKERS_CPUID="0 2 1 3", the CUDA device will be controlled by logical CPU #0, the
OpenCL device will be controlled by logical CPU #2, and the logical CPUs #1 and #3 will be used by the CPU
workers.

If the number of workers is larger than the array given in STARPU_WORKERS_CPUID, the workers are
bound to the logical CPUs in a round-robin fashion: if STARPU_WORKERS_CPUID="0 1", the first and
the third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).

Generated by Doxygen

24 Execution Configuration Through Environment Variables

This variable is ignored if the field starpu_conf::use_explicit_workers_bindid passed to starpu_init() is set.

Setting STARPU_WORKERS_CPUID or STARPU_WORKERS_COREID overrides the binding provided by
the job scheduler, as described for STARPU_WORKERS_GETBIND.

STARPU_WORKERS_COREID Same as STARPU_WORKERS_CPUID, but bind the workers to cores instead of
PUs (hyperthreads).

STARPU_NTHREADS_PER_CORE Specify how many threads StarPU should run on each core. The default is
1 because kernels are usually already optimized for using a full core. Setting this to e.g. 2 instead allows
exploiting hyperthreading.

STARPU_MAIN_THREAD_BIND Tell StarPU to bind the thread that calls starpu_initialize() to a reserved CPU,
subtracted from the CPU workers.

STARPU_MAIN_THREAD_CPUID Tell StarPU to bind the thread that calls starpu_initialize() to the given CPU ID
(using logical numbering).

STARPU_MAIN_THREAD_COREID Same as STARPU_MAIN_THREAD_CPUID, but bind the thread that calls
starpu_initialize() to the given core (using logical numbering), instead of the PU (hyperthread).

STARPU_WORKER_TREE Define to 1 to enable the tree iterator in schedulers.

STARPU_SINGLE_COMBINED_WORKER Tell StarPU to create several workers which won't be able to work
concurrently. It will by default create combined workers, which size goes from 1 to the total number of CPU
workers in the system. STARPU_MIN_WORKERSIZE and STARPU_MAX_WORKERSIZE can be used to
change this default.

STARPU_MIN_WORKERSIZE Specify the minimum size of the combined workers. Default value is 2.

STARPU_MAX_WORKERSIZE Specify the minimum size of the combined workers. Default value is the number
of CPU workers in the system.

STARPU_SYNTHESIZE_ARITY_COMBINED_WORKER Specify how many elements are allowed between com-
bined workers created from hwloc information. For instance, in the case of sockets with 6 cores with-
out shared L2 caches, if STARPU_SYNTHESIZE_ARITY_COMBINED_WORKER is set to 6, no combined
worker will be synthesized beyond one for the socket and one per core. If it is set to 3, 3 intermediate
combined workers will be synthesized, to divide the socket cores into 3 chunks of 2 cores. If it set to 2,
2 intermediate combined workers will be synthesized, to divide the socket cores into 2 chunks of 3 cores,
and then 3 additional combined workers will be synthesized, to divide the former synthesized workers into a
bunch of 2 cores, and the remaining core (for which no combined worker is synthesized since there is already
a normal worker for it).

Default value is 2, thus makes StarPU tend to build binary trees of combined workers.

STARPU_DISABLE_ASYNCHRONOUS_COPY Disable asynchronous copies between CPU and GPU devices.
The AMD implementation of OpenCL is known to fail when copying data asynchronously. When us-
ing this implementation, it is therefore necessary to disable asynchronous data transfers. One can call
starpu_asynchronous_copy_disabled() to check whether asynchronous data transfers between CPU and ac-
celerators are disabled.

See also STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY and STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY.

STARPU_EXPECTED_TRANSFER_TIME_WRITEBACK Set to 1 to make task transfer time estimations artifi-
cially include the time that will be needed to write back data to the main memory.

STARPU_DISABLE_PINNING Disable (1) or Enable (0) pinning host memory allocated through starpu_malloc(),
starpu_memory_pin() and friends. Default value is Enable. This permits to test the performance effect of
memory pinning.

STARPU_BACKOFF_MIN Set minimum exponential backoff of number of cycles to pause when spinning. Default
value is 1.

STARPU_BACKOFF_MAX Set maximum exponential backoff of number of cycles to pause when spinning. De-
fault value is 32.

Generated by Doxygen

7.1 Configuring Workers 25

STARPU_SINK Defined internally by StarPU when running in master slave mode.

STARPU_ENABLE_MAP Disable (0) or Enable (1) support for memory mapping between memory nodes. The
default is Disabled. One can call starpu_map_enabled() to check whether memory mapping support between
memory nodes is enabled.

STARPU_DATA_LOCALITY_ENFORCE Enable (1) or Disable(0) data locality enforcement when picking up a
worker to execute a task. Default value is Disable.

7.1.2 CPU Workers

STARPU_NCPU Specify the number of CPU workers (thus not including workers dedicated to control accelera-
tors). Note that by default, StarPU will not allocate more CPU workers than there are physical CPUs, and that
some CPUs are used to control the accelerators.

STARPU_RESERVE_NCPU Specify the number of CPU cores that should not be used by StarPU, so the applica-
tion can use starpu_get_next_bindid() and starpu_bind_thread_on() to bind its own threads.

This option is ignored if STARPU_NCPU or starpu_conf::ncpus is set.

STARPU_NCPUS Deprecated. You should use STARPU_NCPU.

7.1.3 CUDA Workers

STARPU_NCUDA Specify the number of CUDA devices that StarPU can use. If STARPU_NCUDA is lower than
the number of physical devices, it is possible to select which GPU devices should be used by the means of the
environment variable STARPU_WORKERS_CUDAID. By default, StarPU will create as many CUDA workers
as there are GPU devices.

STARPU_NWORKER_PER_CUDA Specify the number of workers per CUDA device, and thus the number of
kernels which will be concurrently running on the devices, i.e. the number of CUDA streams. Default value is
1.

STARPU_CUDA_THREAD_PER_WORKER Specify whether the cuda driver should use one thread per
stream (1) or to use a single thread to drive all the streams of the device or all devices (0), and
STARPU_CUDA_THREAD_PER_DEV determines whether is it one thread per device or one thread for all
devices. Default value is 0. Setting it to 1 is contradictory with setting STARPU_CUDA_THREAD_PER_DEV.

STARPU_CUDA_THREAD_PER_DEV Specify whether the cuda driver should use one thread per device (1) or to
use a single thread to drive all the devices (0). Default value is 1. It does not make sense to set this variable
if STARPU_CUDA_THREAD_PER_WORKER is set to to 1 (since STARPU_CUDA_THREAD_PER_DEV is
then meaningless).

STARPU_CUDA_PIPELINE Specify how many asynchronous tasks are submitted in advance on CUDA devices.
This for instance permits to overlap task management with the execution of previous tasks, but it also allows
concurrent execution on Fermi cards, which otherwise bring spurious synchronizations. Default value is 2.
Setting the value to 0 forces a synchronous execution of all tasks.

STARPU_WORKERS_CUDAID Select which CUDA devices should be used to run CUDA workers (similarly to
the STARPU_WORKERS_CPUID environment variable). On a machine equipped with 4 GPUs, setting
STARPU_WORKERS_CUDAID="1 3" and STARPU_NCUDA=2 specifies that 2 CUDA workers should
be created, and that they should use CUDA devices #1 and #3 (the logical ordering of the devices is the one
reported by CUDA).

This variable is ignored if the field starpu_conf::use_explicit_workers_cuda_gpuid passed to starpu_init() is
set.

STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY Disable asynchronous copies between CPU and CUDA
devices. One can call starpu_asynchronous_cuda_copy_disabled() to check whether asynchronous data
transfers between CPU and CUDA accelerators are disabled.

See also STARPU_DISABLE_ASYNCHRONOUS_COPY and STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY.

Generated by Doxygen

26 Execution Configuration Through Environment Variables

STARPU_ENABLE_CUDA_GPU_GPU_DIRECT Enable (1) or Disable (0) direct CUDA transfers from GPU to
GPU, without copying through RAM. Default value is Enable. This permits to test the performance effect of
GPU-Direct.

STARPU_CUDA_ONLY_FAST_ALLOC_OTHER_MEMNODES Specify if CUDA workers should do only fast al-
locations when running the datawizard progress of other memory nodes. This will pass the internal value
_STARPU_DATAWIZARD_ONLY_FAST_ALLOC to allocation methods. Default value is 0, allowing CUDA
workers to do slow allocations.

This can also be specified with starpu_conf::cuda_only_fast_alloc_other_memnodes.

7.1.4 OpenCL Workers

STARPU_NOPENCL Specify the number of OpenCL devices that StarPU can use. If STARPU_NOPENCL is
lower than the number of physical devices, it is possible to select which GPU devices should be used by
the means of the environment variable STARPU_WORKERS_OPENCLID. By default, StarPU will create as
many OpenCL workers as there are GPU devices.

Note that by default StarPU will launch CUDA workers on GPU devices. You need to disable CUDA to allow
the creation of OpenCL workers.

STARPU_WORKERS_OPENCLID Select which GPU devices should be used to run OpenCL workers (similarly
to the STARPU_WORKERS_CPUID environment variable) On a machine equipped with 4 GPUs, setting
STARPU_WORKERS_OPENCLID="1 3" and STARPU_NOPENCL=2 specifies that 2 OpenCL workers
should be created, and that they should use GPU devices #1 and #3.

This variable is ignored if the field starpu_conf::use_explicit_workers_opencl_gpuid passed to starpu_init() is
set.

STARPU_OPENCL_PIPELINE Specify how many asynchronous tasks are submitted in advance on OpenCL de-
vices. This for instance permits to overlap task management with the execution of previous tasks, but it also
allows concurrent execution on Fermi cards, which otherwise bring spurious synchronizations. Default value
is 2. Setting the value to 0 forces a synchronous execution of all tasks.

STARPU_OPENCL_ON_CPUS Specify that OpenCL workers can also be run on CPU devices. By default, the
OpenCL driver only enables GPU devices.

STARPU_OPENCL_ONLY_ON_CPUS Specify that OpenCL workers can ONLY be run on CPU devices. By de-
fault, the OpenCL driver enables GPU devices.

STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY Disable asynchronous copies between CPU and
OpenCL devices. The AMD implementation of OpenCL is known to fail when copying data asynchronously.
When using this implementation, it is therefore necessary to disable asynchronous data transfers. One can
call starpu_asynchronous_opencl_copy_disabled() to check whether asynchronous data transfers between
CPU and OpenCL accelerators are disabled.

See also STARPU_DISABLE_ASYNCHRONOUS_COPY and STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY.

7.1.5 Maxeler FPGA Workers

STARPU_NMAX_FPGA Specify the number of Maxeler FPGA devices that StarPU can use. If STARPU_NMAX_FPGA
is lower than the number of physical devices, it is possible to select which Maxeler FPGA devices should be
used by the means of the environment variable STARPU_WORKERS_MAX_FPGAID. By default, StarPU
will create as many Maxeler FPGA workers as there are GPU devices.

STARPU_WORKERS_MAX_FPGAID Select which Maxeler FPGA devices should be used to run Maxeler FPGA
workers (similarly to the STARPU_WORKERS_CPUID environment variable). On a machine equipped with
4 Maxeler FPGAs, setting STARPU_WORKERS_MAX_FPGAID="1 3" and STARPU_NMAX_FPGA=2
specifies that 2 Maxeler FPGA workers should be created, and that they should use Maxeler FPGA devices
#1 and #3 (the logical ordering of the devices is the one reported by the Maxeler stack).

STARPU_DISABLE_ASYNCHRONOUS_MAX_FPGA_COPY Disable asynchronous copies between CPU and
Maxeler FPGA devices. One can call starpu_asynchronous_max_fpga_copy_disabled() to check whether
asynchronous data transfers between CPU and Maxeler FPGA devices are disabled.

Generated by Doxygen

7.1 Configuring Workers 27

7.1.6 MPI Master Slave Workers

STARPU_NMPI_MS Specify the number of MPI master slave devices that StarPU can use.

STARPU_NMPIMSTHREADS Specift the number of threads to use on the MPI Slave devices.

STARPU_MPI_MS_MULTIPLE_THREAD Specify whether the master should use one thread per slave, or one
thread for driver all slaves. Default value is 0.

STARPU_MPI_MASTER_NODE Specify the rank of the MPI process which will be the master. Default value is 0.

STARPU_DISABLE_ASYNCHRONOUS_MPI_MS_COPY Disable asynchronous copies between CPU and MPI
Slave devices. One can call starpu_asynchronous_mpi_ms_copy_disabled() to check whether asynchronous
data transfers between CPU and MPI Slave devices are disabled.

7.1.7 TCP/IP Master Slave Workers

STARPU_NTCPIP_MS Specify the number of TCP/IP master slave devices that StarPU can use.

STARPU_TCPIP_MS_SLAVES Specify the number of TCP/IP master slave processes that are expected to be
run. This should be provided both to the master and to the slaves.

STARPU_TCPIP_MS_MASTER Specify (for slaves) the IP address of the master so they can connect to it. They
will then automatically connect to each other.

STARPU_TCPIP_MS_PORT Specify the port of the master, for connexions between slaves and the master. De-
fault value is 1234.

STARPU_NTCPIPMSTHREADS Specify the number of threads to use on the TCP/IP Slave devices.

STARPU_TCPIP_MS_MULTIPLE_THREAD Specify whether the master should use one thread per slave, or one
thread for driver all slaves. Default value is 0.

STARPU_DISABLE_ASYNCHRONOUS_TCPIP_MS_COPY Disable asynchronous copies between CPU and
TCP/IP Slave devices. One can call starpu_asynchronous_tcpip_ms_copy_disabled() to check whether asyn-
chronous data transfers between CPU and TCP/IP Slave devices are disabled.

7.1.8 HIP Workers

STARPU_NHIP Specify the number of HIP devices that StarPU can use. If STARPU_NHIP is lower than the
number of physical devices, it is possible to select which HIP devices should be used by the means of the
environment variable STARPU_WORKERS_HIPID. By default, StarPU will create as many HIP workers as
there are HIP devices.

STARPU_WORKERS_HPIID Select which HIP devices should be used to run HIP workers (similarly to the
STARPU_WORKERS_HIPID environment variable). On a machine equipped with 4 HIP devices, setting
STARPU_WORKERS_HIPID="1 3" and STARPU_NHIP=2 specifies that 2 HIP workers should be cre-
ated, and that they should use HIP devices #1 and #3.

This variable is ignored if the field starpu_conf::use_explicit_workers_hip_gpuid passed to starpu_init() is set.

STARPU_DISABLE_ASYNCHRONOUS_HIP_COPY Disable asynchronous copies between CPU and HIP de-
vices. One can call starpu_asynchronous_hip_copy_disabled() to check whether asynchronous data trans-
fers between CPU and HIP accelerators are disabled.

7.1.9 MPI Configuration

STARPU_MPI_THREAD_CPUID Tell StarPU to bind its MPI thread to the given CPU id, subtracted from the CPU
workers (unless STARPU_NCPU is defined).

Default value is -1, it will let StarPU allocate a CPU.

STARPU_MPI_THREAD_COREID Same as STARPU_MPI_THREAD_CPUID, but bind the MPI thread to the
given core ID, instead of the PU (hyperthread).

Generated by Doxygen

28 Execution Configuration Through Environment Variables

STARPU_MPI_NOBIND Setting it to non-zero will prevent StarPU from binding the MPI to a separate core. This
is for instance useful when running the testsuite on a single system.

STARPU_MPI_GPUDIRECT Enable (1) or disable (0) MPI GPUDirect support. Default value (-1) is to enable if
available. If STARPU_MPI_GPUDIRECT is explicitly set to 1, StarPU-MPI will warn if MPI does not provide
the GPUDirect support.

STARPU_MPI_PSM2 This variable allows to supercede PSM2 detection when asking for MPI GPUDirect support.
This is helpful when using old intel compilers, for which PSM2 detection is always true. The default (1) is to
enable it. If PSM2 is detected whereas it should not be, this variable can be set to 0.

STARPU_MPI_REDUX_ARITY_THRESHOLD The arity of the automatically-detected reduction trees follows the
following rule: when the data to be reduced is of small size a flat tree is unrolled i.e. all the contributing nodes
send their contribution to the root of the reduction. When the data to be reduced is of big size, a binary tree
is used instead. The default threshold between flat and binary tree is 1024 bytes. By setting the environment
variable with a negative value, all the automatically detected reduction trees will use flat trees. If this value is
set to 0, then binary trees will always be selected. Otherwise, the setup value replaces the default 1024.

7.2 Configuring The Scheduling Engine

STARPU_SCHED Select the scheduling policy from those proposed by StarPU: work random, stealing, greedy,
with performance models, etc.

Use STARPU_SCHED=help to get the list of available schedulers.

STARPU_SCHED_LIB Specify the location of a dynamic library to choose a user-defined scheduling policy. See
Using a New Scheduling Policy for more information.

STARPU_MIN_PRIO Set the minimum priority used by priorities-aware schedulers. The flag can also be set
through the field starpu_conf::global_sched_ctx_min_priority.

STARPU_MAX_PRIO Set the maximum priority used by priorities-aware schedulers. The flag can also be set
through the field starpu_conf::global_sched_ctx_max_priority.

STARPU_CALIBRATE Set to 1 to calibrate the performance models during the execution. Set to 2 to drop the
previous values and restart the calibration from scratch. Set to 0 to disable calibration, this is the default
behaviour.

Note: this currently only applies to dm and dmda scheduling policies.

STARPU_CALIBRATE_MINIMUM Define the minimum number of calibration measurements that will be made
before considering that the performance model is calibrated. Default value is 10.

STARPU_BUS_CALIBRATE Set to 1 to recalibrate the bus during initialization.

STARPU_PREFETCH Enable (1) or disable (0) data prefetching. Default value is Enable.

If prefetching is enabled, when a task is scheduled to be executed e.g. on a GPU, StarPU will request an
asynchronous transfer in advance, so that data is already present on the GPU when the task starts. As a
result, computation and data transfers are overlapped.

STARPU_SCHED_ALPHA To estimate the cost of a task StarPU takes into account the estimated computation
time (obtained thanks to performance models). The alpha factor is the coefficient to be applied to it before
adding it to the communication part.

STARPU_SCHED_BETA To estimate the cost of a task StarPU takes into account the estimated data transfer time
(obtained thanks to performance models). The beta factor is the coefficient to be applied to it before adding it
to the computation part.

STARPU_SCHED_GAMMA Define the execution time penalty of a joule (Energy-based Scheduling).

STARPU_SCHED_READY For a modular scheduler with sorted queues below the decision component, workers
pick up a task which has most of its data already available. Setting this to 0 disables this.

Generated by Doxygen

7.3 Configuring The Heteroprio Scheduler 29

STARPU_SCHED_SORTED_ABOVE For a modular scheduler with queues above the decision component, it is
usually sorted by priority. Setting this to 0 disables this.

STARPU_SCHED_SORTED_BELOW For a modular scheduler with queues below the decision component, they
are usually sorted by priority. Setting this to 0 disables this.

STARPU_IDLE_POWER Define the idle power of the machine (Energy-based Scheduling).

STARPU_PROFILING Enable on-line performance monitoring (Enabling On-line Performance Monitoring).

STARPU_CODELET_PROFILING Enable on-line performance monitoring of codelets (Per-codelet Feedback).
(enabled by default)

STARPU_ENERGY_PROFILING Enable on-line energy monitoring of tasks (Per-codelet Feedback). (disabled by
default)

STARPU_PROF_PAPI_EVENTS Specify which PAPI events should be recorded in the trace (PAPI counters).

7.3 Configuring The Heteroprio Scheduler

7.3.1 Configuring LAHeteroprio

STARPU_HETEROPRIO_USE_LA Enable the locality aware mode of Heteroprio which guides the distribution of
tasks to workers in order to reduce the data transfers between memory nodes.

STARPU_LAHETEROPRIO_PUSH Choose between the different push strategies for locality aware Heteroprio:
WORKER, LcS, LS_SDH, LS_SDH2, LS_SDHB, LC_SMWB, AUTO (by default: AUTO). These are detailed
in Using locality aware Heteroprio

STARPU_LAHETEROPRIO_S_[ARCH] [ARCH] Specify the number of memory nodes contained in an affinity
group. An affinity group will be composed of the closest memory nodes to a worker of a given architecture,
and this worker will look for tasks available inside these memory nodes, before considering stealing tasks
outside this group. ARCH can be CPU, CUDA, OPENCL, SCC, MPI_MS, etc.

STARPU_LAHETEROPRIO_PRIO_STEP_[ARCH] [ARCH] Specify the number of buckets in the local memory
node in which a worker will look for available tasks, before this worker starts looking for tasks in other memory
nodes' buckets. ARCH indicates that this number is specific to a given arch which can be: CPU, CUDA,
OPENCL, SCC, MPI_MS, etc.

7.3.2 Configuring AutoHeteroprio

STARPU_HETEROPRIO_USE_AUTO_CALIBRATION Enable the auto calibration mode of Heteroprio which as-
sign priorities to tasks automatically

STARPU_HETEROPRIO_DATA_DIR Specify the path of the directory where Heteroprio stores data about pro-
gram executions. By default, these are stored in the same directory used by perfmodel.

STARPU_HETEROPRIO_DATA_FILE Specify the filename where Heteroprio will save data about the current pro-
gram's execution.

STARPU_HETEROPRIO_CODELET_GROUPING_STRATEGY Choose how Heteroprio groups similar tasks. It
can be 0 to group the tasks with the same perfmodel or the same codelet's name if no perfmodel was
assigned. Or, it could be 1 to group the tasks only by codelet's name.

STARPU_AUTOHETEROPRIO_PRINT_DATA_ON_UPDATE Enable the printing of priorities' data every time they
get updated.

STARPU_AUTOHETEROPRIO_PRINT_AFTER_ORDERING Enable the printing of priorities' order for each ar-
chitecture every time there's a reordering.

STARPU_AUTOHETEROPRIO_PRIORITY_ORDERING_POLICY Specify the heuristic which will be used to as-
sign priorities automatically. It should be an integer between 0 and 27.

Generated by Doxygen

30 Execution Configuration Through Environment Variables

STARPU_AUTOHETEROPRIO_ORDERING_INTERVAL Specify the period (in number of tasks pushed), be-
tween priorities reordering operations.

STARPU_AUTOHETEROPRIO_FREEZE_GATHERING Disable data gathering from task executions.

7.4 Extensions

SOCL_OCL_LIB_OPENCL Set the location of the file libOpenCL.so of the OCL ICD implementation. The
SOCL test suite is only run when SOCL_OCL_LIB_OPENCL is defined.

OCL_ICD_VENDORS Set the directory where ICD files are installed. This is useful when using SOCL with Open←↩

CL ICD (https://forge.imag.fr/projects/ocl-icd/). Default directory is /etc/Open←↩

CL/vendors. StarPU installs ICD files in the directory $prefix/share/starpu/opencl/vendors.

STARPU_COMM_STATS Deprecated. You should use STARPU_MPI_STATS.

STARPU_MPI_STATS Enable (!= 0) or Disable (0) communication statistics for starpumpi (Debugging MPI). De-
fault value is Disable.

STARPU_MPI_CACHE Disable (0) or Enable (!= 0) communication cache for starpumpi (MPI Support). Default
value is Enable.

STARPU_MPI_COMM Enable (1) communication trace for starpumpi (MPI Support). Also needs for StarPU to
have been configured with the option --enable-verbose.

STARPU_MPI_CACHE_STATS Enable (1) statistics for the communication cache (MPI Support). Messages are
printed on the standard output when data are added or removed from the received communication cache.

STARPU_MPI_PRIORITIES Disable (0) the use of priorities to order MPI communications (MPI Support).

STARPU_MPI_NDETACHED_SEND Set the number of send requests that StarPU-MPI will emit concurrently.
Default value is 10. Setting it to 0 removes the limit of concurrent send requests.

STARPU_MPI_NREADY_PROCESS Set the number of requests that StarPU-MPI will submit to MPI before polling
for termination of existing requests. Default value is 10. Setting it to 0 removes the limit: all requests to submit
to MPI will be submitted before polling for termination of existing ones.

STARPU_MPI_FAKE_SIZE Setting to a number makes StarPU believe that there are as many MPI nodes, even
if it was run on only one MPI node. This allows e.g. to simulate the execution of one of the nodes of a big
cluster without actually running the rest. Of course, it does not provide computation results and timing.

STARPU_MPI_FAKE_RANK Setting to a number makes StarPU believe that it runs the given MPI node, even if it
was run on only one MPI node. This allows e.g. to simulate the execution of one of the nodes of a big cluster
without actually running the rest. Of course, it does not provide computation results and timing.

STARPU_MPI_COOP_SENDS Disable (0) dynamic collective operations: grouping same requests to different
nodes until the data becomes available and then use a broadcast tree to execute requests.
By now, it is only supported with the NewMadeleine library (see Using the NewMadeleine communication library).

STARPU_MPI_RECV_WAIT_FINALIZE Disable (1) releasing the write acquire of receiving handles when data is
received but the communication library still needs the data. Set to 0 by default to unlock as soon as possible
tasks which only require a read access on the handle; write access will become possible for tasks when the
communication library will not need the data anymore.
By now, it is only supported with the NewMadeleine library (see Using the NewMadeleine communication library).

STARPU_MPI_TRACE_SYNC_CLOCKS When mpi_sync_clocks is available, this library will be used to
have more precise clock synchronization in traces coming from different nodes. However, the clock syn-
chronization process can take some time (several seconds) and can be disabled by setting this variable to
0. In that case, a less precise but faster synchronization will be used. See Tracing MPI applications for more
details.

Generated by Doxygen

https://forge.imag.fr/projects/ocl-icd/

7.4 Extensions 31

STARPU_MPI_DRIVER_CALL_FREQUENCY When set to a positive value, activates the interleaving of the ex-
ecution of tasks with the progression of MPI communications (MPI Support). The starpu_mpi_init_conf()
function must have been called by the application for that environment variable to be used. When set to 0,
the MPI progression thread does not use at all the driver given by users, and only focuses on making MPI
communications progress.

STARPU_MPI_DRIVER_TASK_FREQUENCY When set to a positive value, the interleaving of the execution of
tasks with the progression of MPI communications mechanism to execute several tasks before checking com-
munication requests again (MPI Support). The starpu_mpi_init_conf() function must have been called by the
application for that environment variable to be used, and the STARPU_MPI_DRIVER_CALL_FREQUENCY
environment variable set to a positive value.

STARPU_MPI_MEM_THROTTLE When set to a positive value, this makes the starpu_mpi_∗recv∗ functions block
when the memory allocation required for network reception overflows the available main memory (as typically
set by STARPU_LIMIT_CPU_MEM)

STARPU_MPI_EARLYDATA_ALLOCATE When set to 1, the MPI Driver will immediately allocate the data for
early requests instead of issuing a data request and blocking. Default value is 0, issuing a data re-
quest. Because it is an early request and we do not know its real priority, the data request will as-
sume STARPU_DEFAULT_PRIO. In cases where there are many data requests with priorities greater than
STARPU_DEFAULT_PRIO the MPI drive could be blocked for long periods.

STARPU_SIMGRID When set to 1 (default value is 0), this makes StarPU check that it was really build with
simulation support. This is convenient in scripts to avoid using a native version, that would try to update
performance models...

STARPU_SIMGRID_TRANSFER_COST When set to 1 (which is the default value), data transfers (over PCI bus,
typically) are taken into account in SimGrid mode.

STARPU_SIMGRID_CUDA_MALLOC_COST When set to 1 (which is the default value), CUDA malloc costs are
taken into account in SimGrid mode.

STARPU_SIMGRID_CUDA_QUEUE_COST When set to 1 (which is the default value), CUDA task and transfer
queueing costs are taken into account in SimGrid mode.

STARPU_PCI_FLAT When unset or set to 0, the platform file created for SimGrid will contain PCI bandwidths and
routes.

STARPU_SIMGRID_CUDA_QUEUE_COST When unset or set to 1, simulate within SimGrid the GPU transfer
queueing.

STARPU_MALLOC_SIMULATION_FOLD Define the size of the file used for folding virtual allocation, in MiB.
Default value is 1, thus allowing 64GiB virtual memory when Linux's sysctl vm.max_map_count value
is the default 65535.

STARPU_SIMGRID_TASK_SUBMIT_COST When set to 1 (which is the default value), task submission costs are
taken into account in SimGrid mode. This provides more accurate SimGrid predictions, especially for the
beginning of the execution.

STARPU_SIMGRID_TASK_PUSH_COST When set to 1 (which is the default value), task push costs are taken
into account in SimGrid mode. This provides more accurate SimGrid predictions, especially with large de-
pendency arities.

STARPU_SIMGRID_FETCHING_INPUT_COST When set to 1 (which is the default value), fetching input costs are
taken into account in SimGrid mode. This provides more accurate SimGrid predictions, especially regarding
data transfers.

STARPU_SIMGRID_SCHED_COST When set to 1 (0 is the default value), scheduling costs are taken into account
in SimGrid mode. This provides more accurate SimGrid predictions, and allows studying scheduling overhead
of the runtime system. However, it also makes simulation non-deterministic.

STARPUPY_MULTI_INTERPRETER Enable (1) or disable (0) multi interpreters in the StarPU Python interface
(Multiple Interpreters). Default value is Disable.

STARPUPY_OWN_GIL Enable (1) or disable (0) using per-interpreter GIL (Python Parallelism). Default value is
Disable for now, until python is fully ready for this.

Generated by Doxygen

32 Execution Configuration Through Environment Variables

7.5 Miscellaneous And Debug

STARPU_HOME Specify the main directory in which StarPU stores its configuration files. Default value is $HOME
on Unix environments, and $USERPROFILE on Windows environments.

STARPU_PATH Only used on Windows environments. Specify the main directory in which StarPU is installed
(Running a Basic StarPU Application on Microsoft Visual C)

STARPU_PERF_MODEL_DIR Specify the main directory in which StarPU stores its performance model files.
Default value is $STARPU_HOME/.starpu/sampling. See Storing Performance Model Files for more
details.

STARPU_PERF_MODEL_PATH Specify a list of directories separated with ':' in which StarPU stores its perfor-
mance model files. See Storing Performance Model Files for more details.

STARPU_PERF_MODEL_HOMOGENEOUS_CPU When set to 0, StarPU will assume that CPU devices do not
have the same performance, and thus use different performance models for them, thus making kernel cali-
bration much longer, since measurements have to be made for each CPU core.

STARPU_PERF_MODEL_HOMOGENEOUS_CUDA When set to 1, StarPU will assume that all CUDA devices
have the same performance, and thus share performance models for them, thus allowing kernel calibration to
be much faster, since measurements only have to be once for all CUDA GPUs.

STARPU_PERF_MODEL_HOMOGENEOUS_OPENCL When set to 1, StarPU will assume that all OpenCL de-
vices have the same performance, and thus share performance models for them, thus allowing kernel cali-
bration to be much faster, since measurements only have to be once for all OpenCL GPUs.

STARPU_PERF_MODEL_HOMOGENEOUS_MPI_MS When set to 1, StarPU will assume that all MPI Slave de-
vices have the same performance, and thus share performance models for them, thus allowing kernel cali-
bration to be much faster, since measurements only have to be once for all MPI Slaves.

STARPU_HOSTNAME When set, force the hostname to be used when managing performance model files. Mod-
els are indexed by machine name. When running for example on a homogenenous cluster, it is possible to
share the models between machines by setting export STARPU_HOSTNAME=some_global_name.

STARPU_MPI_HOSTNAMES Similar to STARPU_HOSTNAME but to define multiple nodes on a heterogeneous
cluster. The variable is a list of hostnames that will be assigned to each StarPU-MPI rank considering their
position and the value of starpu_mpi_world_rank() on each rank. When running, for example, on a heteroge-
neous cluster, it is possible to set individual models for each machine by setting export STARPU_MPI←↩

_HOSTNAMES="name0 name1 name2". Where rank 0 will receive name0, rank1 will receive name1,
and so on. This variable has precedence over STARPU_HOSTNAME.

STARPU_OPENCL_PROGRAM_DIR Specify the directory where the OpenCL codelet source files are lo-
cated. The function starpu_opencl_load_program_source() looks for the codelet in the current directory, in
the directory specified by the environment variable STARPU_OPENCL_PROGRAM_DIR, in the directory
share/starpu/opencl of the installation directory of StarPU, and finally in the source directory of
StarPU.

STARPU_SILENT Disable verbose mode at runtime when StarPU has been configured with the option
--enable-verbose. Also disable the display of StarPU information and warning messages.

STARPU_MPI_DEBUG_LEVEL_MIN Set the minimum level of debug when StarPU has been configured with the
option --enable-mpi-verbose.

STARPU_MPI_DEBUG_LEVEL_MAX Set the maximum level of debug when StarPU has been configured with
the option --enable-mpi-verbose.

STARPU_LOGFILENAME Specify in which file the debugging output should be saved to.

STARPU_FXT_PREFIX Specify in which directory to save the generated trace if FxT is enabled.

STARPU_FXT_SUFFIX Specify in which file to save the generated trace if FxT is enabled.

Generated by Doxygen

7.5 Miscellaneous And Debug 33

STARPU_FXT_TRACE Enable (1) or disable (0) the FxT trace generation in /tmp/prof_file_XXX_YYY (the
directory and file name can be changed with STARPU_FXT_PREFIX and STARPU_FXT_SUFFIX). Default
value is Disable.

STARPU_FXT_EVENTS Specify which events will be recorded in traces. By default, all events (but VERBOSE←↩

_EXTRA ones) are recorded. One can set this variable to a comma- or pipe-separated list of the following
categories, to record only events belonging to the selected categories:

• USER

• TASK

• TASK_VERBOSE

• TASK_VERBOSE_EXTRA

• DATA

• DATA_VERBOSE

• WORKER

• WORKER_VERBOSE

• DSM

• DSM_VERBOSE

• SCHED

• SCHED_VERBOSE

• LOCK

• LOCK_VERBOSE

• EVENT

• EVENT_VERBOSE

• MPI

• MPI_VERBOSE

• MPI_VERBOSE_EXTRA

• HYP

• HYP_VERBOSE

The choice of which categories have to be recorded is a tradeoff between required information for offline
analyzis and acceptable overhead introduced by tracing. For instance, to inspect with ViTE which tasks
workers execute, one has to at least select the TASK category.

Events in VERBOSE_EXTRA are very costly to record and can have an important impact on application
performances. This is why there are disabled by default, and one has to explicitly select their categories
using this variable to record them.

STARPU_LIMIT_CUDA_devid_MEM Specify the maximum number of megabytes that should be available to the
application on the CUDA device with the identifier devid. This variable is intended to be used for experi-
mental purposes as it emulates devices that have a limited amount of memory. When defined, the variable
overwrites the value of the variable STARPU_LIMIT_CUDA_MEM.

STARPU_LIMIT_CUDA_MEM Specify the maximum number of megabytes that should be available to the appli-
cation on each CUDA devices. This variable is intended to be used for experimental purposes as it emulates
devices that have a limited amount of memory.

STARPU_LIMIT_OPENCL_devid_MEM Specify the maximum number of megabytes that should be available to
the application on the OpenCL device with the identifier devid. This variable is intended to be used for
experimental purposes as it emulates devices that have a limited amount of memory. When defined, the
variable overwrites the value of the variable STARPU_LIMIT_OPENCL_MEM.

STARPU_LIMIT_OPENCL_MEM Specify the maximum number of megabytes that should be available to the ap-
plication on each OpenCL devices. This variable is intended to be used for experimental purposes as it
emulates devices that have a limited amount of memory.

Generated by Doxygen

34 Execution Configuration Through Environment Variables

STARPU_LIMIT_HIP_devid_MEM Specify the maximum number of megabytes that should be available to the
application on the HIP device with the identifier devid. This variable is intended to be used for experimental
purposes as it emulates devices that have a limited amount of memory. When defined, the variable overwrites
the value of the variable STARPU_LIMIT_HIP_MEM.

STARPU_LIMIT_HIP_MEM Specify the maximum number of megabytes that should be available to the application
on each HIP devices. This variable is intended to be used for experimental purposes as it emulates devices
that have a limited amount of memory.

STARPU_LIMIT_CPU_MEM Specify the maximum number of megabytes that should be available to the applica-
tion in the main CPU memory. Setting it enables allocation cache in main memory. Setting it to zero lets
StarPU overflow memory.

Note: for now not all StarPU allocations get throttled by this parameter. Notably MPI reception are not throttled
unless STARPU_MPI_MEM_THROTTLE is set to 1.

STARPU_LIMIT_CPU_NUMA_devid_MEM Specify the maximum number of megabytes that should be avail-
able to the application on the NUMA node with the OS identifier devid. Setting it overrides the value of
STARPU_LIMIT_CPU_MEM.

STARPU_LIMIT_CPU_NUMA_MEM Specify the maximum number of megabytes that should be available
to the application on each NUMA node. This is the same as specifying that same amount with
STARPU_LIMIT_CPU_NUMA_devid_MEM for each NUMA node number. The total memory available
to StarPU will thus be this amount multiplied by the number of NUMA nodes used by StarPU. Any
STARPU_LIMIT_CPU_NUMA_devid_MEM additionally specified will take over STARPU_LIMIT_CPU_NUMA_MEM.

STARPU_LIMIT_BANDWIDTH Specify the maximum available PCI bandwidth of the system in MB/s. This can
only be effective with simgrid simulation. This allows to easily override the bandwidths stored in the platform
file generated from measurements on the native system. This can thus be used accelerate or slow down the
system bandwidth.

STARPU_SUBALLOCATOR Enable (1) or disable (0) the StarPU suballocator. Default value is to enable it to
amortize the cost of GPU and pinned RAM allocations for small allocations: StarPU allocate large chunks of
memory at a time, and suballocates the small buffers within them.

STARPU_MINIMUM_AVAILABLE_MEM Specify the minimum percentage of memory that should be available in
GPUs, i.e. not used at all by StarPU (or in main memory, when using out of core), below which a eviction
pass is performed. Default value is 0%.

STARPU_TARGET_AVAILABLE_MEM Specify the target percentage of memory that should be available in
GPUs, i.e. not used at all by StarPU (or in main memory, when using out of core), when performing a
periodic eviction pass. Default value is 0%.

STARPU_MINIMUM_CLEAN_BUFFERS Specify the minimum percentage of number of buffers that should be
clean in GPUs (or in main memory, when using out of core), i.e. used by StarPU, but for which a copy
is available in memory (or on disk, when using out of core), below which asynchronous writebacks will be
issued. Default value is 5%.

STARPU_TARGET_CLEAN_BUFFERS Specify the target percentage of number of buffers that should be
reached in GPUs (or in main memory, when using out of core), i.e. used by StarPU, but for which a copy
is available in memory (or on disk, when using out of core), when performing an asynchronous writeback
pass. Default value is 10%.

STARPU_DISK_SWAP Specify a path where StarPU can push data when the main memory is getting full.

STARPU_DISK_SWAP_BACKEND Specify the backend to be used by StarPU to push data when the main mem-
ory is getting full. Default value is unistd (i.e. using read/write functions), other values are stdio (i.e.
using fread/fwrite), unistd_o_direct (i.e. using read/write with O_DIRECT), leveldb (i.e. using a
leveldb database), and hdf5 (i.e. using HDF5 library).

STARPU_DISK_SWAP_SIZE Specify the maximum size in MiB to be used by StarPU to push data when the main
memory is getting full. Default value is unlimited.

Generated by Doxygen

7.5 Miscellaneous And Debug 35

STARPU_LIMIT_MAX_SUBMITTED_TASKS Allow users to control the task submission flow by speci-
fying to StarPU a maximum number of submitted tasks allowed at a given time, i.e. when this
limit is reached task submission becomes blocking until enough tasks have completed, specified by
STARPU_LIMIT_MIN_SUBMITTED_TASKS. Setting it enables allocation cache buffer reuse in main memory.
See How To Reduce The Memory Footprint Of Internal Data Structures.

STARPU_LIMIT_MIN_SUBMITTED_TASKS Allow users to control the task submission flow by specifying
to StarPU a submitted task threshold to wait before unblocking task submission. This variable has
to be used in conjunction with STARPU_LIMIT_MAX_SUBMITTED_TASKS which puts the task sub-
mission thread to sleep. Setting it enables allocation cache buffer reuse in main memory. See
How To Reduce The Memory Footprint Of Internal Data Structures.

STARPU_TRACE_BUFFER_SIZE Set the buffer size for recording trace events in MiB. Setting it to a big size
allows to avoid pauses in the trace while it is recorded on the disk. This however also consumes memory, of
course. Default value is 64.

STARPU_GENERATE_TRACE When set to 1, indicate that StarPU should automatically generate a Paje trace
when starpu_shutdown() is called.

STARPU_GENERATE_TRACE_OPTIONS When the variable STARPU_GENERATE_TRACE is set to 1 to gen-
erate a Paje trace, this variable can be set to specify options (see starpu_fxt_tool -help).

STARPU_ENABLE_STATS Enable gathering various data statistics (Data Statistics).

STARPU_MEMORY_STATS When set to 0, disable the display of memory statistics on data which have not been
unregistered at the end of the execution (Memory Feedback).

STARPU_MAX_MEMORY_USE When set to 1, display at the end of the execution the maximum memory used
by StarPU for internal data structures during execution.

STARPU_BUS_STATS Enable the display of data transfers statistics when calling starpu_shutdown()
(Profiling). By default, statistics are printed on the standard error stream, use the environment variable
STARPU_BUS_STATS_FILE to define another filename.

STARPU_BUS_STATS_FILE Define the name of the file where to display data transfers statistics, see
STARPU_BUS_STATS.

STARPU_WORKER_STATS Enable the display of workers statistics when calling starpu_shutdown() (Profiling).
When combined with the environment variable STARPU_PROFILING, it displays the energy consumption
(Energy-based Scheduling). By default, statistics are printed on the standard error stream, use the environ-
ment variable STARPU_WORKER_STATS_FILE to define another filename.

STARPU_WORKER_STATS_FILE Define the name of the file where to display workers statistics, see
STARPU_WORKER_STATS.

STARPU_STATS When set to 0, data statistics will not be displayed at the end of the execution of an application
(Data Statistics).

STARPU_WATCHDOG_TIMEOUT When set to a value other than 0, allows to make StarPU print an er-
ror message whenever StarPU does not terminate any task for the given time (in µs), but lets the ap-
plication continue normally. Should be used in combination with STARPU_WATCHDOG_CRASH (see
Detecting Stuck Conditions).

STARPU_WATCHDOG_CRASH When set to a value other than 0, trigger a crash when the watch dog is reached,
thus allowing to catch the situation in gdb, etc (see Detecting Stuck Conditions)

STARPU_WATCHDOG_DELAY Delay the activation of the watchdog by the given time (in µs). This can be con-
venient for letting the application initialize data etc. before starting to look for idle time.

STARPU_TASK_PROGRESS Print the progression of tasks. This is convenient to determine whether a program
is making progress in task execution, or is just stuck.

STARPU_TASK_BREAK_ON_PUSH When this variable contains a job id, StarPU will raise SIGTRAP when
the task with that job id is being pushed to the scheduler, which will be nicely caught by debuggers (see
Debugging Scheduling)

Generated by Doxygen

36 Execution Configuration Through Environment Variables

STARPU_TASK_BREAK_ON_SCHED When this variable contains a job id, StarPU will raise SIGTRAP when
the task with that job id is being scheduled by the scheduler (at a scheduler-specific point), which will be
nicely caught by debuggers. This only works for schedulers which have such a scheduling point defined (see
Debugging Scheduling)

STARPU_TASK_BREAK_ON_POP When this variable contains a job id, StarPU will raise SIGTRAP when the
task with that job id is being popped from the scheduler, which will be nicely caught by debuggers (see
Debugging Scheduling)

STARPU_TASK_BREAK_ON_EXEC When this variable contains a job id, StarPU will raise SIGTRAP when the
task with that job id is being executed, which will be nicely caught by debuggers (see Debugging Scheduling)

STARPU_DISABLE_KERNELS When set to a value other than 1, it disables actually calling the kernel func-
tions, thus allowing to quickly check that the task scheme is working properly, without performing the actual
application-provided computation.

STARPU_HISTORY_MAX_ERROR History-based performance models will drop measurements which are really
far froom the measured average. This specifies the allowed variation. Default value is 50 (%), i.e. the
measurement is allowed to be x1.5 faster or /1.5 slower than the average.

STARPU_RAND_SEED The random scheduler and some examples use random numbers for their own working.
Depending on the examples, the seed is by default juste always 0 or the current time() (unless SimGrid mode
is enabled, in which case it is always 0). STARPU_RAND_SEED allows to set the seed to a specific value.

STARPU_GLOBAL_ARBITER When set to a positive value, StarPU will create a arbiter, which implements an
advanced but centralized management of concurrent data accesses (see Concurrent Data Accesses).

STARPU_USE_NUMA When defined to 1, NUMA nodes are taking into account by StarPU, i.e. StarPU will expose
one StarPU memory node per NUMA node, and will thus schedule tasks according to data locality, migrated
data when appropriate, etc.

STARPU_MAIN_RAM is then associated to the NUMA node associated to the first CPU worker if it exists, the
NUMA node associated to the first GPU discovered otherwise. If StarPU doesn't find any NUMA node after
these steps, STARPU_MAIN_RAM is the first NUMA node discovered by StarPU.

Applications should thus rather pass a NULL pointer and a -1 memory node to starpu_data_∗_←↩

register functions, so that StarPU can manage memory as it wishes.

If the application wants to control memory allocation on NUMA nodes for some data, it can use
starpu_malloc_on_node and pass the memory node to the starpu_data_∗_register func-
tions to tell StarPU where the allocation was made. starpu_memory_nodes_get_count_by_kind() and
starpu_memory_node_get_ids_by_type() can be used to get the memory nodes numbers of the CPU
memory nodes.

starpu_memory_nodes_numa_id_to_devid() and starpu_memory_nodes_numa_devid_to_id() are also avail-
able to convert between OS NUMA id and StarPU memory node number.

If this variable is unset, or set to 0, CPU memory is considered as only one memory node
(STARPU_MAIN_RAM) and it will be up to the OS to manage migration etc. and the StarPU scheduler
will not know about it.

STARPU_IDLE_FILE When defined, a file named after its contents will be created at the end of the execution.
This file will contain the sum of the idle times of all the workers.

STARPU_HWLOC_INPUT When defined to the path of an XML file, hwloc will use this file as input instead of
detecting the current platform topology, which can save significant initialization time.

To produce this XML file, use lstopo file.xml

STARPU_CATCH_SIGNALS By default, StarPU catch signals SIGINT, SIGSEGV and SIGTRAP to perform
final actions such as dumping FxT trace files even though the application has crashed. Setting this variable
to a value other than 1 will disable this behaviour. This should be done on JVM systems which may use these
signals for their own needs. The flag can also be set through the field starpu_conf::catch_signals.

STARPU_DISPLAY_BINDINGS Display the binding of all processes and threads running on the machine. Setting
it to 1 displays the binding masks. Setting it to 2 displays the topology. If MPI is enabled, display the binding
of each node.
Users can manually display the binding by calling starpu_display_bindings().

Generated by Doxygen

7.6 Configuring The Hypervisor 37

7.6 Configuring The Hypervisor

SC_HYPERVISOR_POLICY Choose between the different resizing policies proposed by StarPU for the
hypervisor: idle, app_driven, feft_lp, teft_lp, ispeed_lp, throughput_lp etc.

Use SC_HYPERVISOR_POLICY=help to get the list of available policies for the hypervisor

SC_HYPERVISOR_TRIGGER_RESIZE Choose how should the hypervisor be triggered: speed if the resizing
algorithm should be called whenever the speed of the context does not correspond to an optimal precomputed
value, idle it the resizing algorithm should be called whenever the workers are idle for a period longer than
the value indicated when configuring the hypervisor.

SC_HYPERVISOR_START_RESIZE Indicate the moment when the resizing should be available. The value cor-
respond to the percentage of the total time of execution of the application. Default value is the resizing frame.

SC_HYPERVISOR_MAX_SPEED_GAP Indicate the ratio of speed difference between contexts that should trigger
the hypervisor. This situation may occur only when a theoretical speed could not be computed and the
hypervisor has no value to compare the speed to. Otherwise the resizing of a context is not influenced by the
the speed of the other contexts, but only by the the value that a context should have.

SC_HYPERVISOR_STOP_PRINT By default the values of the speed of the workers is printed during the execution
of the application. If the value 1 is given to this environment variable this printing is not done.

SC_HYPERVISOR_LAZY_RESIZE By default the hypervisor resizes the contexts in a lazy way, that is workers
are firstly added to a new context before removing them from the previous one. Once this workers are clearly
taken into account into the new context (a task was popped there) we remove them from the previous one.
However if the application would like that the change in the distribution of workers should change right away
this variable should be set to 0

SC_HYPERVISOR_SAMPLE_CRITERIA By default the hypervisor uses a sample of flops when computing the
speed of the contexts and of the workers. If this variable is set to time the hypervisor uses a sample of time
(10% of an approximation of the total execution time of the application)

Generated by Doxygen

38 Execution Configuration Through Environment Variables

Generated by Doxygen

Chapter 8

Configuration and initialization

This section explains the relationship between configure options, compilation options and environment variables
used by StarPU.

1. Configure options are used during the installation process to enable or disable specific features and libraries.
These options are set using flags like --enable-maxcpus, which can be used to set the maximum number of
CPUs that can be used by StarPU.

2. Compilation options are used to set specific parameters during the compilation process, such as the opti-
mization level, architecture type, and debugging options.

3. Environment variables are used to set runtime parameters and control the behavior of the StarPU library. For
example, the STARPU_NCPUS environment variable can be used to specify the number of CPUs to use at
runtime, overriding the value set during compilation or installation.

Options can also be set with the different fields of the starpu_conf parameter given to starpu_init(), such as
starpu_conf::ncpus, which is used to specify the number of CPUs that StarPU should use for computations.

Generated by Doxygen

40 Configuration and initialization

Generated by Doxygen

Part II

StarPU Basics

Generated by Doxygen

Chapter 9

Organization

This part presents the basic knowledge of StarPU. It should be read to understand how StarPU works and how to
execute a basic StarPU application.

• Chapter StarPU Applications, setting up Your Own Code shows how to create and run your own StarPU ap-
plications.

• Chapter Basic Examples shows how to implement simple programs that submit tasks to StarPU.

• Chapter Full source code for the ’Scaling a Vector’ example gives the full source code for a vector scaling
application.

The next chapters cover the most important and core concepts in StarPU:

• Chapter Tasks In StarPU explains the basic information on tasks management.

• Chapter Data Management shows how to manage the data layout of your application data by using the differ-
ent data interfaces provided by StarPU.

• Chapter Scheduling explains the scheduling policies provided by StarPU.

Some examples applications are provided from the StarPU sources for you to try. Chapter Examples in StarPU Sources
lists these applications.

Generated by Doxygen

44 Organization

Generated by Doxygen

Chapter 10

StarPU Applications

10.1 Setting Flags for Compiling, Linking and Running Applications

StarPU provides a pkg-config executable to facilitate the retrieval of necessary compiler and linker flags. This
is useful when compiling and linking an application with StarPU, as certain flags or libraries (such as CUDA or
libspe2) may be required.
If StarPU is not installed in a standard location, the path of StarPU's library must be specified in the environment
variable PKG_CONFIG_PATH to allow pkg-config to find it. For example, if StarPU is installed in $STARPU←↩

_PATH, you can set the variable PKG_CONFIG_PATH like this:

$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$STARPU_PATH/lib/pkgconfig

The flags required to compile or link against StarPU are then accessible with the following commands:

$ pkg-config --cflags starpu-1.4 # options for the compiler
$ pkg-config --libs starpu-1.4 # options for the linker

Please note that it is still possible to use the API provided in StarPU version 1.0 by calling pkg-config with the
starpu-1.0 package. Similar packages are provided for starpumpi-1.0 and starpufft-1.0. For the
API provided in StarPU version 0.9, you can use pkg-config with the libstarpu package. Similar packages
are provided for libstarpumpi and libstarpufft.
Make sure that pkg-config -libs starpu-1.4 produces valid output before going further. To achieve this,
make sure that your PKG_CONFIG_PATH is correctly set to the location where starpu-1.4.pc was installed
during the make install process.
Furthermore, if you intend to link your application statically, remember to include the -static option during the
linking process.
Additionally, for runtime execution, it is necessary to set the LD_LIBRARY_PATH environment variable. This
ensures that dynamic libraries are located and loaded correctly during runtime.

$ export LD_LIBRARY_PATH=$STARPU_PATH/lib:$LD_LIBRARY_PATH

And finally you should set the PATH variable to get access to various StarPU tools:

$ export PATH=$PATH:$STARPU_PATH/bin

Run the following command to ensure that StarPU is executing properly and successfully detecting your hardware.
If any issues arise, examine the output of lstopo from the hwloc project and report any problems either to the
hwloc project or to us.

$ starpu_machine_display

A tool is provided to help set all the environment variables needed by StarPU. Once StarPU is installed in a specific
directory, calling the script bin/starpu_env will set in your current environment the variables STARPU_PATH,
LD_LIBRARY_PATH, PKG_CONFIG_PATH, PATH and MANPATH.

$ source $STARPU_PATH/bin/starpu_env

Generated by Doxygen

46 StarPU Applications

10.2 Integrating StarPU in a Build System

10.2.1 Integrating StarPU in a Make Build System

When using a Makefile, the following lines can be added to set the options for the compiler and the linker:

CFLAGS += $$(pkg-config --cflags starpu-1.4)
LDLIBS += $$(pkg-config --libs starpu-1.4)

If you have a test-starpu.c file containing for instance:
#include <starpu.h>
#include <stdio.h>
int main(void)
{

int ret;
ret = starpu_init(NULL);
if (ret != 0)
{

return 1;
}
printf("%d CPU cores\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
starpu_shutdown();
return 0;

}

You can build it with make test-starpu and run it with ./test-starpu

10.2.2 Integrating StarPU in a CMake Build System

This section shows a minimal example integrating StarPU in an existing application's CMake build system.
Let's assume we want to build an executable from the following source code using CMake:
#include <starpu.h>
#include <stdio.h>
int main(void)
{

int ret;
ret = starpu_init(NULL);
if (ret != 0)
{

return 1;
}
printf("%d CPU cores\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
starpu_shutdown();
return 0;

}

The CMakeLists.txt file below uses the Pkg-Config support from CMake to autodetect the StarPU installation
and library dependences (such as libhwloc) provided that the PKG_CONFIG_PATH variable is set, and is
sufficient to build a statically-linked executable. This example has been successfully tested with CMake 3.2, though
it may work with earlier CMake 3.x versions.
{File CMakeLists.txt}
cmake_minimum_required (VERSION 3.2)
project (hello_starpu)
find_package(PkgConfig)
pkg_check_modules(STARPU REQUIRED starpu-1.4)
if (STARPU_FOUND)

include_directories (${STARPU_INCLUDE_DIRS})
link_directories (${STARPU_STATIC_LIBRARY_DIRS})
link_libraries (${STARPU_STATIC_LIBRARIES})

else (STARPU_FOUND)
message(FATAL_ERROR "StarPU not found")

endif()
add_executable(hello_starpu hello_starpu.c)

The following CMakeLists.txt implements an alternative, more complex strategy, still relying on Pkg-Config,
but also taking into account additional flags. While more complete, this approach makes CMake's build types
(Debug, Release, ...) unavailable because of the direct affectation to variable CMAKE_C_FLAGS. If both the full
flags support and the build types support are needed, the CMakeLists.txt below may be altered to work
with CMAKE_C_FLAGS_RELEASE, CMAKE_C_FLAGS_DEBUG, and others as needed. This example has been
successfully tested with CMake 3.2, though it may work with earlier CMake 3.x versions.
{File CMakeLists.txt}
cmake_minimum_required (VERSION 3.2)
project (hello_starpu)
find_package(PkgConfig)
pkg_check_modules(STARPU REQUIRED starpu-1.4)
This section must appear before ’add_executable’

Generated by Doxygen

10.3 Running a Basic StarPU Application 47

if (STARPU_FOUND)
CFLAGS other than -I

foreach(CFLAG ${STARPU_CFLAGS_OTHER})
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CFLAG}")

endforeach()
Static LDFLAGS other than -L
foreach(LDFLAG ${STARPU_STATIC_LDFLAGS_OTHER})

set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${LDFLAG}")
endforeach()
-L directories
link_directories(${STARPU_STATIC_LIBRARY_DIRS})

else (STARPU_FOUND)
message(FATAL_ERROR "StarPU not found")

endif()
add_executable(hello_starpu hello_starpu.c)
This section must appear after ’add_executable’
if (STARPU_FOUND)
-I directories

target_include_directories(hello_starpu PRIVATE ${STARPU_INCLUDE_DIRS})
Static -l libs
target_link_libraries(hello_starpu PRIVATE ${STARPU_STATIC_LIBRARIES})

endif()

10.3 Running a Basic StarPU Application

Basic examples using StarPU are built in the directory examples/basic_examples/ (and installed in $←↩

STARPU_PATH/lib/starpu/examples/). You can for example run the example vector_scal.

$./examples/basic_examples/vector_scal
BEFORE: First element was 1.000000
AFTER: First element is 3.140000

When StarPU is used for the first time, the directory $STARPU_HOME/.starpu/ is created, performance models
will be stored in this directory (STARPU_HOME).
Please note that buses are benchmarked when StarPU is launched for the first time. This may take a few minutes,
or less if libhwloc is installed. This step is done only once per user and per machine.

10.4 Running a Basic StarPU Application on Microsoft Visual C

Batch files are provided to run StarPU applications under Microsoft Visual C. They are installed in $STARPU_←↩

PATH/bin/msvc.
To execute a StarPU application, you first need to set the environment variable STARPU_PATH.

c:\....> cd c:\cygwin\home\ci\starpu\
c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
c:\....> cd bin\msvc
c:\....> starpu_open.bat starpu_simple.c

The batch script will run Microsoft Visual C with a basic project file to run the given application.
The batch script starpu_clean.bat can be used to delete all compilation generated files.
The batch script starpu_exec.bat can be used to compile and execute a StarPU application from the com-
mand prompt.

c:\....> cd c:\cygwin\home\ci\starpu\
c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
c:\....> cd bin\msvc
c:\....> starpu_exec.bat ..\..\..\..\examples\basic_examples\hello_world.c

MSVC StarPU Execution
...
/out:hello_world.exe
...
Hello world (params = {1, 2.00000})
Callback function got argument 0000042
c:\....>

Generated by Doxygen

48 StarPU Applications

10.5 Kernel Threads Started by StarPU

StarPU automatically binds one thread per CPU core. It does not use SMT/hyperthreading because kernels are
usually already optimized for using a full core, and using hyperthreading would make kernel calibration rather ran-
dom.
Since driving GPUs is a CPU-consuming task, StarPU dedicates one core per GPU.
While StarPU tasks are executing, the application is not supposed to do computations in the threads it starts itself,
tasks should be used instead.
If the application needs to reserve some cores for its own computations, it can do so with the field
starpu_conf::reserve_ncpus, get the core IDs with starpu_get_next_bindid(), and bind to them with starpu_bind_thread_on().
Another option is for the application to pause StarPU by calling starpu_pause(), then to perform its own computa-
tions, and then to resume StarPU by calling starpu_resume() so that StarPU can execute tasks.
If a computation library used by the application actually creates its own thread, it may be useful to call
starpu_bind_thread_on_worker() before e.g. initializing the library, so that the library records which binding it is
supposed to use. And then call starpu_bind_thread_on_main() again, or starpu_bind_thread_on_cpu() if a core
was reserved with starpu_get_next_bindid().
In case that computation library wants to bind threads itself, and uses physical numbering instead of logical num-
bering (as defined by hwloc), starpu_cpu_os_index() can be used to convert from StarPU cpuid to OS cpu index.

10.6 Enabling OpenCL

When both CUDA and OpenCL drivers are enabled, StarPU will launch an OpenCL worker for NVIDIA GPUs only if
CUDA is not already running on them. This design choice was necessary as OpenCL and CUDA can not run at the
same time on the same NVIDIA GPU, as there is currently no interoperability between them.
To enable OpenCL, you need either to disable CUDA when configuring StarPU:

$./configure --disable-cuda

or when running applications:

$ STARPU_NCUDA=0 ./application

OpenCL will automatically be started on any device not yet used by CUDA. So on a machine running 4 GPUS, it is
therefore possible to enable CUDA on 2 devices, and OpenCL on the other 2 devices by calling:

$ STARPU_NCUDA=2 ./application

10.7 Storing Performance Model Files

StarPU stores performance model files for bus benchmarking and codelet profiles in different directories.
By default, all files are stored in $STARPU_HOME/.starpu/sampling.
If the environment variable STARPU_HOME is not defined, its default value is $HOME on Unix environments, and
$USERPROFILE on Windows environments.
Environment variables STARPU_PERF_MODEL_DIR and STARPU_PERF_MODEL_PATH can also be used to
specify other directories in which to store performance files (Simulated Benchmarks).
The configure option --with-perf-model-dir can also be used to define a performance model directory.
When looking for performance files either for bus benchmarking or for codelet performances, StarPU

• first looks in the directory specified by the environment variable STARPU_PERF_MODEL_DIR

• then looks in the directory specified by the configure option --with-perf-model-dir
or in $STARPU_HOME/.starpu/sampling if the option is not set

• then looks in the directories specified by the environment variable STARPU_PERF_MODEL_PATH

• and finally looks in $prefix/share/starpu/perfmodels/sampling

If the files are not present and must be created, they will be created in the first defined directory from the list above.

rm -rf $PWD/xxx && STARPU_PERF_MODEL_DIR=$PWD/xxx ./application

Generated by Doxygen

10.7 Storing Performance Model Files 49

will use performance model files from the directory $STARPU_HOME/.starpu/sampling if they are available,
otherwise will create these files in $STARPU_PERF_MODEL_DIR.
To know the list of directories StarPU will search for performances files, one can use the tool starpu_←↩

perfmodel_display

$ starpu_perfmodel_display -d
directory: </home/user1/.starpu/sampling/codelets/45/>
directory: </usr/local/install/share/starpu/perfmodels/sampling/codelets/45/>

$ STARPU_PERF_MODEL_DIR=/tmp/xxx starpu_perfmodel_display -d
directory: </tmp/xxx/codelets/45/>
directory: </home/user1/.starpu/sampling/codelets/45/>
directory: </usr/local/install/share/starpu/perfmodels/sampling/codelets/45/>

When using the variable STARPU_PERF_MODEL_DIR, the directory will be created if it does not exist when dump-
ing new performance model files.
When using the variable STARPU_PERF_MODEL_PATH, only existing directories will be taken into account.

$ mkdir /tmp/yyy && STARPU_PERF_MODEL_DIR=/tmp/xxx STARPU_PERF_MODEL_PATH=/tmp/zzz:/tmp/yyy starpu_perfmodel_display -d
[starpu][adrets][_perf_model_add_dir] Warning: directory </tmp/zzz> as set by variable STARPU_PERF_MODEL_PATH does not exist
directory: </tmp/xxx/codelets/45/>
directory: </home/user1/.starpu/sampling/codelets/45/>
directory: </tmp/yyy/codelets/45/>
directory: </usr/local/install/share/starpu/perfmodels/sampling/codelets/45/>

Once your application has created the performance files in a given directory, it is thus possible to move these files
in another location and keep using them.

./application
files are created in $HOME/.starpu/sampling
mv $HOME/.starpu/sampling /usr/local/starpu/sampling
STARPU_PERF_MODEL_DIR=/usr/local/starpu/sampling ./application

Generated by Doxygen

50 StarPU Applications

Generated by Doxygen

Chapter 11

Basic Examples

11.1 Hello World

This section shows how to implement a simple program that submits a task to StarPU. The full source code for this
example is available in the file examples/basic_examples/hello_world.c

11.1.1 Required Headers

The header starpu.h should be included in any code using StarPU.
#include <starpu.h>

11.1.2 Defining A Codelet

A codelet is a structure that represents a computational kernel. Such a codelet may contain an implementation
of the same kernel on different architectures (e.g. CUDA, x86, ...). For compatibility, make sure that the whole
structure is properly initialized to zero, either by using the function starpu_codelet_init(), or by letting the compiler
implicitly do it as examplified below.
The field starpu_codelet::nbuffers specifies the number of data buffers that are manipulated by the codelet. Here,
the codelet does not access or modify any data that is controlled by our data management library.
We create a codelet which may only be executed on CPUs. When a CPU core will execute a codelet, it will call the
function cpu_func, which must have the following prototype:
void cpu_func(void *buffers[], void *cl_arg);

In this example, we can ignore the first argument of this function which gives a description of the input and output
buffers (e.g. the size and the location of the matrices) since there is none. We also ignore the second argument,
which is a pointer to optional arguments for the codelet.
void cpu_func(void *buffers[], void *cl_arg)
{

printf("Hello world\n");
}
struct starpu_codelet cl =
{

.cpu_funcs = { cpu_func },

.nbuffers = 0
};

11.1.3 Submitting A Task

Before submitting any tasks to StarPU, starpu_init() must be called, or starpu_initialize() must be called by giving
application arguments. The NULL argument specifies that we use the default configuration. Tasks can then be
submitted until the termination of StarPU – done by a call to starpu_shutdown().
In the example below, a task structure is allocated by a call to starpu_task_create(). This function allocates and fills
the task structure with its default settings, it does not submit the task to StarPU.
The field starpu_task::cl is a pointer to the codelet which the task will execute: in other words, the codelet structure
describes which computational kernel should be offloaded on the different architectures, and the task structure is a
wrapper containing a codelet and the piece of data on which the codelet should operate.
If the field starpu_task::synchronous is non-zero, task submission will be synchronous: the function
starpu_task_submit() will not return until the task has been executed. Note that the function starpu_shutdown() does
not guarantee that asynchronous tasks have been executed before it returns, starpu_task_wait_for_all() can be

Generated by Doxygen

52 Basic Examples

used to this effect, or data can be unregistered (starpu_data_unregister()), which will implicitly wait for all the tasks
scheduled to work on it, unless explicitly disabled thanks to starpu_data_set_default_sequential_consistency_flag()
or starpu_data_set_sequential_consistency_flag().
int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);
struct starpu_task *task = starpu_task_create();
task->cl = &cl; /* Pointer to the codelet defined above */
/* starpu_task_submit will be a blocking call. If unset,

starpu_task_wait() needs to be called after submitting the task. */
task->synchronous = 1;
/* submit the task to StarPU */
starpu_task_submit(task);
/* terminate StarPU */
starpu_shutdown();
return 0;

}

11.1.4 Execution Of Hello World
$ make hello_world
cc $(pkg-config --cflags starpu-1.4) hello_world.c -o hello_world $(pkg-config --libs starpu-1.4)
$./hello_world
Hello world

11.1.5 Passing Arguments To The Codelet

The optional field starpu_task::cl_arg field is a pointer to a buffer (of size starpu_task::cl_arg_size) with some pa-
rameters for the kernel described by the codelet. For instance, if a codelet implements a computational kernel that
multiplies its input vector by a constant, the constant could be specified by the means of this buffer, instead of regis-
tering it as a StarPU data. It must however be noted that StarPU avoids making copy whenever possible and rather
passes the pointer as such, so the buffer which is pointed to must be kept allocated until the task terminates, and if
several tasks are submitted with various parameters, each of them must be given a pointer to their own buffer.
struct params
{

int i;
float f;

};
void cpu_func(void *buffers[], void *cl_arg)
{

struct params *params = cl_arg;
printf("Hello world (params = {%i, %f})\n", params->i, params->f);

}

As said before, the field starpu_codelet::nbuffers specifies the number of data buffers which are manipulated by the
codelet. It does not count the argument — the parameter cl_arg of the function cpu_func — since it is not
managed by our data management library, but just contains trivial parameters.
Be aware that this may be a pointer to a copy of the actual buffer, and not the pointer given by the programmer: if
the codelet modifies this buffer, there is no guarantee that the initial buffer will be modified as well: this for instance
implies that the buffer cannot be used as a synchronization medium. If synchronization is needed, data has to be
registered to StarPU, see Vector Scaling.
int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);
struct starpu_task *task = starpu_task_create();
task->cl = &cl; /* Pointer to the codelet defined above */
struct params params = { 1, 2.0f };
task->cl_arg = ¶ms;
task->cl_arg_size = sizeof(params);
/* starpu_task_submit will be a blocking call */
task->synchronous = 1;
/* submit the task to StarPU */
starpu_task_submit(task);
/* terminate StarPU */
starpu_shutdown();
return 0;

}

$ make hello_world
cc $(pkg-config --cflags starpu-1.4) hello_world.c -o hello_world $(pkg-config --libs starpu-1.4)
$./hello_world
Hello world (params = {1, 2.000000})

Generated by Doxygen

11.2 Vector Scaling 53

11.1.6 Defining A Callback

Once a task has been executed, an optional callback function starpu_task::callback_func is called when defined.
While the computational kernel could be offloaded on various architectures, the callback function is always executed
on a CPU. The pointer starpu_task::callback_arg is passed as an argument to the callback function. The prototype
of a callback function must be:
void callback_function(void *);
void callback_func(void *callback_arg)
{

printf("Callback function (arg %x)\n", callback_arg);
}
int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);
struct starpu_task *task = starpu_task_create();
task->cl = &cl; /* Pointer to the codelet defined above */
task->callback_func = callback_func;
task->callback_arg = 0x42;
/* starpu_task_submit will be a blocking call */
task->synchronous = 1;
/* submit the task to StarPU */
starpu_task_submit(task);
/* terminate StarPU */
starpu_shutdown();
return 0;

}

$ make hello_world
cc $(pkg-config --cflags starpu-1.4) hello_world.c -o hello_world $(pkg-config --libs starpu-1.4)
$./hello_world
Hello world
Callback function (arg 42)

11.1.7 Where To Execute A Codelet
struct starpu_codelet cl =
{

.where = STARPU_CPU,

.cpu_funcs = { cpu_func },

.nbuffers = 0
};

We create a codelet which may only be executed on the CPUs. The optional field starpu_codelet::where is a
bitmask which defines where the codelet may be executed. Here, the value STARPU_CPU means that only CPUs
can execute this codelet. When the optional field starpu_codelet::where is unset, its value is automatically set based
on the availability of the different fields XXX_funcs.

11.2 Vector Scaling

The previous example has shown how to submit tasks. In this section, we show how StarPU tasks can manipulate
data.
The full source code for this example is given in Full source code for the ’Scaling a Vector’ example.

11.2.1 Source Code of Vector Scaling

Programmers can describe the data layout of their application so that StarPU is responsible for enforcing data
coherency and availability across the machine. Instead of handling complex (and non-portable) mechanisms to
perform data movements, programmers only declare which piece of data is accessed and/or modified by a task,
and StarPU makes sure that when a computational kernel starts somewhere (e.g. on a GPU), its data are available
locally.
Before submitting those tasks, programmers first need to declare the different pieces of data to StarPU using the
functions starpu_∗_data_register. To ease the development of applications for StarPU, it is possible to
describe multiple types of data layout. A type of data layout is called an interface. There are different predefined
interfaces available in StarPU, here we will consider the vector interface.
The following lines show how to declare an array of NX elements of type float using the vector interface:
float vector[NX];
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));

The first argument, called the data handle, is an opaque pointer which designates the array within StarPU. This is
also the structure which is used to describe which data is used by a task. The second argument is the node number

Generated by Doxygen

54 Basic Examples

where the data originally resides. Here it is STARPU_MAIN_RAM since the array vector is in the main memory.
Then comes the pointer vector where the data can be found in main memory, the number of elements in the
vector and the size of each element. The following shows how to construct a StarPU task that will manipulate the
vector and a constant factor.
float factor = 3.14;
struct starpu_task *task = starpu_task_create();
task->cl = &cl; /* Pointer to the codelet defined below */
task->handles[0] = vector_handle; /* First parameter of the codelet */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
task->synchronous = 1;
starpu_task_submit(task);

Since the factor is a mere constant float value parameter, it does not need a preliminary registration, and can just
be passed through the pointer starpu_task::cl_arg like in the previous example. The vector parameter is described
by its handle. starpu_task::handles should be set with the handles of the data, the access modes for the data are
defined in the field starpu_codelet::modes (STARPU_R for read-only, STARPU_W for write-only and STARPU_RW
for read and write access).
The definition of the codelet can be written as follows:
void scal_cpu_func(void *buffers[], void *cl_arg)
{

unsigned i;
float *factor = cl_arg;
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* CPU copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
for (i = 0; i < n; i++)

val[i] *= *factor;
}
struct starpu_codelet cl =
{

.cpu_funcs = { scal_cpu_func },

.nbuffers = 1,

.modes = { STARPU_RW }
};

The first argument is an array that gives a description of all the buffers passed in the array starpu_task::handles.
The size of this array is given by the field starpu_codelet::nbuffers. For the sake of genericity, this array contains
pointers to the different interfaces describing each buffer. In the case of the vector interface, the location of the
vector (resp. its length) is accessible in the starpu_vector_interface::ptr (resp. starpu_vector_interface::nx) of this
interface. Since the vector is accessed in a read-write fashion, any modification will automatically affect future
accesses to this vector made by other tasks.
The second argument of the function scal_cpu_func contains a pointer to the parameters of the codelet (given
in starpu_task::cl_arg), so that we read the constant factor from this pointer.

11.2.2 Execution of Vector Scaling
$ make vector_scal
cc $(pkg-config --cflags starpu-1.4) vector_scal.c -o vector_scal $(pkg-config --libs starpu-1.4)
$./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

11.3 Vector Scaling on an Hybrid CPU/GPU Machine

Contrary to the previous examples, the task submitted in this example may not only be executed by the CPUs, but
also by a CUDA device.

11.3.1 Definition of the CUDA Kernel

The CUDA implementation can be written as follows. It needs to be compiled with a CUDA compiler
such as nvcc, the NVIDIA CUDA compiler driver. It must be noted that the vector pointer returned by
STARPU_VECTOR_GET_PTR is here a pointer in GPU memory, so that it can be passed as such to the ker-
nel call vector_mult_cuda.
#include <starpu.h>
static __global__ void vector_mult_cuda(unsigned n, float *val, float factor)
{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)

val[i] *= factor;
}

Generated by Doxygen

11.3 Vector Scaling on an Hybrid CPU/GPU Machine 55

extern "C" void scal_cuda_func(void *buffers[], void *_args)
{

float *factor = (float *)_args;
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* local copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned threads_per_block = 64;
unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
vector_mult_cuda«<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()»>(n, val, *factor);
cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) STARPU_CUDA_REPORT_ERROR(status);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

}

11.3.2 Definition of the OpenCL Kernel

The OpenCL implementation can be written as follows. StarPU provides tools to compile a OpenCL kernel stored
in a file.
__kernel void vector_mult_opencl(int nx, __global float* val, float factor)
{

const int i = get_global_id(0);
if (i < nx)
{

val[i] *= factor;
}

}

Contrary to CUDA and CPU, STARPU_VECTOR_GET_DEV_HANDLE has to be used, which returns a cl_mem
(which is not a device pointer, but an OpenCL handle), which can be passed as such to the OpenCL kernel. The
difference is important when using partitioning, see Partitioning Data.
#include <starpu.h>
extern struct starpu_opencl_program programs;
void scal_opencl_func(void *buffers[], void *_args)
{

float *factor = _args;
int id, devid, err; /* OpenCL specific code */
cl_kernel kernel; /* OpenCL specific code */
cl_command_queue queue; /* OpenCL specific code */
cl_event event; /* OpenCL specific code */
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* OpenCL copy of the vector pointer */
cl_mem val = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
{ /* OpenCL specific code */

id = starpu_worker_get_id();
devid = starpu_worker_get_devid(id);
err = starpu_opencl_load_kernel(&kernel, &queue, &programs,

"vector_mult_opencl", /* Name of the codelet */
devid);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
err = clSetKernelArg(kernel, 0, sizeof(n), &n);
err |= clSetKernelArg(kernel, 1, sizeof(val), &val);
err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);
if (err) STARPU_OPENCL_REPORT_ERROR(err);

}
{ /* OpenCL specific code */

size_t global=n;
size_t local;
size_t s;
cl_device_id device;
starpu_opencl_get_device(devid, &device);
err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local,

&s);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
if (local > global) local=global;
else global = (global + local-1) / local * local;
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}
{ /* OpenCL specific code */

clFinish(queue);
starpu_opencl_collect_stats(event);
clReleaseEvent(event);
starpu_opencl_release_kernel(kernel);

}
}

11.3.3 Definition of the Main Code

The CPU implementation is the same as in the previous section.

Generated by Doxygen

56 Basic Examples

Here is the source of the main application. You can notice that the fields starpu_codelet::cuda_funcs and
starpu_codelet::opencl_funcs are set to define the pointers to the CUDA and OpenCL implementations of the task.
/*
* This example demonstrates how to use StarPU to scale an array by a factor.

* It shows how to manipulate data with StarPU’s data management library.

* 1- how to declare a piece of data to StarPU (starpu_vector_data_register)

* 2- how to describe which data are accessed by a task (task->handles[0])

* 3- how a kernel can manipulate the data (buffers[0].vector.ptr)

*/
#include <starpu.h>
#define NX 2048
extern void scal_cpu_func(void *buffers[], void *_args);
extern void scal_sse_func(void *buffers[], void *_args);
extern void scal_cuda_func(void *buffers[], void *_args);
extern void scal_opencl_func(void *buffers[], void *_args);
static struct starpu_codelet cl =
{

.where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,
/* CPU implementation of the codelet */
.cpu_funcs = { scal_cpu_func, scal_sse_func },
.cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },

#ifdef STARPU_USE_CUDA
/* CUDA implementation of the codelet */
.cuda_funcs = { scal_cuda_func },

#endif
#ifdef STARPU_USE_OPENCL

/* OpenCL implementation of the codelet */
.opencl_funcs = { scal_opencl_func },

#endif
.nbuffers = 1,
.modes = { STARPU_RW }

};
#ifdef STARPU_USE_OPENCL
struct starpu_opencl_program programs;
#endif
int main(int argc, char **argv)
{

/* We consider a vector of float that is initialized just as any of C

* data */
float vector[NX];
unsigned i;
for (i = 0; i < NX; i++)

vector[i] = 1.0f;
fprintf(stderr, "BEFORE: First element was %f\n", vector[0]);
/* Initialize StarPU with default configuration */
starpu_init(NULL);

#ifdef STARPU_USE_OPENCL
starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_kernel.cl", &programs,

NULL);
#endif

/* Tell StaPU to associate the "vector" vector with the "vector_handle"

* identifier. When a task needs to access a piece of data, it should

* refer to the handle that is associated to it.

* In the case of the "vector" data interface:

* - the first argument of the registration method is a pointer to the

* handle that should describe the data

* - the second argument is the memory node where the data (ie. "vector")

* resides initially: STARPU_MAIN_RAM stands for an address in main memory, as

* opposed to an address on a GPU for instance.

* - the third argument is the address of the vector in RAM

* - the fourth argument is the number of elements in the vector

* - the fifth argument is the size of each element.

*/
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
float factor = 3.14;
/* create a synchronous task: any call to starpu_task_submit will block

* until it is terminated */
struct starpu_task *task = starpu_task_create();
task->synchronous = 1;
task->cl = &cl;
/* the codelet manipulates one buffer in RW mode */
task->handles[0] = vector_handle;
/* an argument is passed to the codelet, beware that this is a

* READ-ONLY buffer and that the codelet may be given a pointer to a

* COPY of the argument */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
/* execute the task on any eligible computational resource */
starpu_task_submit(task);
/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */
starpu_data_unregister(vector_handle);

#ifdef STARPU_USE_OPENCL
starpu_opencl_unload_opencl(&programs);

#endif
/* terminate StarPU, no task can be submitted after */

Generated by Doxygen

11.3 Vector Scaling on an Hybrid CPU/GPU Machine 57

starpu_shutdown();
fprintf(stderr, "AFTER First element is %f\n", vector[0]);
return 0;

}

11.3.4 Execution of Hybrid Vector Scaling

The Makefile given at the beginning of the section must be extended to give the rules to compile the CUDA source
code. Note that the source file of the OpenCL kernel does not need to be compiled now, it will be compiled at
runtime when calling the function starpu_opencl_load_opencl_from_file().

CFLAGS += $(shell pkg-config --cflags starpu-1.4)
LDLIBS += $(shell pkg-config --libs starpu-1.4)
CC = gcc

vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o

%.o: %.cu
nvcc $(CFLAGS) $< -c $@

clean:
rm -f vector_scal *.o

$ make

and to execute it, with the default configuration:

$./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

or for example, by disabling CPU devices:

$ STARPU_NCPU=0 ./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

or by disabling CUDA devices (which may permit to enable the use of OpenCL, see Enabling OpenCL) :

$ STARPU_NCUDA=0 ./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

Generated by Doxygen

58 Basic Examples

Generated by Doxygen

Chapter 12

Full Source Code for the ’Scaling a Vector’ Example

12.1 Main Application
/*
* This example demonstrates how to use StarPU to scale an array by a factor.

* It shows how to manipulate data with StarPU’s data management library.

* 1- how to declare a piece of data to StarPU (starpu_vector_data_register)

* 2- how to describe which data are accessed by a task (task->handles[0])

* 3- how a kernel can manipulate the data (buffers[0].vector.ptr)

*/
#include <starpu.h>
#define NX 2048
extern void scal_cpu_func(void *buffers[], void *_args);
extern void scal_sse_func(void *buffers[], void *_args);
extern void scal_cuda_func(void *buffers[], void *_args);
extern void scal_opencl_func(void *buffers[], void *_args);
static struct starpu_codelet cl =
{

.where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,
/* CPU implementation of the codelet */
.cpu_funcs = { scal_cpu_func, scal_sse_func },
.cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },

#ifdef STARPU_USE_CUDA
/* CUDA implementation of the codelet */
.cuda_funcs = { scal_cuda_func },

#endif
#ifdef STARPU_USE_OPENCL

/* OpenCL implementation of the codelet */
.opencl_funcs = { scal_opencl_func },

#endif
.nbuffers = 1,
.modes = { STARPU_RW }

};
#ifdef STARPU_USE_OPENCL
struct starpu_opencl_program programs;
#endif
int main(int argc, char **argv)
{

/* We consider a vector of float that is initialized just as any of C

* data */
float vector[NX];
unsigned i;
for (i = 0; i < NX; i++)

vector[i] = 1.0f;
fprintf(stderr, "BEFORE: First element was %f\n", vector[0]);
/* Initialize StarPU with default configuration */
starpu_init(NULL);

#ifdef STARPU_USE_OPENCL
starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_kernel.cl", &programs,

NULL);
#endif

/* Tell StaPU to associate the "vector" vector with the "vector_handle"

* identifier. When a task needs to access a piece of data, it should

* refer to the handle that is associated to it.

* In the case of the "vector" data interface:

* - the first argument of the registration method is a pointer to the

* handle that should describe the data

* - the second argument is the memory node where the data (ie. "vector")

* resides initially: STARPU_MAIN_RAM stands for an address in main memory, as

* opposed to an address on a GPU for instance.

* - the third argument is the address of the vector in RAM

* - the fourth argument is the number of elements in the vector

* - the fifth argument is the size of each element.

*/
starpu_data_handle_t vector_handle;

Generated by Doxygen

60 Full Source Code for the ’Scaling a Vector’ Example

starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
float factor = 3.14;
/* create a synchronous task: any call to starpu_task_submit will block

* until it is terminated */
struct starpu_task *task = starpu_task_create();
task->synchronous = 1;
task->cl = &cl;
/* the codelet manipulates one buffer in RW mode */
task->handles[0] = vector_handle;
/* an argument is passed to the codelet, beware that this is a

* READ-ONLY buffer and that the codelet may be given a pointer to a

* COPY of the argument */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
/* execute the task on any eligible computational resource */
starpu_task_submit(task);
/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */
starpu_data_unregister(vector_handle);

#ifdef STARPU_USE_OPENCL
starpu_opencl_unload_opencl(&programs);

#endif
/* terminate StarPU, no task can be submitted after */
starpu_shutdown();
fprintf(stderr, "AFTER First element is %f\n", vector[0]);
return 0;

}

12.2 CPU Kernel
#include <starpu.h>
#include <xmmintrin.h>
/* This kernel takes a buffer and scales it by a constant factor */
void scal_cpu_func(void *buffers[], void *cl_arg)
{

unsigned i;
float *factor = cl_arg;
/*

* The "buffers" array matches the task->handles array: for instance

* task->handles[0] is a handle that corresponds to a data with

* vector "interface", so that the first entry of the array in the

* codelet is a pointer to a structure describing such a vector (ie.

* struct starpu_vector_interface *). Here, we therefore manipulate

* the buffers[0] element as a vector: nx gives the number of elements

* in the array, ptr gives the location of the array (that was possibly

* migrated/replicated), and elemsize gives the size of each elements.

*/
struct starpu_vector_interface *vector = buffers[0];
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(vector);
/* get a pointer to the local copy of the vector: note that we have to

* cast it in (float *) since a vector could contain any type of

* elements so that the .ptr field is actually a uintptr_t */
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);
/* scale the vector */
for (i = 0; i < n; i++)

val[i] *= *factor;
}
void scal_sse_func(void *buffers[], void *cl_arg)
{

float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
unsigned int n_iterations = n/4;
__m128 *VECTOR = (__m128*) vector;
__m128 FACTOR STARPU_ATTRIBUTE_ALIGNED(16);
float factor = *(float *) cl_arg;
FACTOR = _mm_set1_ps(factor);
unsigned int i;
for (i = 0; i < n_iterations; i++)

VECTOR[i] = _mm_mul_ps(FACTOR, VECTOR[i]);
unsigned int remainder = n%4;
if (remainder != 0)
{

unsigned int start = 4 * n_iterations;
for (i = start; i < start+remainder; ++i)
{

vector[i] = factor * vector[i];
}

}
}

Generated by Doxygen

12.3 CUDA Kernel 61

12.3 CUDA Kernel
#include <starpu.h>
static __global__ void vector_mult_cuda(unsigned n, float *val, float factor)
{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)

val[i] *= factor;
}
extern "C" void scal_cuda_func(void *buffers[], void *_args)
{

float *factor = (float *)_args;
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* local copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned threads_per_block = 64;
unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
vector_mult_cuda«<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()»>(n, val, *factor);
cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) STARPU_CUDA_REPORT_ERROR(status);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

}

12.4 OpenCL Kernel

12.4.1 Invoking the Kernel
#include <starpu.h>
extern struct starpu_opencl_program programs;
void scal_opencl_func(void *buffers[], void *_args)
{

float *factor = _args;
int id, devid, err; /* OpenCL specific code */
cl_kernel kernel; /* OpenCL specific code */
cl_command_queue queue; /* OpenCL specific code */
cl_event event; /* OpenCL specific code */
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* OpenCL copy of the vector pointer */
cl_mem val = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
{ /* OpenCL specific code */

id = starpu_worker_get_id();
devid = starpu_worker_get_devid(id);
err = starpu_opencl_load_kernel(&kernel, &queue, &programs,

"vector_mult_opencl", /* Name of the codelet */
devid);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
err = clSetKernelArg(kernel, 0, sizeof(n), &n);
err |= clSetKernelArg(kernel, 1, sizeof(val), &val);
err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);
if (err) STARPU_OPENCL_REPORT_ERROR(err);

}
{ /* OpenCL specific code */

size_t global=n;
size_t local;
size_t s;
cl_device_id device;
starpu_opencl_get_device(devid, &device);
err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local,

&s);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
if (local > global) local=global;
else global = (global + local-1) / local * local;
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}
{ /* OpenCL specific code */

clFinish(queue);
starpu_opencl_collect_stats(event);
clReleaseEvent(event);
starpu_opencl_release_kernel(kernel);

}
}

12.4.2 Source of the Kernel
__kernel void vector_mult_opencl(int nx, __global float* val, float factor)
{

const int i = get_global_id(0);
if (i < nx)
{

Generated by Doxygen

62 Full Source Code for the ’Scaling a Vector’ Example

val[i] *= factor;
}

}

Generated by Doxygen

Chapter 13

Tasks In StarPU

13.1 Task Granularity

Similar to other runtimes, StarPU introduces some overhead in managing tasks. This overhead, while not always
negligible, is mitigated by its intelligent scheduling and data management capabilities. The typical order of magni-
tude for this overhead is a few microseconds, which is notably smaller than the inherent CUDA overhead. To ensure
that this overhead remains insignificant, the work assigned to a task should be substantial enough.
The length of tasks should ideally be relatively larger to effectively counterbalance this overhead. It iss advised
to consider the offline performance feedback, which provides insights into task lengths. Monitoring task lengths
becomes crucial if you're encountering suboptimal performance.
To gauge the scalability potential based task size, you can run the tests/microbenchs/tasks_size_←↩

overhead.sh script. It provides a visual representation of the speedup achievable with independent tasks of
very small sizes.
This benchmark is installed in $STARPU_PATH/lib/starpu/examples/. It gives a glimpse into how long
a task should be (in µs) for StarPU overhead to be low enough to keep efficiency. The script generates a plot
illustrating the speedup trends for tasks of different sizes, correlated with the number of CPUs in use.
For example, in the figure below, for 128 µs tasks (the red line), StarPU overhead is low enough to guarantee a
good speedup if the number of CPUs is not more than 36. But with the same number of CPUs, 64 µs tasks (the
black line) cannot have a correct speedup. The number of CPUs must be decreased to about 17 in order to keep
efficiency.

Generated by Doxygen

64 Tasks In StarPU

To determine the task size your application is using, it is possible to use starpu_fxt_data_trace as ex-
plained in Data trace and tasks length.
The selection of a scheduler in StarPU also plays a significant role. Different schedulers have varying impacts on
the overall execution. For example, the dmda scheduler may require additional time to make decisions, while the
eager scheduler tends to be more immediate in its decisions.
To assess the impact of scheduler choice on your target machine, you can once again utilize the tasks_size←↩

_overhead.sh script. This script provides valuable insights into how different schedulers affect performance in
conjunction with task sizes.

13.2 Task Submission

To enable StarPU to perform online optimizations effectively, it is recommended to submit tasks asynchronously
whenever possible. The goal is to maximize the level of asynchronous submission, allowing StarPU to have more
flexibility in optimizing the scheduling process. Ideally, all tasks should be submitted asynchronously, and the use of
functions like starpu_task_wait_for_all() or starpu_data_unregister() should be limited to waiting for task completion.
StarPU will then be able to rework the whole schedule, overlap computation with communication, manage acceler-
ator local memory usage, etc. A simple example is in the file examples/basic_examples/variable.c

13.3 Task Priorities

StarPU's default behavior considers tasks in the order they are submitted by the application. However, in scenarios
where the application programmer possesses knowledge about certain tasks that should take priority due to their
impact on performance (such as tasks whose output is crucial for subsequent tasks), the starpu_task::priority field
can be utilized to convey this information to StarPU's scheduling process.
An example is provided in the application examples/heat/dw_factolu_tag.c.

Generated by Doxygen

13.4 Setting Many Data Handles For a Task 65

13.4 Setting Many Data Handles For a Task

The maximum number of data that a task can manage is fixed by the macro STARPU_NMAXBUFS. This macro
has a default value which can be customized through the configure option --enable-maxbuffers.
However, if you have specific cases where you need tasks to manage more data than the maximum allowed, you
can use the field starpu_task::dyn_handles when defining a task, along with the field starpu_codelet::dyn_modes
when defining the corresponding codelet.
This dynamic handle mechanism enables tasks to handle additional data beyond the usual limit imposed by
STARPU_NMAXBUFS.
enum starpu_data_access_mode modes[STARPU_NMAXBUFS+1] =
{

STARPU_R, STARPU_R, ...
};
struct starpu_codelet dummy_big_cl =
{

.cuda_funcs = { dummy_big_kernel },

.opencl_funcs = { dummy_big_kernel },

.cpu_funcs = { dummy_big_kernel },

.cpu_funcs_name = { "dummy_big_kernel" },

.nbuffers = STARPU_NMAXBUFS+1,

.dyn_modes = modes
};
task = starpu_task_create();
task->cl = &dummy_big_cl;
task->dyn_handles = malloc(task->cl->nbuffers * sizeof(starpu_data_handle_t));
for(i=0 ; i<task->cl->nbuffers ; i++)
{

task->dyn_handles[i] = handle;
}
starpu_task_submit(task);
starpu_data_handle_t *handles = malloc(dummy_big_cl.nbuffers * sizeof(starpu_data_handle_t));
for(i=0 ; i<dummy_big_cl.nbuffers ; i++)
{

handles[i] = handle;
}
starpu_task_insert(&dummy_big_cl,

STARPU_VALUE, &dummy_big_cl.nbuffers, sizeof(dummy_big_cl.nbuffers),
STARPU_DATA_ARRAY, handles, dummy_big_cl.nbuffers,
0);

The whole code for this complex data interface is available in the file examples/basic_examples/dynamic←↩

_handles.c.

13.5 Setting a Variable Number Of Data Handles For a Task

Normally, the number of data handles given to a task is set with starpu_codelet::nbuffers. This field can however be
set to STARPU_VARIABLE_NBUFFERS, in which case starpu_task::nbuffers must be set, and starpu_task::modes
(or starpu_task::dyn_modes, see Setting Many Data Handles For a Task) should be used to specify the modes for
the handles. Examples in examples/basic_examples/dynamic_handles.c show how to implement it.

13.6 Insert Task Utility

StarPU provides the wrapper function starpu_task_insert() to ease the creation and submission of tasks.
Here is the implementation of a codelet:
void func_cpu(void *descr[], void *_args)
{

int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
int ifactor;
float ffactor;
starpu_codelet_unpack_args(_args, &ifactor, &ffactor);

*x0 = *x0 * ifactor;

*x1 = *x1 * ffactor;
}
struct starpu_codelet mycodelet =
{

.cpu_funcs = { func_cpu },

.cpu_funcs_name = { "func_cpu" },

.nbuffers = 2,

.modes = { STARPU_RW, STARPU_RW }
};

And the call to starpu_task_insert():
starpu_task_insert(&mycodelet,

STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),

Generated by Doxygen

66 Tasks In StarPU

STARPU_RW, data_handles[0],
STARPU_RW, data_handles[1],
0);

The call to starpu_task_insert() is equivalent to the following code:
struct starpu_task *task = starpu_task_create();
task->cl = &mycodelet;
task->handles[0] = data_handles[0];
task->handles[1] = data_handles[1];
char *arg_buffer;
size_t arg_buffer_size;
starpu_codelet_pack_args(&arg_buffer, &arg_buffer_size,

STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),
0);

task->cl_arg = arg_buffer;
task->cl_arg_size = arg_buffer_size;
int ret = starpu_task_submit(task);

In the example file tests/main/insert_task_value.c, we use these two ways to create and submit tasks.
Instead of calling starpu_codelet_pack_args(), one can also call starpu_codelet_pack_arg_init(), then
starpu_codelet_pack_arg() for each data, then starpu_codelet_pack_arg_fini() as follow:
struct starpu_task *task = starpu_task_create();
task->cl = &mycodelet;
task->handles[0] = data_handles[0];
task->handles[1] = data_handles[1];
struct starpu_codelet_pack_arg_data state;
starpu_codelet_pack_arg_init(&state);
starpu_codelet_pack_arg(&state, &ifactor, sizeof(ifactor));
starpu_codelet_pack_arg(&state, &ffactor, sizeof(ffactor));
starpu_codelet_pack_arg_fini(&state, &task->cl_arg, &task->cl_arg_size);
int ret = starpu_task_submit(task);

A full code example is in file tests/main/pack.c.
Here a similar call using STARPU_DATA_ARRAY.
starpu_task_insert(&mycodelet,

STARPU_DATA_ARRAY, data_handles, 2,
STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),
0);

If some part of the task insertion depends on the value of some computation, the macro STARPU_DATA_ACQUIRE_CB
can be very convenient. For instance, assuming that the index variable i was registered as handle A_←↩

handle[i]:
/* Compute which portion we will work on, e.g. pivot */
starpu_task_insert(&which_index, STARPU_W, i_handle, 0);
/* And submit the corresponding task */
STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R,

starpu_task_insert(&work, STARPU_RW, A_handle[i], 0));

The macro STARPU_DATA_ACQUIRE_CB submits an asynchronous request for acquiring data i for the main
application, and will execute the code given as the third parameter when it is acquired. In other words, as soon
as the value of i computed by the codelet which_index can be read, the portion of code passed as the third
parameter of STARPU_DATA_ACQUIRE_CB will be executed, and is allowed to read from i to use it e.g. as an
index. Note that this macro is only available when compiling StarPU with the compiler gcc. In the example file
tests/datawizard/acquire_cb_insert.c, this macro is used.
StarPU also provides a utility function starpu_codelet_unpack_args() to retrieve the STARPU_VALUE arguments
passed to the task. There is several ways of calling starpu_codelet_unpack_args(). The full code examples are
available in the file tests/main/insert_task_value.c.
void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
starpu_codelet_unpack_args(_args, &ifactor, &ffactor);

}
void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
starpu_codelet_unpack_args(_args, &ifactor, 0);
starpu_codelet_unpack_args(_args, &ifactor, &ffactor);

}
void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
char buffer[100];
starpu_codelet_unpack_args_and_copyleft(_args, buffer, 100, &ifactor, 0);
starpu_codelet_unpack_args(buffer, &ffactor);

}

Instead of calling starpu_codelet_unpack_args(), one can also call starpu_codelet_unpack_arg_init(), then
starpu_codelet_pack_arg() or starpu_codelet_dup_arg() or starpu_codelet_pick_arg() for each data, then

Generated by Doxygen

13.7 Other Task Utility Functions 67

starpu_codelet_unpack_arg_fini() as follow:
void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
size_t size = sizeof(int) + 2*sizeof(size_t) + sizeof(int) + sizeof(float);
struct starpu_codelet_pack_arg_data state;
starpu_codelet_unpack_arg_init(&state, _args, size);
starpu_codelet_unpack_arg(&state, (void**)&ifactor, sizeof(ifactor));
starpu_codelet_unpack_arg(&state, (void**)&ffactor, sizeof(ffactor));
starpu_codelet_unpack_arg_fini(&state);

}
void func_cpu(void *descr[], void *_args)
{

int *ifactor;
float *ffactor;
size_t size;
size_t psize = sizeof(int) + 2*sizeof(size_t) + sizeof(int) + sizeof(float);
struct starpu_codelet_pack_arg_data state;
starpu_codelet_unpack_arg_init(&state, _args, psize);
starpu_codelet_dup_arg(&state, (void**)&ifactor, &size);
assert(size == sizeof(*ifactor));
starpu_codelet_dup_arg(&state, (void**)&ffactor, &size);
assert(size == sizeof(*ffactor));
starpu_codelet_unpack_arg_fini(&state);

}
void func_cpu(void *descr[], void *_args)
{

int *ifactor;
float *ffactor;
size_t size;
size_t psize = sizeof(int) + 2*sizeof(size_t) + sizeof(int) + sizeof(float);
struct starpu_codelet_pack_arg_data state;
starpu_codelet_unpack_arg_init(&state, _args, psize);
starpu_codelet_pick_arg(&state, (void**)&ifactor, &size);
assert(size == sizeof(*ifactor));
starpu_codelet_pick_arg(&state, (void**)&ffactor, &size);
assert(size == sizeof(*ffactor));
starpu_codelet_unpack_arg_fini(&state);

}

During unpacking one can also call starpu_codelet_unpack_discard_arg() to skip saving the argument in pointer.
A full code example is in file tests/main/pack.c.

13.7 Other Task Utility Functions

Here a list of other functions to help with task management.

• The function starpu_task_dup() creates a duplicate of an existing task. The new task is identical to the original
task in terms of its parameters, dependencies, and execution characteristics.

• The function starpu_task_set() is used to set the parameters of a task before it is executed, while
starpu_task_build() is used to create a task with the specified parameters.

StarPU provides several functions to help insert data into a task. The function starpu_task_insert_data_make_room()
is used to allocate memory space for a data structure that is required for inserting data into a task. This function is
called before inserting any data handles into a task, and ensures that enough memory is available for the data to
be stored. Once memory is allocated, the data handle can be inserted into the task using the following functions

• starpu_task_insert_data_process_arg() processes a scalar argument of a task and inserts it into the task's
data structure. This function also performs any necessary data allocation and transfer operations.

• starpu_task_insert_data_process_array_arg() processes an array argument of a task and inserts it into the
task's data structure. This function handles the allocation and transfer of the array data, as well as setting up
the appropriate metadata to describe the array.

• starpu_task_insert_data_process_mode_array_arg() processes a mode array argument of a task and inserts
it into the task's data structure. This function handles the allocation and transfer of the mode array data,
as well as setting up the appropriate metadata to describe the mode array. Additionally, this function also
computes the necessary sizes and strides for the data associated with the mode array argument.

Generated by Doxygen

68 Tasks In StarPU

Generated by Doxygen

Chapter 14

Data Management

TODO: intro which mentions consistency among other things

14.1 Data Interface

StarPU provides several data interfaces for programmers to describe the data layout of their application. There
are predefined interfaces already available in StarPU. Users can define new data interfaces as explained in
Defining A New Data Interface. All functions provided by StarPU are documented in Data Interfaces. You will find a
short list below.

14.1.1 Variable Data Interface

A variable is a given-size byte element, typically a scalar. Here is an example of how to register a variable data to
StarPU by using starpu_variable_data_register(). A full code example for the variable data interface is available in
the file examples/basic_examples/variable.c.
float var = 42.0;
starpu_data_handle_t var_handle;
starpu_variable_data_register(&var_handle, STARPU_MAIN_RAM, (uintptr_t)&var, sizeof(var));

14.1.2 Vector Data Interface

A vector is a fixed number of elements of a given size. Here is an example of how to register a vector data to
StarPU by using starpu_vector_data_register(). A full code example for the vector data interface is available in the
file examples/filters/fvector.c.
float vector[NX];
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));

Vectors can be partitioned into pieces by using starpu_vector_filter_block(). They can also be parti-
tioned with some overlapping by using starpu_vector_filter_block_shadow(). An example is in the file
examples/filters/shadow.c.
By default, StarPU uses the same size for each piece. If different sizes are desired, starpu_vector_filter_list() or
starpu_vector_filter_list_long() can be used instead.
To just divide in two pieces, starpu_vector_filter_divide_in_2() can be used.
In addition, contiguous variables can be picked from a vector by using starpu_vector_filter_pick_variable() with
starpu_data_filter::get_child_ops set to starpu_vector_filter_pick_variable_child_ops(). An example is in the file
examples/filters/fvector_pick_variable.c.

14.1.3 Matrix Data Interface

To register 2-D matrices with a potential padding, one can use the matrix data interface. Here is an example of how
to register a matrix data to StarPU by using starpu_matrix_data_register().
A full code example for the matrix data interface is available in the file examples/filters/fmatrix.c.
float *matrix;
starpu_data_handle_t matrix_handle;
matrix = (float*)malloc(width * height * sizeof(float));
starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (uintptr_t)matrix, width, width, height,

sizeof(float));

Generated by Doxygen

70 Data Management

2D matrices can be partitioned into 2D matrices along the x dimension by using starpu_matrix_filter_block(), and
along the y dimension by using starpu_matrix_filter_vertical_block().
They can also be partitioned with some overlapping by using starpu_matrix_filter_block_shadow() and
starpu_matrix_filter_vertical_block_shadow(). An example is in the file examples/filters/shadow2d.c.
In addition, contiguous vectors can be picked from a matrix along the Y dimension by using starpu_matrix_filter_pick_vector_y()
with starpu_data_filter::get_child_ops set to starpu_matrix_filter_pick_vector_child_ops(). An example is in the file
examples/filters/fmatrix_pick_vector.c.
Variable can be also picked from a matrix by using starpu_matrix_filter_pick_variable() with starpu_data_filter::get_child_ops
needs set to starpu_matrix_filter_pick_variable_child_ops(). An example is in the file examples/filters/fmatrix←↩

_pick_variable.c.

14.1.4 Block Data Interface

To register 3-D matrices with potential paddings on Y and Z dimensions, one can use the block data interface. Here
is an example of how to register a block data to StarPU by using starpu_block_data_register(). A full code example
for the block data interface is available in the file examples/filters/fblock.c.
float *block;
starpu_data_handle_t block_handle;
block = (float*)malloc(nx*ny*nz*sizeof(float));
starpu_block_data_register(&block_handle, STARPU_MAIN_RAM, (uintptr_t)block, nx, nx*ny, nx, ny, nz,

sizeof(float));

3D matrices can be partitioned along the x dimension by using starpu_block_filter_block(), or along the y dimension
by using starpu_block_filter_vertical_block(), or along the z dimension by using starpu_block_filter_depth_block().
They can also be partitioned with some overlapping by using starpu_block_filter_block_shadow(), starpu_block_filter_vertical_block_shadow(),
or starpu_block_filter_depth_block_shadow(). An example is in the file examples/filters/shadow3d.c.
In addition, contiguous matrices can be picked from a block along the Z dimension or the Y dimension by us-
ing starpu_block_filter_pick_matrix_z() or starpu_block_filter_pick_matrix_y() with starpu_data_filter::get_child_ops
set to starpu_block_filter_pick_matrix_child_ops(). An example is in the file examples/filters/fblock_←↩

pick_matrix.c.
Variable can be also picked from a block by using starpu_block_filter_pick_variable() with starpu_data_filter::get_child_ops
set to starpu_block_filter_pick_variable_child_ops(). An example is in the file examples/filters/fblock←↩

_pick_variable.c.

14.1.5 Tensor Data Interface

To register 4-D matrices with potential paddings on Y, Z, and T dimensions, one can use the tensor data interface.
Here is an example of how to register a tensor data to StarPU by using starpu_tensor_data_register(). A full code
example for the tensor data interface is available in the file examples/filters/ftensor.c.
float *block;
starpu_data_handle_t block_handle;
block = (float*)malloc(nx*ny*nz*nt*sizeof(float));
starpu_tensor_data_register(&block_handle, STARPU_MAIN_RAM, (uintptr_t)block, nx, nx*ny, nx*ny*nz, nx, ny,

nz, nt, sizeof(float));

4D matrices can be partitioned along the x dimension by using starpu_tensor_filter_block(), or along the y dimension
by using starpu_tensor_filter_vertical_block(), or along the z dimension by using starpu_tensor_filter_depth_block(),
or along the t dimension by using starpu_tensor_filter_time_block().
They can also be partitioned with some overlapping by using starpu_tensor_filter_block_shadow(), starpu_tensor_filter_vertical_block_shadow(),
starpu_tensor_filter_depth_block_shadow(), or starpu_tensor_filter_time_block_shadow(). An example is in the file
examples/filters/shadow4d.c.
In addition, contiguous blocks can be picked from a block along the T dimension, Z dimension or the Y dimension by
using starpu_tensor_filter_pick_block_t(), starpu_tensor_filter_pick_block_z(), or starpu_tensor_filter_pick_block_y(),
and starpu_data_filter::get_child_ops set to starpu_tensor_filter_pick_block_child_ops(). An example is in the file
examples/filters/ftensor_pick_block.c.
Variable can be also picked from a tensor by using starpu_tensor_filter_pick_variable() with starpu_data_filter::get_child_ops
set to starpu_tensor_filter_pick_variable_child_ops(). An example is in the file examples/filters/ftensor←↩

_pick_variable.c.

14.1.6 Ndim Data Interface

To register N-dim matrices, one can use the Ndim data interface. Here is an example of how to register a 5-dim
data to StarPU by using starpu_ndim_data_register(). A full code example for the ndim data interface is available in
the file examples/filters/fndim.c.

Generated by Doxygen

14.1 Data Interface 71

float *arr5d;
starpu_data_handle_t arr5d_handle;
starpu_malloc((void **)&arr5d, NX*NY*NZ*NT*NG*sizeof(float));
unsigned nn[5] = {NX, NY, NZ, NT, NG};
unsigned ldn[5] = {1, NX, NX*NY, NX*NY*NZ, NX*NY*NZ*NT};
starpu_ndim_data_register(&arr5d_handle, STARPU_MAIN_RAM, (uintptr_t)arr5d, ldn, nn, 5, sizeof(float));

N-dim matrices can be partitioned along the given dimension by using starpu_ndim_filter_block(). They can
also be partitioned with some overlapping by using starpu_ndim_filter_block_shadow(). An example is in the file
examples/filters/shadownd.c.
Taking into account existing data interfaces, there are several specialized functions which can partition a 0-dim array,
1-dim array, 2-dim array, 3-dim array or 4-dim array into

• variables by using starpu_ndim_filter_to_variable() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_variable_child_ops()
(see file examples/filters/fndim_to_variable.c),

• vectors by using starpu_ndim_filter_to_vector() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_vector_child_ops()
(see file examples/filters/fndim_to_vector.c),

• matrices by using starpu_ndim_filter_to_matrix() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_matrix_child_ops()
(see file examples/filters/fndim_to_matrix.c),

• blocks by using starpu_ndim_filter_to_block() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_block_child_ops()
(see file examples/filters/fndim_to_block.c),

• or tensors by using starpu_ndim_filter_to_tensor() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_tensor_child_ops()
(see file examples/filters/fndim_to_tensor.c).

In addition, contiguous (n-1)dim arrays can be picked from a ndim array along the given dimension by using
starpu_ndim_filter_pick_ndim(). An example is in the file examples/filters/fndim_pick_ndim.c.
In specific cases which consider existing data interfaces, contiguous variables, vectors, matrices, blocks, or tensors
can be along the given dimension picked from a

• 1-dim array by using starpu_ndim_filter_1d_pick_variable() and starpu_data_filter::get_child_ops set to
starpu_ndim_filter_pick_variable_child_ops() (see file examples/filters/fndim_1d_pick_←↩

variable.c),

• 2-dim array by using starpu_ndim_filter_2d_pick_vector() and starpu_data_filter::get_child_ops set to
starpu_ndim_filter_pick_vector_child_ops() (see file examples/filters/fndim_2d_pick_←↩

vector.c),

• 3-dim array by using starpu_ndim_filter_3d_pick_matrix() and starpu_data_filter::get_child_ops set to
starpu_ndim_filter_pick_matrix_child_ops() (see file examples/filters/fndim_3d_pick_←↩

matrix.c),

• 4-dim array by using starpu_ndim_filter_4d_pick_block() and starpu_data_filter::get_child_ops set to
starpu_ndim_filter_pick_block_child_ops() (see file examples/filters/fndim_4d_pick_←↩

block.c),

• or 5-dim array by using starpu_ndim_filter_5d_pick_tensor() and starpu_data_filter::get_child_ops set
to starpu_ndim_filter_pick_tensor_child_ops() (see file examples/filters/fndim_5d_pick_←↩

tensor.c).

Variable can be also picked from a ndim array by using starpu_ndim_filter_pick_variable() with starpu_data_filter::get_child_ops
set to starpu_ndim_filter_pick_variable_child_ops(). An example is in the file examples/filters/fndim_←↩

pick_variable.c.

14.1.7 BCSR Data Interface

BCSR (Blocked Compressed Sparse Row Representation) sparse matrix data can be registered to StarPU using
the bcsr data interface. Here is an example on how to do so by using starpu_bcsr_data_register().
/*
* We use the following matrix:

*
* +----------------+

* | 0 1 0 0 |

* | 2 3 0 0 |

* | 4 5 8 9 |

Generated by Doxygen

72 Data Management

* | 6 7 10 11 |

* +----------------+

*
* nzval = [0, 1, 2, 3] ++ [4, 5, 6, 7] ++ [8, 9, 10, 11]

* colind = [0, 0, 1]

* rowptr = [0, 1, 3]

* r = c = 2

*/
/* Size of the blocks */
int R = 2;
int C = 2;
int NROWS = 2;
int NNZ_BLOCKS = 3; /* out of 4 */
int NZVAL_SIZE = (R*C*NNZ_BLOCKS);
int nzval[NZVAL_SIZE] =
{

0, 1, 2, 3, /* First block */
4, 5, 6, 7, /* Second block */
8, 9, 10, 11 /* Third block */

};
uint32_t colind[NNZ_BLOCKS] =
{

0, /* block-column index for first block in nzval */
0, /* block-column index for second block in nzval */
1 /* block-column index for third block in nzval */

};
uint32_t rowptr[NROWS+1] =
{

0, / * block-index in nzval of the first block of the first row. */
1, / * block-index in nzval of the first block of the second row. */
NNZ_BLOCKS /* number of blocks, to allow an easier element’s access for the kernels */

};
starpu_data_handle_t bcsr_handle;
starpu_bcsr_data_register(&bcsr_handle,

STARPU_MAIN_RAM,
NNZ_BLOCKS,
NROWS,
(uintptr_t) nzval,
colind,
rowptr,
0, /* firstentry */
R,
C,
sizeof(nzval[0]));

An example on how to deal with such matrices is in the file examples/spmv/dw_block_spmv.c.
BCSR data handles can be partitioned into its dense matrix blocks by using starpu_bcsr_filter_canonical_block(),
or split into other BCSR data handles by using starpu_bcsr_filter_vertical_block() (but only split along
the leading dimension is supported, i.e. along adjacent nnz blocks). starpu_data_filter::get_child_ops
needs to be set to starpu_bcsr_filter_canonical_block_child_ops() and starpu_data_filter::get_nchildren set to
starpu_bcsr_filter_canonical_block_get_nchildren(). An example is available in tests/datawizard/bcsr.c.

14.1.8 CSR Data Interface

TODO
To register a Compressed Sparse Row Representation (CSR) sparse matrix, one can use the CSR data interface.
A full code example for the CSR data interface is available in the file mpi/tests/datatypes.c to show how
to register a COO matrix data to StarPU by using starpu_csr_data_register().
CSR data handles can be partitioned into vertical CSR matrices by using starpu_csr_filter_vertical_block(). An
example is available in the file examples/spmv/spmv.c.

14.1.9 COO Data Interface

To register 2-D matrices given in the coordinate format (COO), one can use the COO data interface. A full code
example for the COO data interface is available in the file tests/datawizard/interfaces/coo/coo_←↩

interface.c to show how to register a COO matrix data to StarPU by using starpu_coo_data_register().

14.2 Partitioning Data

An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
#define NX 1048576
#define PARTS 16
int vector[NX];
starpu_data_handle_t handle;

Generated by Doxygen

14.3 Asynchronous Partitioning 73

/* Declare data to StarPU */
starpu_vector_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
/* Partition the vector in PARTS sub-vectors */
struct starpu_data_filter f =
{

.filter_func = starpu_vector_filter_block,

.nchildren = PARTS
};
starpu_data_partition(handle, &f);

The handle of a sub-data block of a composite data block can be retrieved by calling starpu_data_get_child().
Or the task submission first retrieves the number of sub-data blocks in a composite data block by calling
starpu_data_get_nb_children() and then uses the function starpu_data_get_sub_data() or starpu_data_vget_sub_data()
to retrieve the sub-handles to be passed as tasks parameters.
/* Submit a task on each sub-vector */
for (i=0; i<starpu_data_get_nb_children(handle); i++)
{

/* Get subdata number i (there is only 1 dimension) */
starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 1, i);
struct starpu_task *task = starpu_task_create();
task->handles[0] = sub_handle;
task->cl = &cl;
task->synchronous = 1;
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
starpu_task_submit(task);

}

Partitioning can be applied several times by using starpu_data_map_filters() or starpu_data_vmap_filters() or
starpu_data_map_filters_parray() or starpu_data_map_filters_array(), see examples/basic_examples/mult.←↩

c and examples/filters/.
Wherever the whole piece of data is already available, the partitioning will be done in-place, i.e. without allocating
new buffers but just using pointers inside the existing copy. This is particularly important to be aware of when using
OpenCL, where the kernel parameters are not pointers, but cl_mem handles. The kernel thus needs to be also
passed the offset within the OpenCL buffer:
void opencl_func(void *buffers[], void *cl_arg)
{

cl_mem vector = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
unsigned offset = STARPU_BLOCK_GET_OFFSET(buffers[0]);
...
clSetKernelArg(kernel, 0, sizeof(vector), &vector);
clSetKernelArg(kernel, 1, sizeof(offset), &offset);
...

}

And the kernel has to shift from the pointer passed by the OpenCL driver:
__kernel void opencl_kernel(__global int *vector, unsigned offset)
{

block = (__global void *)block + offset;
...

}

When the sub-data is not of the same type as the original data, the field starpu_data_filter::get_child_ops needs to
be set appropriately for StarPU to know which type should be used.
starpu_data_unpartition() should be called in the end to collect back the sub-pieces of data into the original piece
of data.
StarPU provides various interfaces and filters for matrices, vectors, etc., but applications can also write their own
data interfaces and filters, see examples/interface and examples/filters/custom_mf for an exam-
ple, and see Defining A New Data Interface and Defining A New Data Filter for documentation.

14.3 Asynchronous Partitioning

The partitioning functions described in the previous section are synchronous: starpu_data_partition() and
starpu_data_unpartition() both wait for all the tasks currently working on the data. This can be a bottleneck
for the application.
An asynchronous API also exists, it works only on handles with sequential consistency. The principle is to first plan
the partitioning, which returns data handles of the partition, which are not functional yet. When submitting tasks,
one can mix using the handles of the partition or the whole data. One can even partition recursively and mix using
handles at different levels of the recursion. Of course, StarPU will have to introduce coherency synchronization.
examples/filters/fmultiple_submit_implicit.c is a complete example using this technique.
One can also look at examples/filters/fmultiple_submit_readonly.c which contains the explicit
coherency synchronization which are automatically introduced by StarPU for examples/filters/fmultiple←↩

_submit_implicit.c.

Generated by Doxygen

74 Data Management

In short, we first register a matrix and plan the partitioning:
starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
struct starpu_data_filter f_vert =
{

.filter_func = starpu_matrix_filter_block,

.nchildren = PARTS
};
starpu_data_partition_plan(handle, &f_vert, vert_handle);

starpu_data_partition_plan() returns the handles for the partition in vert_handle.
One can then submit tasks working on the main handle, and tasks working on the sub handles vert_←↩

handle. Between using the main handle and the handles vert_handle, StarPU will automatically call
starpu_data_partition_submit() and starpu_data_unpartition_submit(). Or call starpu_data_partition_submit_sequential_consistency()
and starpu_data_unpartition_submit_sequential_consistency() to specify the coherency to be used for
the main handle, or call starpu_data_unpartition_submit_sequential_consistency_cb() to specify a call-
back function for the unpartitiong task. One can also call starpu_data_partition_readonly_submit() and
starpu_data_unpartition_readonly_submit() which do not guarantee coherency if the application attempts to
write to the main handle or any of its sub-handles while a task is still running. However, in read-only case we
can also call starpu_data_partition_readonly_submit_sequential_consistency() to specify the coherency to be used
for the main handle, or call starpu_data_partition_readwrite_upgrade_submit() to upgrade the partitioning of a
data handle from read-only to read-write mode for a specific sub-handle. If users want to specify that the data
won't be touched in write mode anymore and use multiple partition of the data at the same time, they can call
starpu_data_partition_readonly_downgrade_submit().
After the task has completed using the data partition, starpu_data_partition_clean() or starpu_data_partition_clean_node()
is used to clean up a data partition on the local node or on a specific node.
All this code is asynchronous, just submitting which tasks, partitioning and unpartitioning will be done at runtime.
Planning several partitioning of the same data is also possible, StarPU will unpartition and repartition as needed
when mixing accesses of different partitions. If data access is done in read-only mode, StarPU will allow the different
partitioning to coexist. As soon as a data is accessed in read-write mode, StarPU will automatically unpartition
everything and activate only the partitioning leading to the data being written to.
For instance, for a stencil application, one can split a subdomain into its interior and halos, and then just submit a
task updating the whole subdomain, then submit MPI sends/receives to update the halos, then submit again a task
updating the whole subdomain, etc. and StarPU will automatically partition/unpartition each time.

14.4 Commute Data Access

By default, the implicit dependencies computed from data access use the sequential semantic. Notably, write
accesses are always serialized in the order of submission. In some applicative cases, the write contributions can
actually be performed in any order without affecting the eventual result. In this case, it is useful to drop the strictly
sequential semantic, to improve parallelism by allowing StarPU to reorder the write accesses. This can be done
by using the data access flag STARPU_COMMUTE. Accesses without this flag will however properly be serialized
against accesses with this flag. For instance:
starpu_task_insert(&cl1, STARPU_R, h, STARPU_RW, handle, 0);
starpu_task_insert(&cl2, STARPU_R, handle1, STARPU_RW|STARPU_COMMUTE, handle, 0);
starpu_task_insert(&cl2, STARPU_R, handle2, STARPU_RW|STARPU_COMMUTE, handle, 0);
starpu_task_insert(&cl3, STARPU_R, g, STARPU_RW, handle, 0);

The two tasks running cl2 will be able to commute: depending on whether the value of handle1 or handle2
becomes available first, the corresponding task running cl2 will start first. The task running cl1 will however
always be run before them, and the task running cl3 will always be run after them.
tests/datawizard/commute2.c is a complete example using the data access flag.
If a lot of tasks use the commute access on the same set of data and a lot of them are ready at the same time, it
may become interesting to use an arbiter, see Concurrent Data Accesses.

14.5 Data Reduction

In various cases, some piece of data is used to accumulate intermediate results. For instances, the dot product of
a vector, maximum/minimum finding, the histogram of a picture, etc. When these results are produced along the
whole machine, it would not be efficient to accumulate them in only one place, incurring data transmission each and
access concurrency.
StarPU provides a mode STARPU_REDUX, which permits to optimize this case: it will allocate a buffer on each
worker (lazily), and accumulate intermediate results there. When the data is eventually accessed in the normal
mode STARPU_R, StarPU will collect the intermediate results in just one buffer.

Generated by Doxygen

14.5 Data Reduction 75

The function starpu_data_set_reduction_methods() must be called to specify how to initialize these buffers, and
how to assemble partial results. The function starpu_data_set_reduction_methods_with_args() can also be used to
pass arguments to the reduction and init tasks.
For instance, examples/cg/cg.c uses that to optimize its dot product: it first defines the codelets for initializa-
tion and reduction:
struct starpu_codelet bzero_variable_cl =
{

.cpu_funcs = { bzero_variable_cpu },

.cpu_funcs_name = { "bzero_variable_cpu" },

.cuda_funcs = { bzero_variable_cuda },

.nbuffers = 1,
}
static void accumulate_variable_cpu(void *descr[], void *cl_arg)
{

double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);

*v_dst = *v_dst + *v_src;
}
static void accumulate_variable_cuda(void *descr[], void *cl_arg)
{

double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
cublasaxpy(1, (double)1.0, v_src, 1, v_dst, 1);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

}
struct starpu_codelet accumulate_variable_cl =
{

.cpu_funcs = { accumulate_variable_cpu },

.cpu_funcs_name = { "accumulate_variable_cpu" },

.cuda_funcs = { accumulate_variable_cuda },

.nbuffers = 2,

.modes = {STARPU_RW|STARPU_COMMUTE, STARPU_R},
}

and attaches them as reduction methods for its handle dtq:
starpu_variable_data_register(&dtq_handle, -1, NULL, sizeof(type));
starpu_data_set_reduction_methods(dtq_handle, &accumulate_variable_cl, &bzero_variable_cl);

and dtq_handle can now be used with the mode STARPU_REDUX for the dot products with partitioned vectors:
for (b = 0; b < nblocks; b++)

starpu_task_insert(&dot_kernel_cl,
STARPU_REDUX, dtq_handle,
STARPU_R, starpu_data_get_sub_data(v1, 1, b),
STARPU_R, starpu_data_get_sub_data(v2, 1, b),
0);

During registration, we have here provided NULL, i.e. there is no initial value to be taken into account during
reduction. StarPU will thus only take into account the contributions from the tasks dot_kernel_cl. Also, it will
not allocate any memory for dtq_handle before the tasks dot_kernel_cl are ready to run.
If another dot product has to be performed, one could unregister dtq_handle, and re-register it. But one can also
call starpu_data_deinitialize_submit() or even starpu_data_invalidate_submit() with the parameter dtq_handle,
which will clear all data from the handle, thus resetting it back to the initial status register(NULL).
The example examples/cg/cg.c also uses reduction for the blocked gemv kernel, leading to yet more relaxed
dependencies and more parallelism.
STARPU_REDUX can also be passed to starpu_mpi_task_insert() in the MPI case. This will however not
produce any MPI communication, but just pass STARPU_REDUX to the underlying starpu_task_insert().
starpu_mpi_redux_data() posts tasks which will reduce the partial results among MPI nodes into the MPI node
which owns the data. The function can be called by users to benefit from fine-tuning such as priority setting. If
users do not call this function, StarPU wraps up reduction patterns automatically. The following example shows
a hypothetical application which collects partial results into data res, then uses it for other computation, before
looping again with a new reduction where the wrap-up of the reduction pattern is explicit:
for (i = 0; i < 100; i++)
{

starpu_mpi_task_insert(MPI_COMM_WORLD, &init_res, STARPU_W, res, 0);
starpu_mpi_task_insert(MPI_COMM_WORLD, &work, STARPU_RW, A, STARPU_R, B, STARPU_REDUX, res, 0);
starpu_mpi_redux_data(MPI_COMM_WORLD, res);
starpu_mpi_task_insert(MPI_COMM_WORLD, &work2, STARPU_RW, B, STARPU_R, res, 0);

}

starpu_mpi_redux_data() is called automatically in various cases, including when a task reading the reduced handle
is inserted through starpu_mpi_task_insert(). The previous example could avoid calling starpu_mpi_redux_data().
Default priority (0) is used. The reduction tree arity is decided based on the size of the data to reduce: a flat tree
is used with a small data (default to less than 1024 bytes), a binary tree otherwise. If the environment variable
STARPU_MPI_REDUX_ARITY_THRESHOLD is set, the threshold between the size of a small data and a bigger
data is modified. If the value is set to be negative, flat trees will always be used. If the value is set to 0, binary trees
are used. Otherwise, the size of the data is compared to the size in the environment variable. Remaining distributed-
memory reduction patterns are wrapped-up at the end of an application when calling starpu_mpi_wait_for_all().

Generated by Doxygen

76 Data Management

More details about MPI reduction are show in Section Inter-node reduction, and some examples for MPI data
reduction are available in mpi/examples/mpi_redux/.

14.6 Concurrent Data Accesses

When several tasks are ready and will work on several data, StarPU is faced with the classical Dining Philosopher's
problem, and has to determine the order in which it will run the tasks.
Data accesses usually use sequential ordering, so data accesses are usually already serialized, and thus by default,
StarPU uses the Dijkstra solution which scales very well in terms of overhead: tasks will just acquire data one by
one by data handle pointer value order.
When sequential ordering is disabled or the flag STARPU_COMMUTE is used, there may be a lot of concurrent
accesses to the same data, and the Dijkstra solution gets only poor parallelism, typically in some pathological cases
which do happen in various applications, for instance
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
task[i][j] = starpu_task_build(&cl, STARPU_RW|STARPU_COMMUTE, A[i], STARPU_RW|STARPU_COMMUTE, B[j],

0);

It creates a series of tasks that are completely parallel in terms of tasks dependencies thanks to commutation,
but StarPU still has to prevent two tasks from operating on the same data. The Dijkstra solution here leads to a
worst-case: the task[0][j] tasks will wait for each other since they all access the same A[0]. And task[1][0] will
wait for task[0][0] because they both access the same B[0], task[1][1] will wait for task[0][1] because of B[1],
etc. In the end, no parallism is achieved:

In this case, one can use a data access arbiter starpu_arbiter_t, which implements the classical centralized solution
for the Dining Philosophers problem. One can call starpu_arbiter_create() to create a data access arbiter, and
starpu_data_assign_arbiter() to make access to handle managed by arbiter. Once the application no longer needs
the arbiter, one can call starpu_arbiter_destroy() to destroy the arbiter after all data assigned to the arbiter have
been unregistered. This is more expensive in terms of overhead since it is centralized, but it opportunistically gets a
lot of parallelism. The centralization can also be avoided by using several arbiters, thus separating sets of data for
which arbitration will be done. If a task accesses data from different arbiters, it will acquire them arbiter by arbiter,
in arbiter pointer value order.
See the tests/datawizard/test_arbiter.cpp example.
Arbiters however do not support the flag STARPU_REDUX yet.

14.7 Temporary Buffers

There are two kinds of temporary buffers: temporary data which just pass results from a task to another, and scratch
data which are needed only internally by tasks.

Generated by Doxygen

14.7 Temporary Buffers 77

14.7.1 Temporary Data

Data can be produced by a task, and consumed by another task, without being used by other parts of the application.
In such case, registration can be done without prior allocation, by using the special memory node number -1,
and passing a NULL pointer. StarPU will actually allocate memory only when the task creating the content gets
scheduled, and destroy it on unregistration.
As the application will not use the data, it can be tedious for the application to have to unregister it. The unregistration
can be done lazily by using the function starpu_data_unregister_submit(), which will record that no other tasks
accessing the handle will be submitted, so that it can be freed as soon as the last task accessing it is completed.
The following code examplifies both points: it registers the temporary data, submits three tasks accessing it, and
records the data for automatic unregistration.
starpu_vector_data_register(&handle, -1, NULL, n, sizeof(float));
starpu_task_insert(&produce_data, STARPU_W, handle, 0);
starpu_task_insert(&compute_data, STARPU_RW, handle, 0);
starpu_task_insert(&summarize_data, STARPU_R, handle, STARPU_W, result_handle, 0);
starpu_data_unregister_submit(handle);

The application may also want for the temporary data to be initialized on the fly before being used by the task.
This can be done by using starpu_data_set_reduction_methods() to set an initialization codelet (no redux codelet
is needed).

14.7.2 Scratch Data

Some kernels sometimes need temporary data to complete the computations, like a workspace. The applica-
tion could allocate it at the start of the codelet function, and free it at the end, but this would be costly. It could
also allocate one buffer per worker (similarly to How To Initialize A Computation Library Once For Each Worker?),
but this would make them systematic and permanent. A more optimized way is to use the data access mode
STARPU_SCRATCH, as examplified below, which provides per-worker buffers without content consistency. The
buffer is registered only once, using memory node -1, i.e. the application didn't allocate memory for it, and StarPU
will allocate it on demand at task execution.
starpu_variable_data_register(&workspace, -1, NULL, sizeof(float));
for (i = 0; i < N; i++)

starpu_task_insert(&compute, STARPU_R, input[i], STARPU_SCRATCH, workspace, STARPU_W, output[i], 0);

StarPU will make sure that the buffer is allocated before executing the task, and make this allocation per-worker: for
CPU workers, notably, each worker has its own buffer. This means that each task submitted above will actually have
its own workspace, which will actually be the same for all tasks running one after the other on the same worker.
Also, if for instance memory becomes scarce, StarPU will notice that it can free such buffers easily, since the content
does not matter.
The example examples/pi uses scratches for some temporary buffer.
It may be useful to additionally use the STARPU_NOFOOTPRINT flag, when this buffer may have various size
depending e.g. on specific CUDA versions or devices, to make it simpler to use performance models for simulated
execution. See for instance examples/cholesky/cholesky_kernels.c

Generated by Doxygen

78 Data Management

Generated by Doxygen

Chapter 15

Scheduling

15.1 Task Scheduling Policies

The basics of the scheduling policy are the following:

• The scheduler gets to schedule tasks (push operation) when they become ready to be executed, i.e. they
are not waiting for some tags, data dependencies or task dependencies.

• Workers pull tasks (pop operation) one by one from the scheduler.

This means scheduling policies usually contain at least one queue of tasks to store them between the time when
they become available, and the time when a worker gets to grab them.
By default, StarPU uses the work-stealing scheduler lws. This is because it provides correct load balance and
locality even if the application codelets do not have performance models. Other non-modelling scheduling policies
can be selected among the list below, thanks to the environment variable STARPU_SCHED. For instance, export
STARPU_SCHED=dmda . Use help to get the list of available schedulers.
The function starpu_sched_get_predefined_policies() returns a NULL-terminated array of all predefined
scheduling policies that are available in StarPU. Functions starpu_sched_get_sched_policy_in_ctx() and
starpu_sched_get_sched_policy() return the scheduling policy of a task within a specific context or a default
context, respectively.

15.1.1 Non Performance Modelling Policies

• The eager scheduler uses a central task queue, from which all workers draw tasks to work on concurrently.
This however does not permit to prefetch data since the scheduling decision is taken late. If a task has a
non-0 priority, it is put at the front of the queue.

• The random scheduler uses a queue per worker, and distributes tasks randomly according to assumed
worker overall performance.

• The ws (work stealing) scheduler uses a queue per worker, and schedules a task on the worker which
released it by default. When a worker becomes idle, it steals a task from the most loaded worker.

• The lws (locality work stealing) scheduler uses a queue per worker, and schedules a task on the worker
which released it by default. When a worker becomes idle, it steals a task from neighbor workers. It also
takes priorities into account.

• The prio scheduler also uses a central task queue, but sorts tasks by priority specified by the application.

• The heteroprio scheduler uses different priorities for the different processing units. This scheduler must be
configured to work correctly and to expect high-performance as described in the corresponding section.

15.1.2 Performance Model-Based Task Scheduling Policies

If (and only if) your codelets have performance models (Performance Model Example), you should change the
scheduler thanks to the environment variable STARPU_SCHED, to select one of the policies below, in order to take

Generated by Doxygen

80 Scheduling

advantage of StarPU's performance modelling. For instance, export STARPU_SCHED=dmda . Use help to
get the list of available schedulers.
Note: Depending on the performance model type chosen, some preliminary calibration runs may be needed for the
model to converge. If the calibration has not been done, or is insufficient yet, or if no performance model is specified
for a codelet, every task built from this codelet will be scheduled using an eager fallback policy.
Troubleshooting: Configuring and recompiling StarPU using the configure option --enable-verbose displays
some statistics at the end of execution about the percentage of tasks which have been scheduled by a DM∗ family
policy using performance model hints. A low or zero percentage may be the sign that performance models are not
converging or that codelets do not have performance models enabled.

• The dm (deque model) scheduler takes task execution performance models into account to perform a HEFT-
similar scheduling strategy: it schedules tasks where their termination time will be minimal. The difference
with HEFT is that dm schedules tasks as soon as they become available, and thus in the order they become
available, without taking priorities into account.

• The dmda (deque model data aware) scheduler is similar to dm, but it also takes data transfer time into
account.

• The dmdap (deque model data aware prio) scheduler is similar to dmda, except that it sorts tasks by priority
order, which allows becoming even closer to HEFT by respecting priorities after having made the scheduling
decision (but it still schedules tasks in the order they become available).

• The dmdar (deque model data aware ready) scheduler is similar to dmda, but it also privileges tasks whose
data buffers are already available on the target device.

• The dmdas combines dmdap and dmdar: it sorts tasks by priority order, but for a given priority it will privilege
tasks whose data buffers are already available on the target device.

• The dmdasd (deque model data aware sorted decision) scheduler is similar to dmdas, except that when
scheduling a task, it takes into account its priority when computing the minimum completion time, since this
task may get executed before others, and thus the latter should be ignored.

• The heft (heterogeneous earliest finish time) scheduler is a deprecated alias for dmda.

• The pheft (parallel HEFT) scheduler is similar to dmda, it also supports parallel tasks (still experimental). It
should not be used when several contexts using it are being executed simultaneously.

• The peager (parallel eager) scheduler is similar to eager, it also supports parallel tasks (still experimental). It
should not be used when several contexts using it are being executed simultaneously.

15.1.3 Modularized Schedulers

StarPU provides a powerful way to implement schedulers, as documented in Defining A New Modular Scheduling Policy.
It is currently shipped with the following pre-defined Modularized Schedulers :

• modular-eager , modular-eager-prefetching are eager-based Schedulers (without and with prefetching),
they are naive schedulers, which try to map a task on the first available resource they find. The prefetching
variant queues several tasks in advance to be able to do data prefetching. This may however degrade load
balancing a bit.

• modular-prio, modular-prio-prefetching, modular-eager-prio are prio-based Schedulers (without / with
prefetching):, similar to Eager-Based Schedulers. They can handle tasks which have a defined priority and
schedule them accordingly. The modular-eager-prio variant integrates the eager and priority queue in a
single component. This allows it to do a better job at pushing tasks.

• modular-random, modular-random-prio, modular-random-prefetching, modular-random-prio-
prefetching are random-based Schedulers (without/with prefetching) : Select randomly a resource to
be mapped on for each task.

• modular-ws) implements Work Stealing: Maps tasks to workers in round-robin, but allows workers to steal
work from other workers.

Generated by Doxygen

15.2 Task Distribution Vs Data Transfer 81

• modular-heft, modular-heft2, and modular-heft-prio are HEFT Schedulers :
Maps tasks to workers using a heuristic very close to Heterogeneous Earliest Finish Time. It needs
that every task submitted to StarPU have a defined performance model (Performance Model Calibration)
to work efficiently, but can handle tasks without a performance model. modular-heft just takes tasks
by order. modular-heft2 takes at most 5 tasks of the same priority and checks which one fits best.
modular-heft-prio is similar to modular-heft, but only decides the memory node, not the exact worker,
just pushing tasks to one central queue per memory node. By default, they sort tasks by priorities and
privilege, running first a task which has most of its data already available on the target. These can
however be changed with STARPU_SCHED_SORTED_ABOVE, STARPU_SCHED_SORTED_BELOW, and
STARPU_SCHED_READY .

• modular-heteroprio is a Heteroprio Scheduler:
Maps tasks to worker similarly to HEFT, but first attribute accelerated tasks to GPUs, then not-so-accelerated
tasks to CPUs.

15.2 Task Distribution Vs Data Transfer

Distributing tasks to balance the load induces data transfer penalty. StarPU thus needs to find a balance between
both. The target function that the scheduler dmda of StarPU tries to minimize is alpha ∗ T_execution +
beta ∗ T_data_transfer, where T_execution is the estimated execution time of the codelet (usually
accurate), and T_data_transfer is the estimated data transfer time. The latter is estimated based on bus
calibration before execution start, i.e. with an idle machine, thus without contention. You can force bus re-calibration
by running the tool starpu_calibrate_bus. The beta parameter defaults to 1, but it can be worth trying to
tweak it by using export STARPU_SCHED_BETA=2 (STARPU_SCHED_BETA) for instance, since during real
application execution, contention makes transfer times bigger. This is of course imprecise, but in practice, a rough
estimation already gives the good results that a precise estimation would give.

Generated by Doxygen

82 Scheduling

Generated by Doxygen

Chapter 16

Examples in StarPU Sources

We have already seen some examples in Chapter Basic Examples. A tutorial is also installed in the directory
share/doc/starpu/tutorial/.
Many examples are also available in the StarPU sources in the directory examples/. Simple examples include:

incrementer/ Trivial incrementation test.

basic_examples/ Simple documented Hello world and vector/scalar product (as shown in Basic Examples),
matrix product examples (as shown in Performance Model Example), an example using the blocked matrix
data interface, an example using the variable data interface, and an example using different formats on CPUs
and GPUs.

matvecmult/ OpenCL example from NVidia, adapted to StarPU.

axpy/ AXPY CUBLAS operation adapted to StarPU.

native_fortran/ Example of using StarPU's native Fortran support.

fortran90/ Example of Fortran 90 bindings, using C marshalling wrappers.

fortran/ Example of Fortran 77 bindings, using C marshalling wrappers.

More advanced examples include:

filters/ Examples using filters, as shown in Partitioning Data.

lu/ LU matrix factorization, see for instance xlu_implicit.c

cholesky/ Cholesky matrix factorization, see for instance cholesky_implicit.c.

Generated by Doxygen

84 Examples in StarPU Sources

Generated by Doxygen

Part III

StarPU Applications

Generated by Doxygen

Chapter 17

Organization

This part presents how to write a StarPU application from an existing application.
Some of the applications presented in the following chapters and some others are available in the git repository
https://gitlab.inria.fr/starpu/starpu-applications

Generated by Doxygen

https://gitlab.inria.fr/starpu/starpu-applications
https://gitlab.inria.fr/starpu/starpu-applications

88 Organization

Generated by Doxygen

Chapter 18

A Vector Scaling Application

18.1 Base version

The non-StarPU version shows a basic example that we will be using to illustrate how to use StarPU. It simply
allocates a vector, and calls a scaling function over it.
void vector_scal_cpu(float *val, unsigned n, float factor)
{

unsigned i;
for (i = 0; i < n; i++)

val[i] *= factor;
}
#define NX 2048
int main(void)
{

float *vector;
unsigned i;
vector = malloc(sizeof(vector[0]) * NX);
for (i = 0; i < NX; i++)

vector[i] = 1.0f;
fprintf(stderr, "BEFORE : First element was %f\n", vector[0]);
float factor = 3.14;
vector_scal_cpu(vector, NX, factor);
fprintf(stderr, "AFTER First element is %f\n", vector[0]);
free(vector);
return 0;

}

18.2 StarPU C version

18.2.1 Computation Kernels

We are going to transform here the computation function vector_scal_cpu.
void vector_scal_cpu(float *val, unsigned n, float factor)
{

unsigned i;
for (i = 0; i < n; i++)

val[i] *= factor;
}

The StarPU corresponding function takes as parameters a list of DSM interfaces and a non-DSM parameter.
void vector_scal_cpu(void *buffers[], void *cl_arg)
{

The first DSM parameter is the vector and is available through buffer[0]. StarPU provides functions to get the
vector data, and extract the pointer and size of the vector.

struct starpu_vector_interface *vector = buffers[0];
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);
unsigned n = STARPU_VECTOR_GET_NX(vector);

The non-DSM parameters are stored in the second argument of the function, and need to be unpacked.
float factor;
starpu_codelet_unpack_args(cl_arg, &factor);

It is then possible to perform the vector scaling as in the original function.
unsigned i;
for (i = 0; i < n; i++)

val[i] *= factor;

Generated by Doxygen

90 A Vector Scaling Application

Original code StarPU code
void vector_scal_cpu(float *val, unsigned n, float

factor)
{
unsigned i;
for (i = 0; i < n; i++)
val[i] *= factor;
}

void vector_scal_cpu(void *buffers[], void *cl_arg)
{
struct starpu_vector_interface *vector =

buffers[0];
float *val = (float

*)STARPU_VECTOR_GET_PTR(vector);
unsigned n = STARPU_VECTOR_GET_NX(vector);
float factor;
starpu_codelet_unpack_args(cl_arg, &factor);
unsigned i;
for (i = 0; i < n; i++)
val[i] *= factor;
}

The GPU and OpenCL implementations can be seen in Full source code for the ’Scaling a Vector’ example.

18.2.2 Main Code

Let's look now at the main code.

• The cl codelet structure simply gathers pointers on the functions mentioned above, and notes that the
functions takes only one DSM parameter.
static struct starpu_codelet cl =
{

.cpu_funcs = {vector_scal_cpu},

.cuda_funcs = {vector_scal_cuda},

.opencl_funcs = {vector_scal_opencl},

.nbuffers = 1,

.modes = {STARPU_RW}
};

• The main function starts with initializing StarPU with the default parameters.
int ret = starpu_init(NULL);
STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");

• It then allocates the vector and fills it like the original code.
vector = malloc(sizeof(vector[0]) * NX);
for (i = 0; i < NX; i++)

vector[i] = 1.0f;
fprintf(stderr, "BEFORE : First element was %f\n", vector[0]);

• It then registers the data to StarPU, and gets back a DSM handle. From now on, the application is not
supposed to access vector directly, since its content may be copied and modified by a task on a GPU, the
main-memory copy then being outdated.

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX,

sizeof(vector[0]));

• It then submits a (asynchronous) task to StarPU.
float factor = 3.14;
ret = starpu_task_insert(&cl,

STARPU_RW, vector_handle,
STARPU_VALUE, &factor, sizeof(factor),
0);

STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");

• It waits for task completion, and unregisters the vector from StarPU, which brings back the modified version
to main memory, so the result can be read.

starpu_task_wait_for_all();
starpu_data_unregister(vector_handle);

• Eventually, it shuts down StarPU:
starpu_shutdown();

Generated by Doxygen

18.3 Building and Running 91

Original code StarPU code
#define NX 2048
int main(void)
{
float *vector;
unsigned i;
vector = malloc(sizeof(vector[0]) * NX);
for (i = 0; i < NX; i++)
vector[i] = 1.0f;
fprintf(stderr, "BEFORE : First element was %f\n",

vector[0]);
float factor = 3.14;
vector_scal_cpu(vector, NX, factor);
fprintf(stderr, "AFTER First element is %f\n",

vector[0]);
free(vector);
return 0;

}

#include <starpu.h>
extern void vector_scal_cpu(void *buffers[], void

*_args);
extern void vector_scal_cuda(void *buffers[], void

*_args);
extern void vector_scal_opencl(void *buffers[],

void *_args);
static struct starpu_codelet cl =
{
.cpu_funcs = {vector_scal_cpu},
.cuda_funcs = {vector_scal_cuda},
.opencl_funcs = {vector_scal_opencl},
.nbuffers = 1,
.modes = {STARPU_RW}
};
#ifdef STARPU_USE_OPENCL
struct starpu_opencl_program programs;
#endif
#define NX 2048
int main(void)
{
float *vector;
unsigned i;
int ret = starpu_init(NULL);
STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
#ifdef STARPU_USE_OPENCL
starpu_opencl_load_opencl_from_file("vector_scal_opencl_kernel.cl",

&programs, NULL);
#endif
vector = malloc(sizeof(vector[0]) * NX);
for (i = 0; i < NX; i++)
vector[i] = 1.0f;
fprintf(stderr, "BEFORE : First element was %f\n",

vector[0]);
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle,

STARPU_MAIN_RAM, (uintptr_t)vector, NX,
sizeof(vector[0]));

float factor = 3.14;
ret = starpu_task_insert(&cl,
STARPU_RW, vector_handle,
STARPU_VALUE, &factor, sizeof(factor),
0);
STARPU_CHECK_RETURN_VALUE(ret,

"starpu_task_insert");
starpu_task_wait_for_all();
starpu_data_unregister(vector_handle);
fprintf(stderr, "AFTER First element is %f\n",

vector[0]);
free(vector);
#ifdef STARPU_USE_OPENCL
starpu_opencl_unload_opencl(&programs);
#endif
starpu_shutdown();
return 0;
}

18.3 Building and Running

We will use the StarPU docker image.

$ docker run -it registry.gitlab.inria.fr/starpu/starpu-docker/starpu:latest

If your machine has GPU devices, you can use the following command to enable the GPU devices within the docker
image.

$ docker run -it --gpus all registry.gitlab.inria.fr/starpu/starpu-docker/starpu:latest

From your docker image, you can then call the following commands.

$ cd src/starpu/doc/tutorial
$ make vector_scal
$./vector_scal

You can set the environment variable STARPU_WORKER_STATS to 1 when running your application to see the
number of tasks executed by each device.

Generated by Doxygen

92 A Vector Scaling Application

$ STARPU_WORKER_STATS=1 ./vector_scal

If your machine has GPU devices, you can force the execution on the GPU devices by setting the number of CPU
workers to 0.

to force the implementation on a GPU device, by default, it will enable CUDA
$ STARPU_WORKER_STATS=1 STARPU_NCPU=0 ./vector_scal

to force the implementation on a OpenCL device
$ STARPU_WORKER_STATS=1 STARPU_NCPU=0 STARPU_NCUDA=0 ./vector_scal

Generated by Doxygen

Chapter 19

A Stencil Application

19.1 The Original Application
#define _(row,col,ld) ((row)+(col)*(ld))
void stencil5_cpu(double *xy, double *xm1y, double *xp1y, double *xym1, double *xyp1)
{

*xy = (*xy + *xm1y + *xp1y + *xym1 + *xyp1) / 5;
}
int main(int argc, char **argv)
{

int niter, n;
int x, y, loop;
read_params(argc, argv, &n, &niter);
double *A = calloc(n*n, sizeof(*A));
fill(A, n, n);
for(loop=0 ; loop<niter; loop++)
{
for (x = 0; x < n; x++)
{

for (y = 0; y < n; y++)
{

int xm1 = (x==0) ? n-1 : x-1;
int xp1 = (x==n-1) ? 0 : x+1;
int ym1 = (y==0) ? n-1 : y-1;
int yp1 = (y==n-1) ? 0 : y+1;
stencil5_cpu(&A[_(x,y,n)],

&A[_(xm1,y,n)], &A[_(xp1,y,n)],
&A[_(x,ym1,n)], &A[_(x,yp1,n)]);

}
}

}
return 0;

}

19.2 The StarPU Application

The computation function must be defined through a codelet.
#define _(row,col,ld) ((row)+(col)*(ld))
void stencil5_cpu(void *descr[], void *_args)
{

(void)_args;
double *xy = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
double *xm1y = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
double *xp1y = (double *)STARPU_VARIABLE_GET_PTR(descr[2]);
double *xym1 = (double *)STARPU_VARIABLE_GET_PTR(descr[3]);
double *xyp1 = (double *)STARPU_VARIABLE_GET_PTR(descr[4]);

*xy = (*xy + *xm1y + *xp1y + *xym1 + *xyp1) / 5;
}
struct starpu_codelet stencil5_cl =
{

.cpu_funcs = {stencil5_cpu},

.nbuffers = 5,

.modes = {STARPU_RW, STARPU_R, STARPU_R, STARPU_R, STARPU_R},

.model = &starpu_perfmodel_nop,
};

Data must be registered to StarPU.
data_handles = malloc(n*n*sizeof(*data_handles));
for(x = 0; x < n; x++)
{

for (y = 0; y < n; y++)
{

Generated by Doxygen

94 A Stencil Application

starpu_variable_data_register(&data_handles[_(x,y,n)],
STARPU_MAIN_RAM,
(uintptr_t)&(A[_(x,y,n)]), sizeof(double));

}
}

Instead of directly calling the function, a StarPU task must be created.
int xm1 = (x==0) ? n-1 : x-1;
int xp1 = (x==n-1) ? 0 : x+1;
int ym1 = (y==0) ? n-1 : y-1;
int yp1 = (y==n-1) ? 0 : y+1;
starpu_task_insert(&stencil5_cl,

STARPU_RW, data_handles[_(x,y,n)],
STARPU_R, data_handles[_(xm1,y,n)],
STARPU_R, data_handles[_(xp1,y,n)],
STARPU_R, data_handles[_(x,ym1,n)],
STARPU_R, data_handles[_(x,yp1,n)],
0);

And finally data must be released from StarPU.
for(x = 0; x < n; x++)
{
for (y = 0; y < n; y++)
{

starpu_data_unregister(data_handles[_(x,y,n)]);
}

}

The whole StarPU application looks as follows.
#define _(row,col,ld) ((row)+(col)*(ld))
void stencil5_cpu(void *descr[], void *_args)
{

(void)_args;
double *xy = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
double *xm1y = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
double *xp1y = (double *)STARPU_VARIABLE_GET_PTR(descr[2]);
double *xym1 = (double *)STARPU_VARIABLE_GET_PTR(descr[3]);
double *xyp1 = (double *)STARPU_VARIABLE_GET_PTR(descr[4]);

*xy = (*xy + *xm1y + *xp1y + *xym1 + *xyp1) / 5;
}
struct starpu_codelet stencil5_cl =
{

.cpu_funcs = {stencil5_cpu},

.nbuffers = 5,

.modes = {STARPU_RW, STARPU_R, STARPU_R, STARPU_R, STARPU_R},

.model = &starpu_perfmodel_nop,
};
int main(int argc, char **argv)
{

starpu_data_handle_t *data_handles;
int ret;
int niter, n;
int x, y, loop;
ret = starpu_init(NULL);
STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
read_params(argc, argv, &verbose, &n, &niter);
double *A = calloc(n*n, sizeof(*A));
fill(A, n, n);
data_handles = malloc(n*n*sizeof(*data_handles));
for(x = 0; x < n; x++)
{

for (y = 0; y < n; y++)
{
starpu_variable_data_register(&data_handles[_(x,y,n)],

STARPU_MAIN_RAM,
(uintptr_t)&(A[_(x,y,n)]), sizeof(double));

}
}
for(loop=0 ; loop<niter; loop++)
{

for (x = 0; x < n; x++)
{
for (y = 0; y < n; y++)
{

int xm1 = (x==0) ? n-1 : x-1;
int xp1 = (x==n-1) ? 0 : x+1;
int ym1 = (y==0) ? n-1 : y-1;
int yp1 = (y==n-1) ? 0 : y+1;
starpu_task_insert(&stencil5_cl,

STARPU_RW, data_handles[_(x,y,n)],
STARPU_R, data_handles[_(xm1,y,n)],
STARPU_R, data_handles[_(xp1,y,n)],
STARPU_R, data_handles[_(x,ym1,n)],
STARPU_R, data_handles[_(x,yp1,n)],
0);

}
}

}
starpu_task_wait_for_all();

Generated by Doxygen

19.3 The StarPU MPI Application 95

for(x = 0; x < n; x++)
{
for (y = 0; y < n; y++)
{

starpu_data_unregister(data_handles[_(x,y,n)]);
}

}
starpu_shutdown();
return 0;

}

19.3 The StarPU MPI Application

The initialisation for StarPU-MPI is as follows.
int ret = starpu_mpi_init_conf(&argc, &argv, 1, MPI_COMM_WORLD, NULL);
STARPU_CHECK_RETURN_VALUE(ret, "starpu_mpi_init_conf");
starpu_mpi_comm_rank(MPI_COMM_WORLD, &my_rank);
starpu_mpi_comm_size(MPI_COMM_WORLD, &size);

An additional call to starpu_mpi_data_register() is necessary.
starpu_variable_data_register(&data_handles[_(x,y,n)],

STARPU_MAIN_RAM,
(uintptr_t)&(A[_(x,y,n)]), sizeof(double));

int mpi_rank = my_distrib(x, y, size);
starpu_mpi_data_register(data_handles[_(x,y,n)], (y*n)+x, mpi_rank);

And to insert a task, the function starpu_mpi_task_insert() must be used.
starpu_mpi_task_insert(MPI_COMM_WORLD, &stencil5_cl,

STARPU_RW, data_handles[_(x,y,n)],
STARPU_R, data_handles[_(xm1,y,n)],
STARPU_R, data_handles[_(xp1,y,n)],
STARPU_R, data_handles[_(x,ym1,n)],
STARPU_R, data_handles[_(x,yp1,n)],
0);

The whole StarPU-MPI application looks as follows.
#define _(row,col,ld) ((row)+(col)*(ld))
void stencil5_cpu(void *descr[], void *_args); // Same as in sequential StarPU
struct starpu_codelet stencil5_cl; // Same as in sequential StarPU
/* Returns the MPI node number where data indexes index is */
int my_distrib(int x, int y, int nb_nodes)
{

return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
}
int main(int argc, char **argv)
{

starpu_data_handle_t *data_handles;
int niter, n;
int my_rank, size, x, y, loop;
int ret = starpu_mpi_init_conf(&argc, &argv, 1, MPI_COMM_WORLD, NULL);
STARPU_CHECK_RETURN_VALUE(ret, "starpu_mpi_init_conf");
starpu_mpi_comm_rank(MPI_COMM_WORLD, &my_rank);
starpu_mpi_comm_size(MPI_COMM_WORLD, &size);
read_params(argc, argv, &n, &niter);
double *A = calloc(n*n, sizeof(*A));
fill(A, n, n);
data_handles = malloc(n*n*sizeof(*data_handles));
for(x = 0; x < n; x++)
{

for (y = 0; y < n; y++)
{
starpu_variable_data_register(&data_handles[_(x,y,n)],

STARPU_MAIN_RAM,
(uintptr_t)&(A[_(x,y,n)]), sizeof(double));

int mpi_rank = my_distrib(x, y, size);
starpu_mpi_data_register(data_handles[_(x,y,n)], (y*n)+x, mpi_rank);

}
}
for(loop=0 ; loop<niter; loop++)
{

for (x = 0; x < n; x++)
{
for (y = 0; y < n; y++)
{

int xm1 = (x==0) ? n-1 : x-1;
int xp1 = (x==n-1) ? 0 : x+1;
int ym1 = (y==0) ? n-1 : y-1;
int yp1 = (y==n-1) ? 0 : y+1;
starpu_mpi_task_insert(MPI_COMM_WORLD, &stencil5_cl,

STARPU_RW, data_handles[_(x,y,n)],
STARPU_R, data_handles[_(xm1,y,n)],
STARPU_R, data_handles[_(xp1,y,n)],
STARPU_R, data_handles[_(x,ym1,n)],
STARPU_R, data_handles[_(x,yp1,n)],
0);

}

Generated by Doxygen

96 A Stencil Application

}
}
starpu_task_wait_for_all();
/* bring data back to node 0 and unregister it */
for(x = 0; x < n; x++)
{
for (y = 0; y < n; y++)
{

starpu_mpi_data_migrate(MPI_COMM_WORLD, data_handles[_(x,y,n)], 0);
starpu_data_unregister(data_handles[_(x,y,n)]);

}
}
starpu_mpi_shutdown();
return 0;

}

19.4 Running the application
$ docker run -it registry.gitlab.inria.fr/starpu/starpu-docker/starpu:latest

If your machine has GPU devices, you can use the following command to enable the GPU devices within the docker
image.

$ docker run -it --gpus all registry.gitlab.inria.fr/starpu/starpu-docker/starpu:latest

From your docker image, you can then call the following commands.

$ git clone https://gitlab.inria.fr/starpu/starpu-applications.git
$ cd starpu-applications/stencil5
$ make

To run the non-StarPU application

$./stencil5 -v

To run the sequential StarPU application

$./stencil5_starpu -v

To run the StarPU MPI application. Setting the variable STARPU_COMM_STATS to 1 will display the amount of
communication between the different MPI processes.

$ STARPU_COMM_STATS=1 mpirun -np 4 ./stencil5_starpu_mpi -v 4 3

Generated by Doxygen

Part IV

StarPU Performances

Generated by Doxygen

Chapter 20

Organization

This part shows how to measure application performances.

• Chapter Benchmarking StarPU introduces some interesting benchmarks which can be found in StarPU
sources.

• Chapter Online Performance Tools gives information on online performance monitoring tools to help you an-
alyze your program

• Chapter Offline Performance Tools gives information on offline performance tools such as a FxT library to
trace execution data and tasks and a StarPU Eclipse Plugin to visualize data traces directly from the Eclipse
IDE.

Generated by Doxygen

100 Organization

Generated by Doxygen

Chapter 21

Benchmarking StarPU

Some interesting benchmarks are installed among examples in $STARPU_PATH/lib/starpu/examples/.
Make sure to try various schedulers, for instance STARPU_SCHED=dmda.

21.1 Task Size Overhead

This benchmark gives a glimpse into how long a task should be (in µs) for StarPU overhead to be low enough
to keep efficiency. Running tasks_size_overhead.sh generates a plot of the speedup of tasks of various
sizes, depending on the number of CPUs being used.

21.2 Data Transfer Latency

local_pingpong performs a ping-pong between the first two CUDA nodes, and prints the measured latency.

Generated by Doxygen

102 Benchmarking StarPU

21.3 Matrix-Matrix Multiplication

sgemm and dgemm perform a blocked matrix-matrix multiplication using BLAS and cuBLAS. They output the ob-
tained GFlops.

21.4 Cholesky Factorization

cholesky_∗ perform a Cholesky factorization (single precision). They use different dependency primitives.

21.5 LU Factorization

lu_∗ perform an LU factorization. They use different dependency primitives.

21.6 Simulated Benchmarks

It can also be convenient to try simulated benchmarks, if you want to give a try at CPU-GPU scheduling without
actually having a GPU at hand. This can be done by using the SimGrid version of StarPU: first install the SimGrid
simulator from https://simgrid.org/ (we tested with SimGrid from 3.11 to 3.16, and 3.18 to 3.30. SimGrid
versions 3.25 and above need to be configured with -Denable_msg=ON. Other versions may have compatibility
issues, 3.17 notably does not build at all. MPI simulation does not work with version 3.22). Then configure StarPU
with --enable-simgrid and rebuild and install it, and then you can simulate the performance for a few virtualized
systems shipped along StarPU: attila, mirage, idgraf, and sirocco.
For instance:

$ export STARPU_PERF_MODEL_DIR=$STARPU_PATH/share/starpu/perfmodels/sampling
$ export STARPU_HOSTNAME=attila
$ $STARPU_PATH/lib/starpu/examples/cholesky_implicit -size $((960*20)) -nblocks 20

Will show the performance of the cholesky factorization with the attila system. It will be interesting to try with different
matrix sizes and schedulers.
Performance models are available for cholesky_∗, lu_∗, ∗gemm, with block sizes 320, 640, or 960 (plus 1440
for sirocco), and for stencil with block size 128x128x128, 192x192x192, and 256x256x256.
Read Chapter SimGrid Support for more information on the SimGrid support.

Generated by Doxygen

https://simgrid.org/

Chapter 22

Online Performance Tools

22.1 On-line Performance Feedback

Some examples which apply online performance monitoring are in the directory tests/perfmodels/

22.1.1 Enabling On-line Performance Monitoring

In order to enable online performance monitoring, the application can call starpu_profiling_status_set() with the pa-
rameter STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring is already enabled or not
by calling starpu_profiling_status_get(). Enabling monitoring also reinitialize all previously collected feedback.
The environment variable STARPU_PROFILING can also be set to 1 to achieve the same effect. The function
starpu_profiling_init() can also be called during the execution to reinitialize performance counters and to start the
profiling if the environment variable STARPU_PROFILING is set to 1.
Likewise, performance monitoring is stopped by calling starpu_profiling_status_set() with the parameter
STARPU_PROFILING_DISABLE. Note that this does not reset the performance counters so that the applica-
tion may consult them later on.
More details about the performance monitoring API are available in Profiling.

22.1.2 Per-task Feedback

If profiling is enabled, a pointer to a structure starpu_profiling_task_info is put in the field starpu_task::profiling_info
when a task terminates. This structure is automatically destroyed when the task structure is destroyed, either
automatically or by calling starpu_task_destroy().
The structure starpu_profiling_task_info indicates the date when the task was submitted (starpu_profiling_task_info::submit_time),
started (starpu_profiling_task_info::start_time), and terminated (starpu_profiling_task_info::end_time), relative to
the initialization of StarPU with starpu_init(). User can call starpu_timing_timespec_delay_us() to calculate the time
elapsed between start time and end time in microseconds. It also specifies the identifier of the worker that has
executed the task (starpu_profiling_task_info::workerid). These dates are stored as timespec structures which
users may convert into micro-seconds using the helper function starpu_timing_timespec_to_us(). User can call
starpu_worker_get_current_task_exp_end() to get the date when the current task is expected to be finished.
When ::STARPU_ENERGY_PROFILING is enabled, starpu_profiling_task_info::energy_consumed, provides the
amount of Joules used by the task.
It is worth noting that the application may directly access this structure from the callback executed at the end of the
task. The structure starpu_task associated to the callback currently being executed is indeed accessible with the
function starpu_task_get_current().

22.1.3 Per-codelet Feedback

The field starpu_codelet::per_worker_stats is an array of counters. Unless the STARPU_CODELET_PROFILING
environment variable was set to 0, the i-th entry of the array is incremented every time a task implementing the
codelet is executed on the i-th worker. This array is not reinitialized when profiling is enabled or disabled. The
function starpu_codelet_display_stats() can be used to display the execution statistics of a specific codelet.

Generated by Doxygen

104 Online Performance Tools

22.1.4 Per-worker Feedback

The second argument returned by the function starpu_profiling_worker_get_info() is a structure starpu_profiling_worker_info
that gives statistics about the specified worker. This structure specifies:

• In starpu_profiling_worker_info::start_time, when StarPU started collecting profiling information for that
worker.

• In starpu_profiling_worker_info::total_time, the duration of the profiling measurement interval.

• In starpu_profiling_worker_info::executed_tasks, the number of tasks that were executed while profiling was
enabled.

It also specifies how much time was spent in various states (executing a task, executing a callback, waiting for a data
transfer to complete, etc.). Since these can happen at the same time (waiting for a data transfer while executing the
previous tasks, and scheduling the next task), we provide two views. Firstly, the "all" view:

• In starpu_profiling_worker_info::all_executing_time, the time spent executing kernels, thus real useful work.

• In starpu_profiling_worker_info::all_callback_time, the time spent executing application callbacks.

• In starpu_profiling_worker_info::all_waiting_time, the time spent waiting for data transfers.

• In starpu_profiling_worker_info::all_sleeping_time, the time spent during which there was no task to be exe-
cuted, i.e. lack of parallelism.

• In starpu_profiling_worker_info::all_scheduling_time, the time spent scheduling tasks.

But these times overlap, notably with GPUs the schedulers runs while tasks are getting executed. Another view is the
"split" view, which eliminates the overlapping, by considering for instance that it does not matter what is happening
while tasks are getting executed, that should be accounted for "executing" time, and e.g. only the scheduling periods
that happen while no task is getting executed should be accounted in "scheduling" time. More precisely:

• In starpu_profiling_worker_info::executing_time, the time spent executing kernels, normally equal to
starpu_profiling_worker_info::all_executing_time.

• In starpu_profiling_worker_info::callback_time, the time spent executing application callbacks while not exe-
cuting a task.

• In starpu_profiling_worker_info::waiting_time, the time spent waiting for data transfers while not executing a
task or a callback.

• In starpu_profiling_worker_info::sleeping_time, the time spent during which there was no task to be executed
and not executing a task or a callback or waiting for a data transfer, i.e. real lack of parallelism.

• In starpu_profiling_worker_info::scheduling_time, the time spent scheduling tasks while not executing a task
or a callback or waiting for a data transfer to finish, and there are tasks to be scheduled.

This thus provides a split of the starpu_profiling_worker_info::total_time into various states. The difference between
starpu_profiling_worker_info::total_time and the sum of this split is the remaining uncategorized overhead of the
runtime.
Calling starpu_profiling_worker_get_info() resets the profiling information associated to a worker.
To easily display all this information, the environment variable STARPU_WORKER_STATS can be set to 1
(in addition to setting STARPU_PROFILING to 1). A summary will then be displayed at program termina-
tion. To display the summary in a file instead of the standard error stream, use the environment variable
STARPU_WORKER_STATS_FILE.

Worker stats:
CUDA 0.0 (Tesla M2075 4.7 GiB 03:00.0)

133 task(s)
time split: total 3212.86 ms = executing: 1588.56 ms + callback: 2.95 ms + waiting: 5.34 ms + sleeping: 1613.67 ms + scheduling: 0.01 ms + overhead 2.33 ms
all time: executing: 1588.56 ms callback: 2.95 ms waiting: 22.83 ms sleeping: 1725.93 ms scheduling: 1726.88 ms
286.388333 GFlop/s

CPU 0
10 task(s)

Generated by Doxygen

22.1 On-line Performance Feedback 105

time split: total 3212.89 ms = executing: 2117.19 ms + callback: 0.23 ms + waiting: 0.01 ms + sleeping: 1095.06 ms + scheduling: 0.02 ms + overhead 0.37 ms
all time: executing: 2117.19 ms callback: 0.23 ms waiting: 0.01 ms sleeping: 1095.06 ms scheduling: 283.86 ms
22.029695 GFlop/s

CPU 1
10 task(s)
time split: total 3212.92 ms = executing: 2116.18 ms + callback: 0.17 ms + waiting: 0.01 ms + sleeping: 1096.10 ms + scheduling: 0.02 ms + overhead 0.44 ms
all time: executing: 2116.18 ms callback: 0.17 ms waiting: 0.01 ms sleeping: 1096.10 ms scheduling: 284.40 ms
22.029487 GFlop/s

CPU 2
10 task(s)
time split: total 3212.94 ms = executing: 2116.08 ms + callback: 0.18 ms + waiting: 0.01 ms + sleeping: 1096.21 ms + scheduling: 0.02 ms + overhead 0.44 ms
all time: executing: 2116.08 ms callback: 0.18 ms waiting: 0.01 ms sleeping: 1096.21 ms scheduling: 283.75 ms
22.029343 GFlop/s

Global time split: total 12851.60 ms = executing: 7938.01 ms (61.77%) + callback: 3.53 ms (0.03%) + waiting: 5.36 ms (0.04%) + sleeping: 4901.05 ms (38.14%) + scheduling: 0.06 ms (0.00%) + overhead 3.59 ms (0.03%)

The number of GFlops/s is available because the starpu_task::flops field of the tasks were filled (or STARPU_FLOPS
used in starpu_task_insert()).
When an FxT trace is generated (see Generating Traces With FxT), it is also possible to use the tool starpu_←↩

workers_activity (see Monitoring Activity) to generate a graphic showing the evolution of these values during
the time, for the different workers.

22.1.5 Bus-related Feedback

The bus speed measured by StarPU can be displayed by using the tool starpu_machine_display, for
instance:

StarPU has found:
3 CUDA devices

CUDA 0 (Tesla C2050 02:00.0)
CUDA 1 (Tesla C2050 03:00.0)
CUDA 2 (Tesla C2050 84:00.0)

from to RAM to CUDA 0 to CUDA 1 to CUDA 2
RAM 0.000000 5176.530428 5176.492994 5191.710722
CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
CUDA 2 4534.229519 2417.069025 2417.060863 0.000000

Statistics about the data transfers which were performed and temporal average of bandwidth usage can be obtained
by setting the environment variable STARPU_BUS_STATS to 1; a summary will then be displayed at program
termination. To display the summary in a file instead of the standard error stream, use the environment variable
STARPU_BUS_STATS_FILE.

Data transfer stats:
RAM 0 -> CUDA 0 319.92 MB 213.10 MB/s (transfers : 91 - avg 3.52 MB)
CUDA 0 -> RAM 0 214.45 MB 142.85 MB/s (transfers : 61 - avg 3.52 MB)
RAM 0 -> CUDA 1 302.34 MB 201.39 MB/s (transfers : 86 - avg 3.52 MB)
CUDA 1 -> RAM 0 133.59 MB 88.99 MB/s (transfers : 38 - avg 3.52 MB)
CUDA 0 -> CUDA 1 144.14 MB 96.01 MB/s (transfers : 41 - avg 3.52 MB)
CUDA 1 -> CUDA 0 130.08 MB 86.64 MB/s (transfers : 37 - avg 3.52 MB)
RAM 0 -> CUDA 2 312.89 MB 208.42 MB/s (transfers : 89 - avg 3.52 MB)
CUDA 2 -> RAM 0 133.59 MB 88.99 MB/s (transfers : 38 - avg 3.52 MB)
CUDA 0 -> CUDA 2 151.17 MB 100.69 MB/s (transfers : 43 - avg 3.52 MB)
CUDA 2 -> CUDA 0 105.47 MB 70.25 MB/s (transfers : 30 - avg 3.52 MB)
CUDA 1 -> CUDA 2 175.78 MB 117.09 MB/s (transfers : 50 - avg 3.52 MB)
CUDA 2 -> CUDA 1 203.91 MB 135.82 MB/s (transfers : 58 - avg 3.52 MB)

Total transfers: 2.27 GB

22.1.6 MPI-related Feedback

Statistics about the data transfers which were performed over MPI can be obtained by setting the environment
variable STARPU_MPI_STATS to 1; a summary will then be displayed at program termination:

[starpu_comm_stats][1] TOTAL: 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s
[starpu_comm_stats][1:0] 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s

Generated by Doxygen

106 Online Performance Tools

[starpu_comm_stats][0] TOTAL: 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s
[starpu_comm_stats][0:1] 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s

These statistics can be plotted as heatmaps using StarPU tool starpu_mpi_comm_matrix.py (see
Debugging MPI).

22.2 Task And Worker Profiling

A full example showing how to use the profiling API is available in the StarPU sources in the directory
examples/profiling/.
struct starpu_task *task = starpu_task_create();
task->cl = &cl;
task->synchronous = 1;
/* We will destroy the task structure by hand so that we can

* query the profiling info before the task is destroyed. */
task->destroy = 0;
/* Submit and wait for completion (since synchronous was set to 1) */
starpu_task_submit(task);
/* The task is finished, get profiling information */
struct starpu_profiling_task_info *info = task->profiling_info;
/* How much time did it take before the task started ? */
double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
/* How long was the task execution ? */
double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
/* We no longer need the task structure */
starpu_task_destroy(task);
/* Display the occupancy of all workers during the test */
int worker;
for (worker = 0; worker < starpu_worker_get_count(); worker++)
{

struct starpu_profiling_worker_info worker_info;
int ret = starpu_profiling_worker_get_info(worker, &worker_info);
STARPU_ASSERT(!ret);
double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
double overhead_time = total_time - executing_time - sleeping_time;
float executing_ratio = 100.0*executing_time/total_time;
float sleeping_ratio = 100.0*sleeping_time/total_time;
float overhead_ratio = 100.0 - executing_ratio - sleeping_ratio;
char workername[128];
starpu_worker_get_name(worker, workername, 128);
fprintf(stderr, "Worker %s:\n", workername);
fprintf(stderr, "\ttotal time: %.2lf ms\n", total_time*1e-3);
fprintf(stderr, "\texec time: %.2lf ms (%.2f %%)\n", executing_time*1e-3, executing_ratio);
fprintf(stderr, "\tblocked time: %.2lf ms (%.2f %%)\n", sleeping_time*1e-3, sleeping_ratio);
fprintf(stderr, "\toverhead time: %.2lf ms (%.2f %%)\n", overhead_time*1e-3, overhead_ratio);

}

22.3 Performance Model Example

To achieve good scheduling, StarPU scheduling policies need to be able to estimate in advance the duration of a
task. This is done by giving to codelets a performance model, by defining a structure starpu_perfmodel and provid-
ing its address in the field starpu_codelet::model. The fields starpu_perfmodel::symbol and starpu_perfmodel::type
are mandatory, to give a name to the model, and the type of the model, since there are several kinds of perfor-
mance models. Then starpu_task_get_model_name() can be called to retrieve the name of the performance model
associated with a task. For compatibility, make sure to initialize the whole structure to zero, either by using explicit
memset(), or by letting the compiler implicitly do it as examplified below.

• Measured at runtime (model type STARPU_HISTORY_BASED). This assumes that for a given set of
data input/output sizes, the performance will always be about the same. This is very true for regular ker-
nels on GPUs for instance (<0.1% error), and just a bit less true on CPUs (∼=1% error). This also as-
sumes that there are few different sets of data input/output sizes. StarPU will then keep record of the
average time of previous executions on the various processing units, and use it as an estimation. His-
tory is done per task size, by using a hash of the input and output sizes as an index. It will also save it
in $STARPU_HOME/.starpu/sampling/codelets for further executions, and can be observed by
using the tool starpu_perfmodel_display, or drawn by using the tool starpu_perfmodel_←↩

plot (Performance Model Calibration). The models are indexed by machine name. To share the mod-
els between machines (e.g. for a homogeneous cluster), use export STARPU_HOSTNAME=some←↩

_global_name. Measurements are only done when using a task scheduler which makes use of it,

Generated by Doxygen

22.3 Performance Model Example 107

such as dmda. Measurements can also be provided explicitly by the application, by using the function
starpu_perfmodel_update_history(). An example is in the file tests/perfmodels/feed.c.

The following is a small code example.

If e.g. the code is recompiled with other compilation options, or several variants of the code are used, the
symbol string should be changed to reflect that, in order to recalibrate a new model from zero. The symbol
string can even be constructed dynamically at execution time, as long as this is done before submitting any
task using it.
static struct starpu_perfmodel mult_perf_model =
{

.type = STARPU_HISTORY_BASED,

.symbol = "mult_perf_model"
};
struct starpu_codelet cl =
{

.cpu_funcs = { cpu_mult },

.cpu_funcs_name = { "cpu_mult" },

.nbuffers = 3,

.modes = { STARPU_R, STARPU_R, STARPU_W },
/* for the scheduling policy to be able to use performance models */
.model = &mult_perf_model

};

• Measured at runtime and refined by regression (model types STARPU_REGRESSION_BASED and
STARPU_NL_REGRESSION_BASED). This still assumes performance regularity, but works with various
data input sizes, by applying regression over observed execution times. STARPU_REGRESSION_BASED
uses an a∗n∧b regression form, STARPU_NL_REGRESSION_BASED uses an a∗n∧b+c (more precise
than STARPU_REGRESSION_BASED, but costs a lot more to compute).

For instance, tests/perfmodels/regression_based.c uses a regression-based performance
model for the function memset().

Of course, the application has to issue tasks with varying size so that the regression can be computed.
StarPU will not trust the regression unless there is at least 10% difference between the minimum and max-
imum observed input size. It can be useful to set the environment variable STARPU_CALIBRATE to 1 and
run the application on varying input sizes with STARPU_SCHED set to dmda scheduler, to feed the per-
formance model for a variety of inputs. The application can also provide the measurements explicitly by
using the function starpu_perfmodel_update_history(). The tools starpu_perfmodel_display and
starpu_perfmodel_plot can be used to observe how much the performance model is calibrated
(Performance Model Calibration); when their output looks good, STARPU_CALIBRATE can be reset to 0
to let StarPU use the resulting performance model without recording new measures, and STARPU_SCHED
can be set to dmda to benefit from the performance models. If the data input sizes vary a lot, it is really
important to set STARPU_CALIBRATE to 0, otherwise StarPU will continue adding the measures, and result
with a very big performance model, which will take time a lot of time to load and save.

For non-linear regression, since computing it is quite expensive, it is only done at termination of the applica-
tion. This means that the first execution of the application will use only history-based performance model to
perform scheduling, without using regression.

• Another type of model is STARPU_MULTIPLE_REGRESSION_BASED, which is based on multiple linear
regression. In this model, users define both the relevant parameters and the equation for computing the task
duration.

Tkernel = a+ b(Mα1 ∗Nβ1 ∗Kγ1) + c(Mα2 ∗Nβ2 ∗Kγ2) + ...

M,N,K are the parameters of the task, added at the task creation. These need to be extracted by the
cl_perf_func function, which should be defined by users. α, β, γ are the exponents defined by users in
model->combinations table. Finally, coefficients a, b, c are computed automatically by the StarPU at
the end of the execution, using least squares method of the dgels_ LAPACK function.

examples/mlr/mlr.c example provides more details on the usage of STARPU_MULTIPLE_REGRESSION_BASED
models. The --enable-mlr configure option needs to be set to calibrate the model.

Coefficients computation is done at the end of the execution, and the results are stored in standard codelet
perfmodel files. Additional files containing the duration of tasks together with the value of each param-
eter are stored in .starpu/sampling/codelets/tmp/ directory. These files are reused when
STARPU_CALIBRATE environment variable is set to 1, to recompute coefficients based on the current,

Generated by Doxygen

108 Online Performance Tools

but also on the previous executions. By default, StarPU uses a lightweight dgels implementation, but the
--enable-mlr-system-blas configure option can be used to make StarPU use a system-provided dgels BLAS.

Additionally, when multiple linear regression models are not enabled through --enable-mlr or when the
model->combinations are not defined, StarPU will still write output files into .starpu/sampling/codelets/tmp/
to allow performing an analysis. This analysis typically aims at finding the most appropriate equation for the
codelet and tools/starpu_mlr_analysis script provides an example of how to perform such study.

• Provided as an estimation from the application itself (model type STARPU_COMMON and field
starpu_perfmodel::cost_function), see for instance examples/common/blas_model.h and
examples/common/blas_model.c.

• Provided explicitly by the application (model type STARPU_PER_ARCH): either field starpu_perfmodel::arch_cost_function,
or the fields .per_arch[arch][nimpl].cost_function have to be filled with pointers to functions
which return the expected duration of the task in micro-seconds, one per architecture, see for instance
tests/datawizard/locality.c

• Provided explicitly by the application (model type STARPU_PER_WORKER) similarly with the
starpu_perfmodel::worker_cost_function field.

For STARPU_HISTORY_BASED, STARPU_REGRESSION_BASED, and STARPU_NL_REGRESSION_BASED,
the dimensions of task data (both input and output) are used as an index by default. STARPU_HISTORY_BASED
uses a CRC hash of the dimensions as an index to distinguish histories, and STARPU_REGRESSION_BASED
and STARPU_NL_REGRESSION_BASED use the total size as an index for the regression. (Data marked with
STARPU_NOFOOTPRINT are not taken into account).
The starpu_perfmodel::size_base and starpu_perfmodel::footprint fields however permit the application to override
that, when for instance some of the data do not matter for task cost (e.g. mere reference table), or when using sparse
structures (in which case it is the number of non-zeros which matter), or when there is some hidden parameter
such as the number of iterations, or when the application actually has a very good idea of the complexity of the
algorithm, and just not the speed of the processor, etc. The example in the directory examples/pi uses this to
include the number of iterations in the base size. starpu_perfmodel::size_base should be used when the variance
of the actual performance is known (i.e. bigger return value is longer execution time), and thus particularly useful
for STARPU_REGRESSION_BASED or STARPU_NL_REGRESSION_BASED. starpu_perfmodel::footprint can be
used when the variance of the actual performance is unknown (irregular performance behavior, etc.), and thus only
useful for STARPU_HISTORY_BASED. starpu_task_data_footprint() can be used as a base and combined with
other parameters through starpu_hash_crc32c_be() for instance.
StarPU will automatically determine when the performance model is calibrated, or rather, it will assume the perfor-
mance model is calibrated until the application submits a task for which the performance can not be predicted. For
STARPU_HISTORY_BASED, StarPU will require 10 (STARPU_CALIBRATE_MINIMUM) measurements for a given
size before estimating that an average can be taken as estimation for further executions with the same size. For
STARPU_REGRESSION_BASED and STARPU_NL_REGRESSION_BASED, StarPU will require 10 (STARPU←↩

_CALIBRATE_MINIMUM) measurements, and that the minimum measured data size is smaller than 90% of the
maximum measured data size (i.e. the measurement interval is large enough for a regression to have a meaning).
Calibration can also be forced by setting the STARPU_CALIBRATE environment variable to 1, or even reset by
setting it to 2.
How to use schedulers which can benefit from such performance model is explained in Task Scheduling Policies.
The same can be done for task energy consumption estimation, by setting the field starpu_codelet::energy_model
the same way as the field starpu_codelet::model. Note: for now, the application has to give to the energy consump-
tion performance model a name which is different from the execution time performance model.
The application can request time estimations from the StarPU performance models by filling a task structure as
usual without actually submitting it. The data handles can be created by calling any of the functions starpu_∗_←↩

data_register with a NULL pointer and -1 node and the desired data sizes, and need to be unregistered as
usual. The functions starpu_task_expected_length() and starpu_task_expected_energy() can then be called to get
an estimation of the task cost on a given arch. starpu_task_footprint() can also be used to get the footprint used for
indexing history-based performance models. starpu_task_destroy() needs to be called to destroy the dummy task
afterwards. See tests/perfmodels/regression_based.c for an example.
The application can also request an on-the-fly XML report of the performance model, by calling starpu_perfmodel_dump_xml()
to print the report to a FILE∗.

Generated by Doxygen

22.4 Performance Monitoring Counters 109

22.4 Performance Monitoring Counters

This section presents the StarPU performance monitoring framework. It summarizes the objectives of the frame-
work. It then introduces the entities involved in the framework. It presents the API of the framework, as well as
some implementation details. It exposes the typical sequence of operations to plug an external tool to monitor a
performance counter of StarPU.

22.4.1 Objectives

The objectives of this framework are to let external tools interface with StarPU to collect various performance metrics
at runtime, in a generic, safe, extensible way. For that, it enables such tools to discover the available performance
metrics in a particular StarPU build, as well as the type of each performance counter value. It lets these tools build
sets of performance counters to monitor, and then register listener callbacks to collect the measurement samples
of these sets of performance counters at runtime.

22.4.2 Entities

The performance monitoring framework is built on a series of concepts and items, organized consistently. The
corresponding C language objects should be considered opaque by external tools, and should only be manipulated
through proper function calls and accessors.

22.4.2.1 Performance Counter

The performance counter entity is the fundamental object of the framework, representing one piece of performance
metrics, such as for instance the total number of tasks submitted so far, that is exported by StarPU and can be col-
lected through the framework at runtime. A performance counter has a type and belongs to a scope. A performance
counter is designated by a unique name and unique ID integer. We can start or stop collecting performance counter
values by using starpu_perf_counter_collection_start() and starpu_perf_counter_collection_stop().

22.4.2.2 Performance Counter Type

A performance counter has a type. A type is designated by a unique name and unique ID number. Currently,
supported types include:

Type Name Type Definition
"int32" 32-bit signed integers

"int64" 64-bit signed integers

"float" 32-bit single-precision floating point

"double" 64-bit double-precision floating point

22.4.2.3 Performance Counter Scope

A performance counter belongs to a scope. The scope of a counter defines the context considered for computing the
corresponding performance counter. A scope is designated with a unique name and unique ID number. Currently,
defined scopes include:

Scope Name Scope Definition

"global" Counter is global to the StarPU instance

"per_worker" Counter is within the scope of a thread worker

"per_codelet" Counter is within the scope of a task codelet

22.4.2.4 Performance Counter Set

A performance counter set is a subset of the performance counters belonging to the same scope. Each counter of
the scope can be in the enabled or disabled state in a performance counter set. A performance counter set enables
a performance monitoring tool to indicate the set of counters to be collected for a particular listener callback.

Generated by Doxygen

110 Online Performance Tools

22.4.2.5 Performance Counter Sample

A performance counter sample corresponds to one sample of collected measurement values of a performance
counter set. Only the values corresponding to enabled counters in the sample's counter set should be observed by
the listener callback. Whether the sample contains valid values for counters disabled in the set is unspecified.

22.4.2.6 Performance Counter Listener

A performance counter listener is a callback function registered by some external tool to monitor a set of perfor-
mance counters in a particular scope. It is called each time a new performance counter sample is ready to be
observed. The sample object should not be accessed outside the callback.

22.4.2.7 Application Programming Interface

The API of the performance monitoring framework is defined in the starpu_perf_monitoring.h public header file
of StarPU. This header file is automatically included with starpu.h. An example of use of the routines is given in
Sequence of operations.

22.4.3 Implementation Details

22.4.3.1 Performance Counter Registration

Each module of StarPU can export performance counters. In order to do so, modules that need to export some
counters define a registration function that is called at StarPU initialization time. This function is responsible for
calling the "_starpu_perf_counter_register()" function once for each counter it exports, to let the framework know
about the list of counters managed by the module. It also registers performance sample updater callbacks for the
module, one for each scope for which it exports counters.

22.4.3.2 Performance Sample Updaters

The updater callback for a module and scope combination is internally called every time a sample for a set of
performance counter must be updated. Thus, the updated callback is responsible for filling the sample's selected
counters with the counter values found at the time of the call. Global updaters are currently called at task submission
time, as well as any blocking tasks management function of the StarPU API, such as starpu_task_wait_for_all(),
which waits for the completion of all tasks submitted up to this point. Per-worker updaters are currently called at
the level of StarPU's drivers, that is, the modules in charge of task execution of hardware-specific worker threads.
The actual calls occur in-between the execution of tasks. Per-codelet updaters are currently called both at task
submission time, and at the level of StarPU's drivers together with the per-worker updaters.
A performance sample object is locked during the sample collection. The locking prevents the following issues:

• The listener of sample being changed during sample collection;

• The set of counters enabled for a sample being changed;

• Conflicting concurrent updates;

• Updates while the sample is being read by the listener.

The location of the updaters' calls is chosen to minimize the sequentialization effect of the locking, in order to limit the
level of interference of the monitoring process. For Global updaters, the calls are performed only on the application
thread(s) in charge of submitting tasks. Since, in most cases, only a single application thread submits tasks, the
sequentialization effect is moderate. Per-worker updates are local to their worker, thus here again the sample lock
is un-contented, unless the external monitoring tool frequently changes the set of enabled counters in the sample.

22.4.3.3 Counter operations

In practice, the sample updaters only take snapshots of the actual performance counters. The performance coun-
ters themselves are updated with ad-hoc procedures depending on each counter. Such procedures typically involve
atomic operations. While operations such as atomic increments or decrements on integer values are readily avail-
able, this is not the case for more complex operations such as min/max for computing peak value counters (for
instance in the global and per-codelet counters for peak number of submitted tasks and peak number of ready

Generated by Doxygen

22.4 Performance Monitoring Counters 111

tasks waiting for execution), and this is also not the case for computations on floating point data (used for instance
in computing cumulated execution time of tasks, either per worker or per codelet). The performance monitoring
framework therefore supplies such missing routines, for the internal use of StarPU.

22.4.3.4 Runtime checks

The performance monitoring framework features a comprehensive set of runtime checks to verify that both Star←↩

PU and some external tool do not access a performance counter with the wrong typed routines, to quickly detect
situations of mismatch that can result from the evolution of multiple pieces of software at distinct paces. Moreover,
no StarPU data structure is accessed directly, either by the external code making use of the performance monitoring
framework. The use of the C enum constants is optional; referring to values through constant strings is available
when more robustness is desired. These runtime checks enable the framework to be extensible. Moreover, while
the framework's counters currently are permanently compiled in, they could be made optional at compile time,
for instance to suppress any overhead once the analysis and optimization process has been completed by the
programmer. Thanks to the runtime discovery of available counters, the applicative code, or an intermediate layer
such as skeleton layer acting on its behalf, would then be able to adapt to performance analysis builds versus
optimized builds.

22.4.4 Exported Counters

22.4.4.1 Global Scope

Counter Name Counter Definition
starpu.task.g_total_submitted Total number of tasks submitted
starpu.task.g_peak_submitted Maximum number of tasks submitted, waiting for dependencies

resolution at any time

starpu.task.g_peak_ready Maximum number of tasks ready for execution, waiting for an ex-
ecution slot at any time

22.4.4.2 Per-worker Scope

Counter Name Counter Definition
starpu.task.w_total_executed Total number of tasks executed on a given worker

starpu.task.w_cumul_execution_time Cumulated execution time of tasks executed on a given
worker

22.4.4.3 Per-Codelet Scope

Counter Name Counter Definition
starpu.task.c_total_submitted Total number of submitted tasks for a given codelet

starpu.task.c_peak_submitted Maximum number of submitted tasks for a given
codelet waiting for dependencies resolution at any time

starpu.task.c_peak_ready Maximum number of ready tasks for a given codelet
waiting for an execution slot at any time

starpu.task.c_total_executed Total number of executed tasks for a given codelet

starpu.task.c_cumul_execution_time Cumulated execution time of tasks for a given codelet

22.4.5 Sequence of operations

This section presents a typical sequence of operations to interface an external tool with some StarPU per-
formance counters. In this example, the counters monitored are the per-worker total number of executed
tasks (starpu.task.w_total_executed) and the tasks' cumulated execution time (starpu.task.←↩

w_cumul_execution_time).
Step 0: Initialize StarPU

Generated by Doxygen

112 Online Performance Tools

StarPU must first be initialized, by a call to starpu_init(), for performance counters to become available, since each
module of StarPU registers the performance counters it exports during that initialization phase.
int ret = starpu_init(NULL);

Step 1: Allocate a counter set
A counter set has to be allocated on the per-worker scope. The per-worker scope id can be obtained by name, or
with the pre-defined enum value starpu_perf_counter_scope_per_worker.
enum starpu_perf_counter_scope w_scope = starpu_perf_counter_scope_per_worker;
struct starpu_perf_counter_set *w_set = starpu_perf_counter_set_alloc(w_scope);

Step 2: Get the counter IDs Each performance counter has a unique ID used to refer to it in subsequent calls to
the performance monitoring framework.
int id_w_total_executed = starpu_perf_counter_name_to_id(w_scope,

"starpu.task.w_total_executed");
int id_w_cumul_execution_time = starpu_perf_counter_name_to_id(w_scope,

"starpu.task.w_cumul_execution_time");

Step 3: Enable the counters in the counter set
This step indicates which counters will be collected into performance monitoring samples for the listeners referring
to this counter set.
starpu_perf_counter_set_enable_id(w_set, id_w_total_executed);
starpu_perf_counter_set_enable_id(w_set, id_w_cumul_execution_time);

Step 4: Write a listener callback
This callback will be triggered when a sample becomes available. Upon execution, it reads the values for the two
counters from the sample and displays these values, for the sake of the example.
void w_listener_cb(struct starpu_perf_counter_listener *listener,

struct starpu_perf_counter_sample *sample,
void *context)

{
int32_t w_total_executed =

starpu_perf_counter_sample_get_int32_value(sample, id_w_total_executed);
double w_cumul_execution_time =

starpu_perf_counter_sample_get_double_value(sample, id_w_cumul_execution_time);
printf("worker[%d]: w_total_executed = %d, w_cumul_execution_time = %lf\n",

starpu_worker_get_id(),
w_total_executed,
w_cumul_execution_time);

}

Step 5: Initialize the listener
This step allocates the listener structure and prepares it to listen to the selected set of per-worker counters. However,
it is not actually active until Step 6, once it is attached to one or more worker.
struct starpu_perf_counter_listener * w_listener =

starpu_perf_counter_listener_init(w_set, w_listener_cb, NULL);

Step 6: Set the listener on all workers This step actually makes the listener active, in this case on every StarPU
worker thread.
starpu_perf_counter_set_all_per_worker_listeners(w_listener);

After this step, any task assigned to a worker will be counted in that worker selected performance counters, and
reported to the listener.

22.5 Performance Steering Knobs

This section presents the StarPU performance steering framework. It summarizes the objectives of the framework.
It introduces the entities involved in the framework, and then details the API, implementation and sequence of
operations.

22.5.1 Objectives

The objectives of this framework are to let external tools interface with StarPU, observe, and act at runtime on
actionable performance steering knobs exported by StarPU, in a generic, safe, extensible way. It defines an API to
let such external tools discover the available performance steering knobs in a particular StarPU revision of build, as
well as the type of each knob.

22.5.2 Entities

22.5.2.1 Performance Steering Knob

The performance steering knob entity designates one runtime-actionable knob exported by StarPU. It may represent
some setting, or some constant used within StarPU for a given purpose. The value of the knob is typed, it can be

Generated by Doxygen

22.5 Performance Steering Knobs 113

obtained or modified with the appropriate getter/setter routine. The knob belongs to a scope. A performance
steering knob is designated with a unique name and unique ID number.

22.5.2.2 Knob Type

A performance steering knob has a type. A type is designated by a unique name and unique ID number. Currently,
supported types include:

Type Name Type Definition
"int32" 32-bit signed integers

"int64" 64-bit signed integers

"float" 32-bit single precision floating point

"double" 64-bit double precision floating point

On/Off knobs are defined as "int32" type, with value 0 for Off and value !0 for On, unless otherwise specified.

22.5.2.3 Knob Scope

A performance steering knob belongs to a scope. The scope of a knob defines the context considered for computing
the corresponding knob. A scope is designated with a unique name and unique ID number. Currently, defined
scopes include:

Scope Name Scope Definition

"global" Knob is global to the StarPU instance

"per_worker" Knob is within the scope of a thread worker

"per_scheduler" Knob is within the scope of a scheduling policy instance

22.5.2.4 Knob Group

The notion of Performance Steering Knob Group is currently internal to StarPU. It defines a series of knobs that are
handled by the same couple of setter/getter functions internally. A knob group belongs to a knob scope.

22.5.3 Application Programming Interface

The API is defined in the starpu_perf_steering.h public header file of StarPU. This header file is automatically
included with starpu.h.

22.5.4 Implementation Details

While the APIs of the monitoring and the steering frameworks share a similar design philosophy, the internals are
significantly different. Since the effect of the steering knobs varies widely, there is no global locking scheme in place
shared for all knobs. Instead, each knob gets its own procedures to get the value of a setting, or change it. To
prevent code duplication, some related knobs may share getter/setter routines as knob groups.
The steering framework does not involve callback routines. Knob get operations proceed immediately, except for
the possible delay in getting access to the knob value. Knob set operations also proceed immediately, not counting
the exclusive access time, though their action result may be observed with some latency, depending on the knob
and on the current workload. For instance, acting on a per-worker starpu.worker.w_enable_worker←↩

_knob to disable a worker thread may be observed only after the corresponding worker's assigned task queue
becomes empty, since its actual effect is to prevent additional tasks to be queued to the worker, and not to migrate
already queued tasks to another worker. Such design choices aim at providing a compromise between offering
some steering capabilities and keeping the cost of supporting such steering capabilities to an acceptable level.
The framework is designed to be easily extensible. At StarPU initialization time, the framework calls initialization
functions if StarPU modules to initialize the set of knobs they export. Knob get/set accessors can be shared among
multiple knobs in a knob group. Thus, exporting a new knob is basically a matter of declaring it at initialization
time, by specifying its name and value type, and either add its handling to an existing getter/setter pair of accessors
in a knob group, or create a new group. As the performance monitoring framework, the performance steering

Generated by Doxygen

114 Online Performance Tools

framework is currently permanently enabled, but could be made optional at compile-time to separate testing builds
from production builds.

22.5.5 Exported Steering Knobs

22.5.5.1 Global Scope

Knob Name Knob Definition
starpu.global.g_calibrate_knob Enable/disable the calibration of performance models

starpu.global.g_enable_catch_←↩

signal_knob
Enable/disable the catching of UNIX signals

22.5.5.2 Per-worker Scope

Knob Name Knob Definition
starpu.worker.w_bind_to_pu_knob Change the processing unit to which a worker thread

is bound
starpu.worker.w_enable_worker_knob Disable/re-enable a worker thread to be selected for

task execution

22.5.5.3 Per-Scheduler Scope

Knob Name Knob Definition
starpu.task.s_max_priority_cap_knob Set a capping maximum priority value for subsequently

submitted tasks
starpu.task.s_min_priority_cap_knob Set a capping minimum priority value for subsequently

submitted tasks
starpu.dmda.s_alpha_knob Scaling factor for the Alpha constant for Deque Model

schedulers to alter the weight of the estimated task ex-
ecution time

starpu.dmda.s_beta_knob Scaling factor for the Beta constant for Deque Model
schedulers to alter the weight of the estimated data
transfer time for the task's input(s)

starpu.dmda.s_gamma_knob Scaling factor for the Gamma constant for Deque
Model schedulers to alter the weight of the estimated
power consumption of the task

starpu.dmda.s_idle_power_knob Scaling factor for the baseline Idle power consumption
estimation of the corresponding processing unit

22.5.6 Sequence of operations

This section presents an example of a sequence of operations representing a typical use of the performance steering
knobs exported by StarPU. In this example, a worker thread is temporarily barred from executing tasks. For that,
the corresponding starpu.worker.w_enable_worker_knob of the worker, initially set to 1 (= enabled) is
changed to 0 (= disabled).
Step 0: Initialize StarPU
StarPU must first be initialized, by a call to starpu_init(). Performance steering knobs only become available after
this step, since each module of StarPU registers the knobs it exports during that initialization phase.
int ret = starpu_init(NULL);

Step 1: Get the knob ID
Each performance steering knob has a unique ID used to refer to it in subsequent calls to the performance steering
framework. The knob belongs to the "per_worker" scope.
int w_scope = starpu_perf_knob_scope_name_to_id("per_worker");
int w_enable_id = starpu_perf_knob_name_to_id(w_scope, "starpu.worker.w_enable_worker_knob");

Step 2: Get the knob current value
This knob is an On/Off knob. Its value type is therefore a 32-bit integer, with value 0 for Off and value !0 for On. The

Generated by Doxygen

22.5 Performance Steering Knobs 115

getter functions for per-worker knobs expect the knob ID as first argument, and the worker ID as second argument.
Here the getter call obtains the value of worker 5.
int32_t val = starpu_perf_knob_get_per_worker_int32_value(w_enable_id, 5);

Step 3: Set the knob current value
The setter functions for per-worker knobs expect the knob ID as first argument, the worker ID as second argument,
and the new value as third argument. Here, the value for worker 5 is set to 0 to temporarily bar the worker thread
from accepting new tasks for execution.
starpu_perf_knob_set_per_worker_int32_value(w_enable_id, 5, 0);

Subsequently, setting the value of the knob back to 1 enables the corresponding to accept new tasks for execution
again.
starpu_perf_knob_set_per_worker_int32_value(w_enable_id, 5, 1);

Generated by Doxygen

116 Online Performance Tools

Generated by Doxygen

Chapter 23

Offline Performance Tools

To get an idea of what is happening, a lot of performance feedback is available, detailed in this chapter. The various
information should be checked for.

• What does the Gantt diagram look like? (see Creating a Gantt Diagram)

– If it's mostly green (tasks running in the initial context) or context specific color prevailing, then the
machine is properly utilized, and perhaps the codelets are just slow. Check their performance, see
Performance Of Codelets.

– If it's mostly purple (FetchingInput), tasks keep waiting for data transfers, do you perhaps have far more
communication than computation? Did you properly use CUDA streams to make sure communication
can be overlapped? Did you use data-locality aware schedulers to avoid transfers as much as possible?

– If it's mostly red (Blocked), tasks keep waiting for dependencies, do you have enough parallelism? It
might be a good idea to check what the DAG looks like (see Creating a DAG With Graphviz).

– If only some workers are completely red (Blocked), for some reason the scheduler didn't assign tasks
to them. Perhaps the performance model is bogus, check it (see Performance Of Codelets). Do all your
codelets have a performance model? When some of them don't, the schedulers switches to a greedy
algorithm which thus performs badly.

You can also use the Temanejo task debugger (see Using The Temanejo Task Debugger) to visualize the task graph
more easily.

23.1 Generating Traces With FxT

StarPU can use the FxT library (see https://savannah.nongnu.org/projects/fkt/) to generate
traces with a limited runtime overhead.
You can get a tarball from http://download.savannah.gnu.org/releases/fkt/?C=M
Compiling and installing the FxT library in the $FXTDIR path is done following the standard procedure:

$./configure --prefix=$FXTDIR
$ make
$ make install

In order to have StarPU to generate traces, StarPU needs to be configured again after installing FxT, and configu-
ration show:

FxT trace enabled: yes

If configure does not find FxT automatically, it can be specified by hand with the option --with-fxt :

$./configure --with-fxt=$FXTDIR

Or you can simply point the PKG_CONFIG_PATH environment variable to $FXTDIR/lib/pkgconfig
When STARPU_FXT_TRACE is set to 1, a trace is generated when StarPU is terminated by calling
starpu_shutdown(). The trace is a binary file whose name has the form prof_file_XXX_YYY where XXX
is the username, and YYY is the MPI id of the process that used StarPU (or 0 when running a sequential program).

Generated by Doxygen

https://savannah.nongnu.org/projects/fkt/
http://download.savannah.gnu.org/releases/fkt/?C=M

118 Offline Performance Tools

One can change the name of the file by setting the environment variable STARPU_FXT_SUFFIX, its contents will
be used instead of prof_file_XXX. This file is saved in the /tmp/ directory by default, or by the directory
specified by the environment variable STARPU_FXT_PREFIX.
The additional configure option --enable-fxt-lock can be used to generate trace events which describes the
lock's behavior during the execution. It is however very heavy and should not be used unless debugging StarPU's
internal locking.
When the FxT trace file prof_file_something has been generated, it is possible to generate different trace
formats by calling:

$ starpu_fxt_tool -i /tmp/prof_file_something

Or alternatively, setting the environment variable STARPU_GENERATE_TRACE to 1 before application execution
will make StarPU automatically generate all traces at application shutdown. Note that if the environment variable
STARPU_FXT_PREFIX is set, files will be generated in the given directory.
One can also set the environment variable STARPU_GENERATE_TRACE_OPTIONS to specify options, see
starpu_fxt_tool -help, for example:

$ export STARPU_GENERATE_TRACE=1
$ export STARPU_GENERATE_TRACE_OPTIONS="-no-acquire"

When running an MPI application, STARPU_GENERATE_TRACE will not work as expected (each node will try to
generate trace files, thus mixing outputs...), you have to collect the trace files from the MPI nodes, and specify them
all on the command starpu_fxt_tool, for instance:

$ starpu_fxt_tool -i /tmp/prof_file_something*

By default, the generated trace contains all information. To reduce the trace size, various -no-foo options can be
passed to starpu_fxt_tool, see starpu_fxt_tool -help .

23.1.1 Creating a Gantt Diagram

One of the generated files is a trace in the Paje format. The file, located in the current directory, is named paje.←↩

trace. It can be viewed with ViTE (https://solverstack.gitlabpages.inria.fr/vite/) a
trace visualizing open-source tool. To open the file paje.trace with ViTE, use the following command:

$ vite paje.trace

Once the file is opened in ViTE interface, we will see the figure as shown below:

Generated by Doxygen

https://solverstack.gitlabpages.inria.fr/vite/

23.1 Generating Traces With FxT 119

We can then click the "No arrows" button in task bar of ViTE interface, to better observe the Gantt diagram that
illustrates the start and end dates of the different tasks or activities of a program.

In the Gantt diagram, the bar types such as devices (CPU or GPU) are displayed on the left side. Each task is
represented by a horizontal rectangle that spans the duration of the task. The rectangles are arranged along a
timeline axis, which is shown at the top of the Gantt diagram and represents the overall duration of the program in
milliseconds. The position of the bar along the timeline shows when the task begins and ends. We can see some
long red bars at the beginning and end of the entire timeline, which represent that the unit is idle. There are no
tasks at these moments, and workers are waiting or in a sleeping state.

23.1.1.1 Zooming in Gantt Diagram

Then as shown in the following figure, press and hold the left mouse button to select the area you want to zoom in
on. Release the button to view the selected area, and we can repeat the zoom action multiple times.

Generated by Doxygen

120 Offline Performance Tools

This zoom result is:

Right-clicking anywhere on the Gantt diagram restores the previous zoom view.
One can press and hold the left mouse button inside the top blue bar to select horizontally, which will horizontally
zoom in on all Gantt diagrams within the selected time range.

This zoom result is:

Generated by Doxygen

23.1 Generating Traces With FxT 121

23.1.1.2 Colors in Gantt Diagram

After zooming in, we can observe numerous blocks of varying colors, each block representing a task. Blocks of
diverse colors signify different types of tasks. When we double-click on any block, a pop-up window will show
related status about that task, such as its type and which worker (CPU/GPU) it belongs to, etc.

The state information displayed in the pop-up window can be:

• Value: refers to a type of task, which can be assigned as a task name (instead of the default unknown) by
filling the optional starpu_codelet::name, or assigning it a performance model. The name can also be set with
the field starpu_task::name or by using STARPU_NAME when calling starpu_task_insert()

• Container: refers to a specific worker where the computation was performed, could be CPU or CUDA

• Type: indicates the type of this block, most often "Worker State"

Generated by Doxygen

122 Offline Performance Tools

• Date: represents a range of dates during which the computation was performed

• Duration: represents the duration of the computation

• Footprint: provides the data footprint of the task (used as indexing base for performance models)

• GFlop: represents the number of Gflop performed during the computation, as set in starpu_task::flops.

• Iteration: refers to the iteration number of the computation, as set by starpu_iteration_push() at the beginning
of submission loops and starpu_iteration_pop() at the end of submission loops

• JobId: represents a unique identifier for the specific task, as returned by starpu_task_get_job_id()

• NumaNodes: refers to the NUMA node where the data is stored, the environment variable STARPU_FXT_EVENTS
needs to contain TASK_VERBOSE_EXTRA, otherwise it will be -1

• Params: represents parameters or input/output types and sizes, possibly indicating the dimensions of the
matrices

• Size: represents the size of the data being operated on in bytes

• Subiteration: represents a sub-iteration number if the computation was part of a larger iteration or loop, as
set by starpu_iteration_push()

• SubmitOrder: represents the order in which the task was submitted by the application

• Tag: represents a unique identifier for the task, which can be set either through starpu_task::tag_id or by
using STARPU_TAG or STARPU_TAG_ONLY when calling starpu_task_insert()

• X: represents an X-coordinate index of the first data written by the task, which was set by starpu_data_set_coordinates()
or starpu_data_set_coordinates_array() function. We can also get the coordinates of the data with
starpu_data_get_coordinates_array() function

• Y: represents an Y-coordinate index of the first data written by the task, which was set by starpu_data_set_coordinates()
or starpu_data_set_coordinates_array() function. We can also get the coordinates of the data with
starpu_data_get_coordinates_array() function

• Color: represents the color RGB value associated with the task. Tasks are by default shown in green.
To use a different color for every type of task, we can specify the option -c to starpu_fxt_tool
or in STARPU_GENERATE_TRACE_OPTIONS. Tasks can also be given a specific color by setting
the field starpu_codelet::color or the starpu_task::color. When we call starpu_task_insert(), we can use
STARPU_TASK_COLOR to set the color. Colors are expressed with the following format 0xRRGGBB (e.g.
0xFF0000 for red). See basic_examples/task_insert_color for examples on how to assign
colors

In the shown figure, the set of color as following:

• Dark green represents GEMM

• Light green represents SYRK

• Blue represents TRSM

• Red indicates that the unit is idle, there are no tasks at the moment, it is currently waiting or in a sleeping
state

• Magenta represents FetchingInput

To modify the colors in Vite interface, select "Preferences" then "Settings" in the options bar, and then choose the
"States" tab in the newly opened window to select different colors for different operations, as shown in the figure
below. One has to click the reload button at the top left to reload the trace with the new colors.

Generated by Doxygen

23.1 Generating Traces With FxT 123

23.1.1.3 Curves in Gantt Diagram

We can see that there is a curve below task blocks, which represents the corresponding GFlop/s. Double-clicking
near the curve will display the current GFlop/s information in a pop-up window (as shown in the figure). If we only
click on the curve, a vertical red line shows up, and we can read on it the GFlop/s values of all the curves at the
same time.

For GPUs, there are three additional curves above the task blocks that can be double-clicked to open a pop-up
window to view information. Let's zoom in on the three curves during the entire execution process as illustrated in
the figure:

Generated by Doxygen

124 Offline Performance Tools

As shown in the figure below, the top curve represents the amount of GPU-managed memory in MBytes, while the
bottom two curves represent the data transfer between tasks on the CPU and GPU, and between tasks on different
GPUs. They respectively indicate the incoming and outgoing data transfer bandwidth. By looking at the memory
curve, we can observe that the memory usage kept increasing at first, but due to the reutilization of the allocations
by StarPU, the curve gradually became stable later on.

23.1.1.4 States in Gantt Diagram

Above these three curves, we can see some blocks which represent driver copy (see the top of the figure below), i.e.
a memory copy. The light green blocks represent the actual copies, the dark green blocks represent asynchronous
copy submissions, and the burgundy blocks represent allocating and freeing. Double-clicking on a block allows us
to view relevant information in the pop-up window.
Here, a couple of issues may show up:

Generated by Doxygen

23.1 Generating Traces With FxT 125

• If the "Allocating/Freeing" parts take a long time, it means that StarPU does not manage to re-use data
buffers allocated in the GPU. If you have e.g. a lot of tiles with different sizes, it may be useful to approximate
the allocation size, by using e.g. starpu_matrix_data_register_allocsize() with the proper nx / ld / ny, but an
allocation size that is rounded up, so that buffers with that same rounded size can be shared.

• If the "Asynchronous copy submission" parts take a long time, it means that the CPU buffers are not pinned:
you need to make sure to use starpu_malloc(), or starpu_memory_pin() (see CUDA-specific Optimizations)
so that the CPU buffers are pinned so that the GPU driver can efficiently process transfers asynchronously
(in the "Actual copy" part) rather than synchronously (in the "Asynchronous copy submission" part).

Below the GPU task blocks and GFlops curve (see the bottom of the figure above), we can see some other blocks
that represent the CPU waiting for the GPU to complete the task. During time, CPU can do variable actions which
are represented by blocks of different colors, such as:

• Dark green represents progressing, it keeps polling for task or data transfer completion

• Brown-yellow represents scheduling

• Burgundy represents submitting task

• Lake blue represents executing, it is executing the application codelet function. Here it is very short
because the codelet just submits a kernel asynchronously.

• Dark blue represents callback

• Chestnut represents overhead. This state is not supposed to be long, as it represents everything that we
did not classify as an operation that is supposed to be long like the operations mentioned above. If you find
situations where some overhead is long, this is a bug worth reporting so we can fix it.

and we can always double-click on the block to view relevant information in the pop-up window.

23.1.1.5 Transfers in Gantt Diagram

We can horizontally zoom in on a section of the Gantt diagram, and deselect the "No arrows" option. This will allow
us to see a complete process of data transfer, as shown in the following figure:

Generated by Doxygen

126 Offline Performance Tools

In the above figure, we can see a long segment of magenta color in CUDA2_0 task blocks. At the same time, we can
see that there are numerous transfers between other workers during this time period. This indicates that CUDA2_0
is waiting for the completion of the data transfers needed by the task it wants to execute.

23.1.1.6 Scheduler in Gantt Diagram

At the top of the entire Gantt diagram, there are three curves that represent the information of the scheduler. Let's
zoom in on the three curves during the entire execution process as illustrated in the figure below:

As shown in the figure below, from top to bottom, they respectively indicate the number of submitted uncompleted
tasks, the number of ready tasks, and the total GFlop/s for this moment. By double-clicking on the curves, we
can view relevant information in the pop-up window.

Generated by Doxygen

23.1 Generating Traces With FxT 127

23.1.1.7 Main Thread in Gantt Diagram

At the very bottom of the entire Gantt diagram, we will see a red bar, which represents the main thread waiting for
tasks. In front of the red bar (see the figure below), there are some dark red bars, which represent the main thread
submitting tasks.

Below these red bars, we can see some white vertical lines with small circles on top, which represent events. The
default events can be either task push or task pop or task wait for all. The application can inject its own events at any
desired moment with the function starpu_fxt_trace_user_event() or starpu_fxt_trace_user_event_string(). Similarly,
double-clicking on the white bars allows you to see relevant information in the pop-up window.

23.1.1.8 Statistics in Gantt Diagram

To get statistics on the time spent in runtime overhead, we can use the statistics plugin of ViTE. In the Preferences
menu, select Plugins. In "States Type", select "Worker State". Then click on "Reload" to update the histogram. The

Generated by Doxygen

128 Offline Performance Tools

red "Idle" percentages are due to lack of parallelism, the "FetchingInput" percentages are due to waiting for data
transfers. The brown "Overhead" and "Scheduling" percentages are due to the overhead of the runtime and of the
scheduler.

23.1.2 Creating a DAG With Graphviz

Another generated trace file is a task graph described using the DOT language. The file, created in the current
directory, is named dag.dot file in the current directory. It is possible to get a graphical output of the graph by
using the graphviz library:

$ dot -Tpdf dag.dot -o output.pdf

23.1.3 Getting Task Details

Another generated trace file gives details on the executed tasks. The file, created in the current directory, is named
tasks.rec. This file is in the recutils format, i.e. Field: value lines, and empty lines are used to
separate each task. This can be used as a convenient input for various ad-hoc analysis tools. By default, it only
contains information about the actual execution. Performance models can be obtained by running starpu_←↩

tasks_rec_complete on it:

$ starpu_tasks_rec_complete tasks.rec tasks2.rec

which will add EstimatedTime lines which contain the performance model-estimated time (in µs) for each worker
starting from 0. Since it needs the performance models, it needs to be run the same way as the application
execution, or at least with STARPU_HOSTNAME set to the hostname of the machine used for execution, to get the
performance models of that machine.
Another possibility is to obtain the performance models as an auxiliary perfmodel.rec file, by using the
starpu_perfmodel_recdump utility:

$ starpu_perfmodel_recdump tasks.rec -o perfmodel.rec

One can also simply call starpu_task_get_name() to get the name of a task.

23.1.4 Getting Scheduling Task Details

The file, sched_tasks.rec, created in the current directory, in the recutils format, gives information about
the tasks scheduling, and lists the push and pop actions of the scheduler. For each action, it gives the timestamp,
the job priority and the job id. Each action is separated from the next one by empty lines. The job id associated with
the task can be retrieved by calling starpu_task_get_job_id().

Generated by Doxygen

23.1 Generating Traces With FxT 129

23.1.5 Monitoring Activity

Another generated trace file is an activity trace. The file, created in the current directory, is named activity.←↩

data. A profile of the application showing the activity of StarPU during the execution of the program can be
generated:

$ starpu_workers_activity activity.data

This will create a file named activity.eps in the current directory. This picture is composed of two parts. The
first part shows the activity of the different workers. The green sections indicate which proportion of the time was
spent executed kernels on the processing unit. The red sections indicate the proportion of time spent in StarPU: an
important overhead may indicate that the granularity may be too low, and that bigger tasks may be appropriate to
use the processing unit more efficiently. The black sections indicate that the processing unit was blocked because
there was no task to process: this may indicate a lack of parallelism, which may be alleviated by creating more tasks
when it is possible.
The second part of the picture activity.eps is a graph showing the evolution of the number of tasks available in
the system during the execution. Ready tasks are shown in black, and tasks that are submitted but not schedulable
yet are shown in grey.

23.1.6 Getting Modular Schedular Animation

When using modular schedulers (i.e. schedulers which use a modular architecture, and whose name start with
"modular-"), the call to starpu_fxt_tool will also produce a trace.html file which can be viewed in a
javascript-enabled web browser. It shows the flow of tasks between the components of the modular scheduler.

23.1.7 Analyzing Time Between MPI Data Transfer and Use by Tasks

starpu_fxt_tool produces a file called comms.rec which describes all MPI communications. The script
starpu_send_recv_data_use.py uses this file and tasks.rec in order to produce two graphs: the first
one shows durations between the reception of data and their usage by a task and the second one plots the same
graph but with elapsed time between send and usage of a data by the sender.

Generated by Doxygen

130 Offline Performance Tools

23.1.8 Number of events in trace files

When launched with the option -number-events, starpu_fxt_tool will produce a file named number←↩

_events.data. This file contains the number of events for each event type. Events are represented with their
key. To convert event keys to event names, you can use the starpu_fxt_number_events_to_names.py
script:

$ starpu_fxt_number_events_to_names.py number_events.data

The number of recorded events (and thus the performance overhead introduced by tracing) can be reduced by
setting which categories of events to record with the environment variable STARPU_FXT_EVENTS.

23.1.9 Limiting The Scope Of The Trace

For computing statistics, it is useful to limit the trace to a given portion of the time of the whole execution. This can
be achieved by calling
starpu_fxt_autostart_profiling(0)

before calling starpu_init(), to prevent tracing from starting immediately. Then
starpu_fxt_start_profiling();

and
starpu_fxt_stop_profiling();

can be used around the portion of code to be traced. This will show up as marks in the trace, and states of workers
will only show up for that portion.

23.2 Performance Of Codelets

After calibrating performance models of codelets (see Performance Model Example and Performance Model Calibration),
they can be examined by using the tool starpu_perfmodel_display:

$ starpu_perfmodel_display -l
file: <malloc_pinned.hannibal>
file: <starpu_slu_lu_model_trsm_ru.hannibal>
file: <starpu_slu_lu_model_getrf.hannibal>
file: <starpu_slu_lu_model_gemm.hannibal>
file: <starpu_slu_lu_model_trsm_ll.hannibal>

Here, the codelets of the example lu are available. We can examine the performance of the kernel 22 (in micro-
seconds), which is history-based:

Generated by Doxygen

23.2 Performance Of Codelets 131

$ starpu_perfmodel_display -s starpu_slu_lu_model_gemm
performance model for cpu
hash size mean dev n
57618ab0 19660800 2.851069e+05 1.829369e+04 109
performance model for cuda_0
hash size mean dev n
57618ab0 19660800 1.164144e+04 1.556094e+01 315
performance model for cuda_1
hash size mean dev n
57618ab0 19660800 1.164271e+04 1.330628e+01 360
performance model for cuda_2
hash size mean dev n
57618ab0 19660800 1.166730e+04 3.390395e+02 456

We can see that for the given size, over a sample of a few hundreds of execution, the GPUs are about 20 times
faster than the CPUs (numbers are in us). The standard deviation is extremely low for the GPUs, and less than 10%
for CPUs.
This tool can also be used for regression-based performance models. It will then display the regression formula,
and in the case of non-linear regression, the same performance log as for history-based performance models:

$ starpu_perfmodel_display -s non_linear_memset_regression_based
performance model for cpu_impl_0

Regression : #sample = 1400
Linear: y = alpha size ^ beta

alpha = 1.335973e-03
beta = 8.024020e-01

Non-Linear: y = a size ^b + c
a = 5.429195e-04
b = 8.654899e-01
c = 9.009313e-01

hash size mean stddev n
a3d3725e 4096 4.763200e+00 7.650928e-01 100
870a30aa 8192 1.827970e+00 2.037181e-01 100
48e988e9 16384 2.652800e+00 1.876459e-01 100
961e65d2 32768 4.255530e+00 3.518025e-01 100
...

The same can also be achieved by using StarPU's library API, see Performance Model and notably the function
starpu_perfmodel_load_symbol(). The source code of the tool starpu_perfmodel_display can be a useful
example.
An XML output can also be printed by using the -x option:

$ tools/starpu_perfmodel_display -x -s non_linear_memset_regression_based
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE StarPUPerfmodel SYSTEM "starpu-perfmodel.dtd">
<!-- symbol non_linear_memset_regression_based -->
<!-- All times in us -->
<perfmodel version="45">

<combination>
<device type="CPU" id="0" ncores="1"/>
<implementation id="0">

<!-- cpu0_impl0 (Comb0) -->
<!-- time = a size ^b + c -->
<nl_regression a="5.429195e-04" b="8.654899e-01" c="9.009313e-01"/>
<entry footprint="a3d3725e" size="4096" flops="0.000000e+00" mean="4.763200e+00" deviation="7.650928e-01" nsample="100"/>
<entry footprint="870a30aa" size="8192" flops="0.000000e+00" mean="1.827970e+00" deviation="2.037181e-01" nsample="100"/>
<entry footprint="48e988e9" size="16384" flops="0.000000e+00" mean="2.652800e+00" deviation="1.876459e-01" nsample="100"/>
<entry footprint="961e65d2" size="32768" flops="0.000000e+00" mean="4.255530e+00" deviation="3.518025e-01" nsample="100"/>

</implementation>
</combination>

</perfmodel>

The tool starpu_perfmodel_plot can be used to draw performance models. It writes a .gp file in the current
directory, to be run with the tool gnuplot, which shows the corresponding curve.

$ tools/starpu_perfmodel_plot -s non_linear_memset_regression_based
$ gnuplot starpu_non_linear_memset_regression_based.gp
$ gv starpu_non_linear_memset_regression_based.png

Generated by Doxygen

132 Offline Performance Tools

When the field starpu_task::flops is set (or STARPU_FLOPS is passed to starpu_task_insert()), starpu_←↩

perfmodel_plot can directly draw a GFlops/s curve, by simply adding the -f option:

$ starpu_perfmodel_plot -f -s chol_model_potrf

This will however disable displaying the regression model, for which we can not compute GFlops/s.

Generated by Doxygen

23.2 Performance Of Codelets 133

When the FxT trace file prof_file_something has been generated, it is possible to get a profiling of each
codelet by calling:

$ starpu_fxt_tool -i /tmp/prof_file_something
$ starpu_codelet_profile distrib.data codelet_name

This will create profiling data files, and a distrib.data.gp file in the current directory, which draws the distri-
bution of codelet time over the application execution, according to data input size.

Generated by Doxygen

134 Offline Performance Tools

This is also available in the tool starpu_perfmodel_plot, by passing it the fxt trace:

$ starpu_perfmodel_plot -s non_linear_memset_regression_based -i /tmp/prof_file_foo_0

It will produce a .gp file which contains both the performance model curves, and the profiling measurements.

Generated by Doxygen

23.2 Performance Of Codelets 135

If you have the statistical tool R installed, you can additionally use

$ starpu_codelet_histo_profile distrib.data

Which will create one .pdf file per codelet and per input size, showing a histogram of the codelet execution time
distribution.

Generated by Doxygen

136 Offline Performance Tools

23.3 Energy Of Codelets

A performance model of the energy of codelets can also be recorded thanks to the starpu_codelet::energy_model
field of the starpu_codelet structure. StarPU usually cannot record this automatically, since the energy measure-
ment probes are usually not fine-grain enough. It is however possible to measure it by writing a program that
submits batches of tasks, let StarPU measure the energy requirement of the batch, and compute an average, see
Measuring energy and power with StarPU .
The energy performance model can then be displayed in Joules with starpu_perfmodel_display just like
the time performance model. The starpu_perfmodel_plot needs an extra -e option to display the proper
unit in the graph:

$ tools/starpu_perfmodel_plot -e -s non_linear_memset_regression_based_energy
$ gnuplot starpu_non_linear_memset_regression_based_energy.gp
$ gv starpu_non_linear_memset_regression_based_energy.png

Generated by Doxygen

23.3 Energy Of Codelets 137

The -f option can also be used to display the performance in terms of GFlops/s/W, i.e. the efficiency:

$ tools/starpu_perfmodel_plot -f -e -s non_linear_memset_regression_based_energy
$ gnuplot starpu_gflops_non_linear_memset_regression_based_energy.gp
$ gv starpu_gflops_non_linear_memset_regression_based_energy.png

Generated by Doxygen

138 Offline Performance Tools

We clearly see here that it is much more energy-efficient to stay in the L3 cache.
One can combine the two time and energy performance models to draw Watts:

$ tools/starpu_perfmodel_plot -se non_linear_memset_regression_based non_linear_memset_regression_based_energy
$ gnuplot starpu_power_non_linear_memset_regression_based.gp
$ gv starpu_power_non_linear_memset_regression_based.eps

Generated by Doxygen

23.4 Data trace and tasks length 139

23.4 Data trace and tasks length

It is possible to get statistics about tasks length and data size by using :

$ starpu_fxt_data_trace filename [codelet1 codelet2 ... codeletn]

Where filename is the FxT trace file and codeletX the names of the codelets you want to profile (if no names are
specified, starpu_fxt_data_trace will profile them all). This will create a file, data_trace.gp which can
be executed to get a .eps image of these results. On the image, each point represents a task, and each color
corresponds to a codelet.

Generated by Doxygen

140 Offline Performance Tools

23.5 Trace Statistics

More than just codelet performance, it is interesting to get statistics over all kinds of StarPU states (allocations,
data transfers, etc.). This is particularly useful to check what may have gone wrong in the accuracy of the SimGrid
simulation.
This requires the R statistical tool, with the plyr, ggplot2 and data.table packages. If your system distri-
bution does not have packages for these, one can fetch them from CRAN:

$ R
> install.packages("plyr")
> install.packages("ggplot2")
> install.packages("data.table")
> install.packages("knitr")

The pj_dump tool from pajeng is also needed (see https://github.com/schnorr/pajeng)
One can then get textual or .csv statistics over the trace states:

$ starpu_paje_state_stats -v native.trace simgrid.trace
"Value" "Events_native.csv" "Duration_native.csv" "Events_simgrid.csv" "Duration_simgrid.csv"
"Callback" 220 0.075978 220 0
"chol_model_potrf" 10 565.176 10 572.8695
"chol_model_trsm" 45 9184.828 45 9170.719
"chol_model_gemm" 165 64712.07 165 64299.203
$ starpu_paje_state_stats native.trace simgrid.trace

An other way to get statistics of StarPU states (without installing R and pj_dump) is to use the starpu_trace←↩

_state_stats.py script, which parses the generated trace.rec file instead of the paje.trace file. The
output is similar to the previous script, but it doesn't need any dependencies.
The different prefixes used in trace.rec are:

E: Event type
N: Event name

Generated by Doxygen

https://github.com/schnorr/pajeng

23.5 Trace Statistics 141

C: Event category
W: Worker ID
T: Thread ID
S: Start time

Here's an example on how to use it:

$ starpu_trace_state_stats.py trace.rec | column -t -s ","
"Name" "Count" "Type" "Duration"
"Callback" 220 Runtime 0.075978
"chol_model_potrf" 10 Task 565.176
"chol_model_trsm" 45 Task 9184.828
"chol_model_gemm" 165 Task 64712.07

starpu_trace_state_stats.py can also be used to compute the different efficiencies. Refer to the usage
description to show some examples.
And one can plot histograms of execution times, of several states, for instance:

$ starpu_paje_draw_histogram -n chol_model_potrf,chol_model_trsm,chol_model_gemm native.trace simgrid.trace

and see the resulting pdf file:

A quick statistical report can be generated by using:

Generated by Doxygen

142 Offline Performance Tools

$ starpu_paje_summary native.trace simgrid.trace

it includes gantt charts, execution summaries, as well as state duration charts and time distribution histograms.
Other external Paje analysis tools can be used on these traces, one just needs to sort the traces by timestamp order
(which not guaranteed to make recording more efficient):

$ starpu_paje_sort paje.trace

23.6 PAPI counters

Performance counter values could be obtained from the PAPI framework if ./configure detected the libpapi.
In Debian, the libpapi-dev package provides the required files. Additionally, the papi-tools package con-
tains a set of useful tools, for example papi_avail to see which counters are available.
To be able to use Papi counters, one may need to reduce the level of the kernel parameter kernel.perf_←↩

event_paranoid to 2 or below. See https://www.kernel.org/doc/html/latest/admin-guide/perf-security.←↩

html for the security impact of this parameter.
Then one has to set the STARPU_PROFILING environment variable to 1 and specify which events to record with
the STARPU_PROF_PAPI_EVENTS environment variable. For instance:

export STARPU_PROFILING=1 STARPU_PROF_PAPI_EVENTS="PAPI_TOT_INS PAPI_TOT_CYC"

The comma can also be used to separate events to monitor.
In the current simple implementation, only CPU tasks have their events measured and require CPUs that support
the PAPI events. It is important to note that not all events are available on all systems, and general PAPI recom-
mendations should be followed.
The counter values can be accessed using the profiling interface:
task->profiling_info->papi_values

Also, it can be accessed and/or saved with tracing when using STARPU_FXT_TRACE. With the use of starpu←↩

_fxt_tool the file papi.rec is generated containing the following triple:

Task Id
Event Id
Value

External tools like rec2csv can be used to convert this rec file to a csv file, where each line represents a value
for an event for a task.

23.7 Theoretical Lower Bound On Execution Time

StarPU can record a trace of what tasks are needed to complete the application, and then, by using a linear system,
provide a theoretical lower bound of the execution time (i.e. with an ideal scheduling).
The computed bound is not really correct when not taking into account dependencies, but for an application which
have enough parallelism, it is very near to the bound computed with dependencies enabled (which takes a huge lot
more time to compute), and thus provides a good-enough estimation of the ideal execution time.
Then there is an example to show how to use this.
For kernels with history-based performance models (and provided that they are completely calibrated), StarPU
can very easily provide a theoretical lower bound for the execution time of a whole set of tasks. See for instance
examples/lu/lu_example.c: before submitting tasks, call the function starpu_bound_start(), and after com-
plete execution, call starpu_bound_stop(). starpu_bound_print_lp() or starpu_bound_print_mps() can then be used
to output a Linear Programming problem corresponding to the schedule of your tasks. Or starpu_bound_print_dot()
can be used to print a task dependency graph in the DOT format. Run it through lp_solve or any other linear
programming solver, and that will give you a lower bound for the total execution time of your tasks. If StarPU was
compiled with the library glpk installed, starpu_bound_compute() can be used to solve it immediately and get the
optimized minimum, in ms. Its parameter integer allows deciding whether integer resolution should be computed
and returned. Besides to solve it immediately and get the optimized minimum starpu_bound_print() can also print
the statistics of actual execution and theoretical upper bound.
The deps parameter tells StarPU whether to take tasks, implicit data, and tag dependencies into account. Tags
released in a callback or similar are not taken into account, only tags associated with a task are. It must be
understood that the linear programming problem size is quadratic with the number of tasks and thus the time to
solve it will be very long, it could be minutes for just a few dozen tasks. You should probably use lp_solve

Generated by Doxygen

https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html

23.8 Trace visualization with StarVZ 143

-timeout 1 test.pl -wmps test.mps to convert the problem to MPS format and then use a better
solver, glpsol might be better than lp_solve for instance (the -pcost option may be useful), but sometimes
doesn't manage to converge. cbc might look slower, but it is parallel. For lp_solve, be sure to try at least all
the -B options. For instance, we often just use lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd
-Bs -BB -Bo -Bc -Bi , and the -gr option can also be quite useful. The resulting schedule can be observed
by using the tool starpu_lp2paje, which converts it into the Paje format.
Data transfer time can only be taken into account when deps is set. Only data transfers inferred from implicit
data dependencies between tasks are taken into account. Other data transfers are assumed to be completely
overlapped.
Setting deps to 0 will only take into account the actual computations on processing units. However, it still properly
takes into account the varying performances of kernels and processing units, which is quite more accurate than just
comparing StarPU performances with the fastest of the kernels being used.
The prio parameter tells StarPU whether to simulate taking into account the priorities as the StarPU scheduler
would, i.e. schedule prioritized tasks before less prioritized tasks, to check to which extend this results to a less
optimal solution. This increases even more computation time.

23.8 Trace visualization with StarVZ

Creating views with StarVZ (see: https://github.com/schnorr/starvz) is made up of two steps.
The initial stage consists of a pre-processing of the traces generated by the application, while the second one
consists of the analysis itself and is carried out with R packages' aid. StarVZ is available at CRAN (https←↩

://cran.r-project.org/package=starvz) and depends on pj_dump (from pajeng) and rec2csv
(from recutils).
To download and install StarVZ, it is necessary to have R, pajeng, and recutils:

For pj_dump and rec2csv
apt install -y pajeng recutils

For R
apt install -y r-base libxml2-dev libssl-dev libcurl4-openssl-dev libgit2-dev libboost-dev

To install the StarVZ, the following command can be used:

echo "install.packages(’starvz’, repos = ’https://cloud.r-project.org’)" | R --vanilla

To generate traces from an application, it is necessary to set STARPU_GENERATE_TRACE and build StarPU with
FxT. Then, StarVZ can be used on a folder with StarPU FxT traces to produce a default view:

export PATH=$(Rscript -e ’cat(system.file("tools/", package = "starvz"), sep="\n")’):$PATH

starvz /foo/path-to-fxt-files

An example of default view:

Generated by Doxygen

https://github.com/schnorr/starvz
https://cran.r-project.org/package=starvz
https://cran.r-project.org/package=starvz

144 Offline Performance Tools

One can also use existing trace files (paje.trace, tasks.rec, data.rec, papi.rec and dag.dot)
skipping the StarVZ internal call to starpu_fxt_tool with:

starvz --use-paje-trace /foo/path-to-trace-files

Alternatively, each StarVZ step can be executed separately. Step 1 can be used on a folder with:

starvz -1 /foo/path-to-fxt-files

Then the second step can be executed directly in R. StarVZ enables a set of different plots that can be configured
on a .yaml file. A default file is provided (default.yaml); also, the options can be changed directly in R.

library(starvz)
library(dplyr)

Generated by Doxygen

23.9 StarPU Eclipse Plugin 145

dtrace <- starvz_read("./", selective = FALSE)

show idleness ratio
dtrace$config$st$idleness = TRUE

show ABE bound
dtrace$config$stabeactive = TRUE

find the last task with dplyr
dtrace$config$st$tasks$list = dtrace$Application %>% filter(End == max(End)) %>% .$JobId
show last task dependencies
dtrace$config$st$tasks$active = TRUE
dtrace$config$st$tasks$levels = 50

plot <- starvz_plot(dtrace)

An example of visualization follows:

23.9 StarPU Eclipse Plugin

The StarPU Eclipse Plugin provides the ability to generate the different traces directly from the Eclipse IDE.

23.9.1 Eclipse Installation

Download the Eclipse installer from https://www.eclipse.org/downloads/packages/installer.
When you run the installer, click on Eclipse IDE for Java Developers to start the installation process.

Generated by Doxygen

https://www.eclipse.org/downloads/packages/installer

146 Offline Performance Tools

To be able to develop C/C++ applications, you need to install the CDT plugin. To do so, go to the Help dropdown
menu at the top of the Eclipse window, choose Install New Software In the new window, enter the URL http←↩

://download.eclipse.org/tools/cdt/releases/9.10 into the box Work with and press the return
key.

You need then to select CDT Main Features, then click the button Next twice, accept the terms of the license, and
click the button Finish. Eclipse will ask you to restart.
To be able to compile the plugin, you need to install the plugin development environment (PDE). To do so, go to the
menu Help, choose Eclipse Marketplace.... In the new window, enter PDE into the box Find and press the return
key.

Generated by Doxygen

http://download.eclipse.org/tools/cdt/releases/9.10
http://download.eclipse.org/tools/cdt/releases/9.10

23.9 StarPU Eclipse Plugin 147

You can then click on the button Install of the Eclipse PDE latest. You may need to confirm the installation, then
accept the terms of the license, and finally restart the Eclipse IDE.
The installation is now done.

23.9.2 StarPU Eclipse Plugin Compilation and Installation

StarPU can now be compiled and installed with its Eclipse plugin. To do so, you first need to configure StarPU with
the option --enable-eclipse-plugin. The Eclipse IDE executable eclipse must be in your PATH.

export PATH=$HOME/usr/local/eclipse/java-2021-03/eclipse:$PATH
mkdir build
cd build
../configure --prefix=$HOME/usr/local/starpu --enable-eclipse-plugin
make
make install

The StarPU Eclipse plugin is installed in the directory dropins.

$ ls $HOME/usr/local/eclipse/java-2021-03/eclipse/dropins
StarPU_1.0.0.202105272056.jar

In the next section, we will show you how to use the plugin.

Generated by Doxygen

148 Offline Performance Tools

23.9.3 StarPU Eclipse Plugin Instruction

Once StarPU has been configured and installed with its Eclipse plugin, you first need to set up your environment for
StarPU.

cd $HOME/usr/local/starpu
source ./bin/starpu_env

To generate traces from the application, it is necessary to set STARPU_FXT_TRACE to 1.

export STARPU_FXT_TRACE=1

The eclipse workspace together with an example is available in lib/starpu/eclipse-plugin.

cd ./lib/starpu/eclipse-plugin
eclipse -data workspace

You can then open the file hello/hello.c, and build the application by pressing Ctrl-B.

The application can now be executed.

Generated by Doxygen

23.9 StarPU Eclipse Plugin 149

After executing the C/C++ StarPU application, one can use the StarPU plugin to generate and visualise the task
graph of the application. The StarPU plugin eclipse is either available through the icons in the upper toolbar, or from
the dropdown menu StarPU.

To start, one first need to run the StarPU FxT tool, either through the FxT icon of the toolbar, or from the menu
StarPU / StarPU FxT Tool. This will call the tool starpu_fxt_tool to generate traces for your applica-
tion execution.
A message dialog box is displayed to confirm the generation of the different traces.

One of the generated files is a Paje trace which can be viewed with ViTE, a trace explorer. To open and visualise the
file paje.tracewith ViTE, one can select the second command of the StarPU menu, which is named Generate
Paje Trace, or click on the second icon named Trace in the toolbar.

Generated by Doxygen

150 Offline Performance Tools

Another generated trace file is a task graph described using the DOT language. It is possible to get a graphical
output of the graph by calling the graphviz library. To do this, one can click on the third command of StarPU
menu. A task graph of the application in the png format is then generated.

Generated by Doxygen

23.9 StarPU Eclipse Plugin 151

In StarPU eclipse plugin, one can display the graph task directly from eclipse, or through a web browser. To do
this, there is another command named Generate SVG graph in the StarPU menu or HGraph in the toolbar of
eclipse.
From the HTML file, you can see the graph task, and by clicking on a task name, it will open the C file in which the
task submission was called (if you have an editor which understands the syntax href="file.c#123").

Generated by Doxygen

152 Offline Performance Tools

23.10 Memory Feedback

It is possible to enable memory statistics. To do so, you need to pass the option --enable-memory-stats when running
configure. It is then possible to call the function starpu_data_display_memory_stats() to display statistics about
the current data handles registered within StarPU.
Moreover, statistics will be displayed at the end of the execution on data handles which have not been cleared out.
This can be disabled by setting the environment variable STARPU_MEMORY_STATS to 0.
For example, by adding a call to the function starpu_data_display_memory_stats() in the fblock example before
unpartitioning the data, one will get something similar to:

$ STARPU_MEMORY_STATS=1 ./examples/filters/fblock
...
#---------------------
Memory stats :
#-------
Data on Node #2
#-----
Data : 0x5562074e8670
Size : 144

#--
Data access stats

Generated by Doxygen

23.11 Data Statistics 153

/!\ Work Underway
Node #0

Direct access : 0
Loaded (Owner) : 0
Loaded (Shared) : 0
Invalidated (was Owner) : 1

Node #2
Direct access : 0
Loaded (Owner) : 1
Loaded (Shared) : 0
Invalidated (was Owner) : 0

#-------
Data on Node #3
#-----
Data : 0x5562074e9338
Size : 96

#--
Data access stats
/!\ Work Underway
Node #0

Direct access : 0
Loaded (Owner) : 0
Loaded (Shared) : 0
Invalidated (was Owner) : 1

Node #3
Direct access : 0
Loaded (Owner) : 1
Loaded (Shared) : 0
Invalidated (was Owner) : 0

#---------------------
...

23.11 Data Statistics

Different data statistics can be displayed at the end of the execution of the application. To enable them, you
need to define the environment variable STARPU_ENABLE_STATS. When calling starpu_shutdown() vari-
ous statistics will be displayed, execution, MSI cache statistics, allocation cache statistics, and data transfer
statistics. The display can be disabled by setting the environment variable STARPU_STATS to 0. If the envi-
ronment variable STARPU_BUS_STATS is defined, you can call starpu_profiling_bus_helper_display_summary()
to display statistics about the bus. If the environment variable STARPU_WORKER_STATS is defined, you
can call starpu_profiling_worker_helper_display_summary() to display statistics about the workers. You
can also call starpu_display_stats() which call both starpu_profiling_bus_helper_display_summary() and
starpu_profiling_worker_helper_display_summary() at the same time.

$./examples/cholesky/cholesky_tag
Computation took (in ms)
518.16
Synthetic GFlops : 44.21
#---------------------
MSI cache stats :
TOTAL MSI stats hit 1622 (66.23 %) miss 827 (33.77 %)
...

$ STARPU_STATS=0 ./examples/cholesky/cholesky_tag
Computation took (in ms)
518.16
Synthetic GFlop/s : 44.21

23.12 Tracing MPI applications

When an MPI execution is traced, especially if the execution is on several nodes, clock synchronization issues can
appear. One may notice them mainly on communications (they are received before they are sent, for instance).

Generated by Doxygen

154 Offline Performance Tools

Each processor can call the function starpu_profiling_set_id() to set the ID used for the profiling trace filename.
This function can be useful when executing an MPI program on several nodes, as it enables each processor to
set a unique ID that helps to differentiate its trace file from the files generated by other processors. By doing this,
it becomes easier to analyze and compare the profiling results of each processor separately, which is particularly
helpful for large-scale parallel applications.
By default, StarPU does two MPI barriers with all MPI processes: one at the beginning of the application execution
and one at the end. Then, starpu_fxt_tool considers all processes leave the barriers at the exact same time,
which makes two points for time synchronization between MPI processes.
However, a simple MPI barrier can be not precise enough, because the assumption all processes leave the barriers
at the exact same time is in reality false. To have a more precise barrier, one may use the mpi_sync_clocks
library (automatically provided when StarPU is built with NewMadeleine, but it can also be used with other MPI
libraries). It provides a synchronized barrier, which aims at actually releasing all processes at the exact same time.
Unfortunately, the gained precision costs some time (several seconds per barrier), that is why one can disable this
precise synchronization with the environment variable STARPU_MPI_TRACE_SYNC_CLOCKS set to 0, and use
the faster MPI barrier instead.

23.13 Verbose Traces

Traces can also be inspected by hand by using the tool fxt_print, for instance:

$ fxt_print -o -f /tmp/prof_file_something

Timings are in nanoseconds (while timings as seen in ViTE are in milliseconds).

Generated by Doxygen

https://gitlab.inria.fr/pm2/pm2/-/tree/master/mpi_sync_clocks
https://gitlab.inria.fr/pm2/pm2/-/tree/master/mpi_sync_clocks

Part V

StarPU FAQ

Generated by Doxygen

Chapter 24

Organization

This part explains how to better tune your application to achieve good performance, and also how to fix some
difficulties you may encounter while implementing your applications.

• We give a list of features in Chapter Check List When Performance Are Not There which should be checked
to improve performances of your applications.

• There are some frequently asked questions in Chapter Frequently Asked Questions that may help you to
solve your problems.

If you have problems that cannot be solved, please contact us.

Generated by Doxygen

158 Organization

Generated by Doxygen

Chapter 25

Check List When Performance Are Not There

TODO: improve!
To achieve good performance, we give below a list of features which should be checked.
For a start, you can use Offline Performance Tools to get a Gantt chart which will show roughly where time is spent,
and focus correspondingly.

25.1 Check Task Size

Make sure that your tasks are not too small, as the StarPU runtime overhead may not be negligible. As explained
in Task Size Overhead, you can run the script tasks_size_overhead.sh to get an idea of the scalability of
tasks depending on their duration (in µs), on your own system.
Typically, 10µs-ish tasks are definitely too small, the CUDA overhead itself is much bigger than this.
1ms-ish tasks may be a good start, but will not necessarily scale to many dozens of cores, so it's better to try to get
10ms-ish tasks.
It may be useful to dedicate a whole core to the main thread, so it can spend its time on submitting tasks, by setting
the STARPU_MAIN_THREAD_BIND environment variable to 1.
Tasks durations can easily be observed when performance models are defined (see Performance Model Example)
by using the tools starpu_perfmodel_plot or starpu_perfmodel_display (see Performance Of Codelets)
When using parallel tasks, the problem is even worse since StarPU has to synchronize the tasks execution.

25.2 Configuration Which May Improve Performance

If you do not plan to use support for GPUs or out-of-core, i.e. not use StarPU's ability to manage data coherency be-
tween several memory nodes, the configure option --enable-maxnodes=1 allows to considerably reduce Star←↩

PU's memory management overhead.
The configure option --enable-fast disables all assertions. This makes StarPU more performant for tiny tasks
by disabling all sanity checks. Only use this for measurements and production, not for development, since this will
drop all basic checks.

25.3 Data Related Features Which May Improve Performance

As can be seen in States in Gantt Diagram, if the application has a lot of different kinds of sizes of data, StarPU
will end up freeing/reallocating data on GPU to accomodate for the different sizes. It can be very effective to round
the allocated size up a bit by e.g. 10% (e.g. 11MB for all data sizes between 10MB and 11MB) so that StarPU will
be able to reuse buffers of the same size for data with similar but not exactly same size. This can be registered
by using starpu_matrix_data_register_allocsize(), starpu_vector_data_register_allocsize() so that StarPU records
both the rounded-up data size, and the actual size used for computation.
link to Data Management
link to Data Prefetch

Generated by Doxygen

160 Check List When Performance Are Not There

25.4 Task Related Features Which May Improve Performance

link to Task Granularity
link to Task Submission
link to Task Priorities

25.5 Scheduling Related Features Which May Improve Performance

link to Task Scheduling Policies
link to Task Distribution Vs Data Transfer
link to Energy-based Scheduling
link to Static Scheduling

25.6 CUDA-specific Optimizations

For proper overlapping of asynchronous GPU data transfers, data has to be pinned by CUDA. Data allocated
with starpu_malloc() is always properly pinned. If the application registers to StarPU some data which has not
been allocated with starpu_malloc(), starpu_memory_pin() should be called to pin the data memory. Otherwise,
the "Asynchronous copy submission" parts of the execution traces (see States in Gantt Diagram) will show the
synchronous inefficiency.
Note that CUDA pinning/unpinning takes a long time, so for e.g. temporary data, it is much more efficient to use a
StarPU temporary data (see Temporary Data), that StarPU can reuse and thus avoid the pin/unpin cost.
Due to CUDA limitations, StarPU will have a hard time overlapping its own communications and the codelet compu-
tations if the application does not use a dedicated CUDA stream for its computations instead of the default stream,
which synchronizes all operations of the GPU. The function starpu_cuda_get_local_stream() returns a stream which
can be used by all CUDA codelet operations to avoid this issue. For instance:
func «<grid,block,0,starpu_cuda_get_local_stream()»> (foo, bar);
cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) STARPU_CUDA_REPORT_ERROR(status);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

as well as the use of cudaMemcpyAsync(), etc. for each CUDA operation one needs to use a version that takes
a stream parameter.
If the kernel uses its own non-default stream, one can synchronize this stream with the StarPU-provided stream this
way:
cudaEvent_t event;
call_kernel_with_its_own_stream()
cudaEventCreateWithFlags(&event, cudaEventDisableTiming);
cudaEventRecord(event, get_kernel_stream());
cudaStreamWaitEvent(starpu_cuda_get_local_stream(), event, 0);
cudaEventDestroy(event);

This code makes the StarPU-provided stream wait for a new event, which will be triggered by the completion of the
kernel.
Unfortunately, some CUDA libraries do not have stream variants of kernels. This will seriously lower the potential
for overlapping. If some CUDA calls are made without specifying this local stream, synchronization needs to be
explicit with cudaDeviceSynchronize() around these calls, to make sure that they get properly synchronized with
the calls using the local stream. Notably, cudaMemcpy() and cudaMemset() are actually asynchronous and
need such explicit synchronization! Use cudaMemcpyAsync() and cudaMemsetAsync() instead.
Calling starpu_cublas_init() will ensure StarPU to properly call the CUBLAS library functions, and starpu_cublas_shutdown()
will synchronously deinitialize the CUBLAS library on every CUDA device. Some libraries like Magma may how-
ever change the current stream of CUBLAS v1, one then has to call starpu_cublas_set_stream() at the begin-
ning of the codelet to make sure that CUBLAS is really using the proper stream. When using CUBLAS v2,
starpu_cublas_get_local_handle() can be called to queue CUBLAS kernels with the proper configuration.
Similarly, calling starpu_cusparse_init() makes StarPU create CUSPARSE handles on each CUDA device,
starpu_cusparse_get_local_handle() can then be used to queue CUSPARSE kernels with the proper configu-
ration. starpu_cusparse_shutdown() will synchronously deinitialize the CUSPARSE library on every CUDA device.
Similarly, calling starpu_cusolver_init() makes StarPU create CUSOLVER handles on each CUDA device,
starpu_cusolverDn_get_local_handle(), starpu_cusolverSp_get_local_handle(), starpu_cusolverRf_get_local_handle(),
can then be used to queue CUSOLVER kernels with the proper configuration. starpu_cusolver_shutdown() can be
used to clear these handles. It is useful to use a STARPU_SCRATCH buffer whose size was set to the amount
returned by cusolver∗Spotrf_bufferSize . An example can be seen in examples/cholesky

Generated by Doxygen

25.7 OpenCL-specific Optimizations 161

If the kernel can be made to only use this local stream or other self-allocated streams, i.e. the whole kernel
submission can be made asynchronous, then one should enable asynchronous execution of the kernel. This means
setting the flag STARPU_CUDA_ASYNC in the corresponding field starpu_codelet::cuda_flags, and dropping the
cudaStreamSynchronize() call at the end of the cuda_func function, so that it returns immediately after
having queued the kernel to the local stream. That way, StarPU will be able to submit and complete data transfers
while kernels are executing, instead of only at each kernel submission. The kernel just has to make sure that StarPU
can use the local stream to synchronize with the kernel startup and completion.
Using the flag STARPU_CUDA_ASYNC also permits to enable concurrent kernel execution, on cards which support
it (Kepler and later, notably). This is enabled by setting the environment variable STARPU_NWORKER_PER_CUDA
to the number of kernels to be executed concurrently. This is useful when kernels are small and do not feed the
whole GPU with threads to run.
Concerning memory allocation, you should really not use cudaMalloc()/ cudaFree() within the kernel,
since cudaFree() introduces way too many synchronizations within CUDA itself. You should instead add a
parameter to the codelet with the STARPU_SCRATCH mode access. You can then pass to the task a handle
registered with the desired size but with the NULL pointer, the handle can even be shared between tasks, StarPU
will allocate per-task data on the fly before task execution, and reuse the allocated data between tasks.
See examples/pi/pi_redux.c for an example of use.

25.7 OpenCL-specific Optimizations

If the kernel can be made to only use the StarPU-provided command queue or other self-allocated queues, i.e. the
whole kernel submission can be made asynchronous, then one should enable asynchronous execution of the kernel.
This means setting the flag STARPU_OPENCL_ASYNC in the corresponding field starpu_codelet::opencl_flags
and dropping the clFinish() and starpu_opencl_collect_stats() calls at the end of the kernel, so that it returns
immediately after having queued the kernel to the provided queue. That way, StarPU will be able to submit and
complete data transfers while kernels are executing, instead of only at each kernel submission. The kernel just has
to make sure that StarPU can use the command queue it has provided to synchronize with the kernel startup and
completion.

25.8 Detecting Stuck Conditions

It may happen that StarPU does not make progress for a long period of time. It may be due to contention inside
StarPU, but it may also be an external problem, such as a stuck MPI or CUDA driver.
export STARPU_WATCHDOG_TIMEOUT=10000 (STARPU_WATCHDOG_TIMEOUT)
allows making StarPU print an error message whenever StarPU does not terminate any task for 10ms, but lets the
application continue normally. In addition to that,
export STARPU_WATCHDOG_CRASH=1 (STARPU_WATCHDOG_CRASH)
raises SIGABRT in this condition, thus allowing to catch the situation in gdb.
It can also be useful to type handle SIGABRT nopass in gdb to be able to let the process continue, after
inspecting the state of the process.

25.9 How to Limit Memory Used By StarPU And Cache Buffer Allocations

By default, StarPU makes sure to use at most 90% of the memory of GPU devices, moving data in and out of the
device as appropriate, as well as using prefetch and write-back optimizations.
The environment variables STARPU_LIMIT_CUDA_MEM, STARPU_LIMIT_CUDA_devid_MEM, STARPU_LIMIT_OPENCL_MEM,
and STARPU_LIMIT_OPENCL_devid_MEM can be used to control how much (in MiB) of the GPU device memory
should be used at most by StarPU (the default value is to use 90% of the available memory).
By default, the usage of the main memory is not limited, as the default mechanisms do not provide means to evict
main memory when it gets too tight. This also means that by default, StarPU will not cache buffer allocations in
main memory, since it does not know how much of the system memory it can afford.
The environment variable STARPU_LIMIT_CPU_MEM can be used to specify how much (in MiB) of the main
memory should be used at most by StarPU for buffer allocations. This way, StarPU will be able to cache buffer
allocations (which can be a real benefit if a lot of buffers are involved, or if allocation fragmentation can become a
problem), and when using Out Of Core, StarPU will know when it should evict data out to the disk.

Generated by Doxygen

162 Check List When Performance Are Not There

It should be noted that by default only buffer allocations automatically done by StarPU are accounted here, i.←↩

e. allocations performed through starpu_malloc_on_node() which are used by the data interfaces (matrix, vec-
tor, etc.). This does not include allocations performed by the application through e.g. malloc(). It does not
include allocations performed through starpu_malloc() either, only allocations performed explicitly with the flag
STARPU_MALLOC_COUNT, i.e. by calling
starpu_malloc_flags(STARPU_MALLOC_COUNT)

are taken into account. And starpu_free_flags() can be called to free the memory that was previously allo-
cated with starpu_malloc_flags(). If the application wants to make StarPU aware of its own allocations, so
that StarPU knows precisely how much data is allocated, and thus when to evict allocation caches or data
out to the disk, starpu_memory_allocate() can be used to specify an amount of memory to be accounted for.
starpu_memory_deallocate() can be used to account freed memory back. Those can for instance be used by
data interfaces with dynamic data buffers: instead of using starpu_malloc_on_node(), they would dynamically al-
locate data with malloc()/realloc(), and notify StarPU of the delta by calling starpu_memory_allocate()
and starpu_memory_deallocate(). By default, the memory management system uses a set of default flags for each
node when allocating memory. starpu_malloc_on_node_set_default_flags() can be used to modify these default
flags on a specific node.
starpu_memory_get_total() and starpu_memory_get_available() can be used to get an estimation of how much
memory is available. starpu_memory_wait_available() can also be used to block until an amount of memory be-
comes available, but it may be preferable to call
starpu_memory_allocate(STARPU_MEMORY_WAIT)

to reserve this amount immediately.

25.10 How To Reduce The Memory Footprint Of Internal Data Structures

It is possible to reduce the memory footprint of the task and data internal structures of StarPU by describing the
shape of your machine and/or your application when calling configure.
To reduce the memory footprint of the data internal structures of StarPU, one can set the configure
parameters --enable-maxcpus, --enable-maxnumanodes, --enable-maxcudadev, --enable-maxopencldev and
--enable-maxnodes to give StarPU the architecture of the machine it will run on, thus tuning the size of the
structures to the machine.
To reduce the memory footprint of the task internal structures of StarPU, one can set the configure parameter
--enable-maxbuffers to give StarPU the maximum number of buffers that a task can use during an execution. For
example, in the Cholesky factorization (dense linear algebra application), the GEMM task uses up to 3 buffers, so it
is possible to set the maximum number of task buffers to 3 to run a Cholesky factorization on StarPU.
The size of the various structures of StarPU can be printed by tests/microbenchs/display_←↩

structures_size.
It is also often useless to submit all the tasks at the same time. Task submission can be blocked
when a reasonable given number of tasks have been submitted, by setting the environment variables
STARPU_LIMIT_MIN_SUBMITTED_TASKS and STARPU_LIMIT_MAX_SUBMITTED_TASKS.
export STARPU_LIMIT_MAX_SUBMITTED_TASKS=10000
export STARPU_LIMIT_MIN_SUBMITTED_TASKS=9000

will make StarPU block submission when 10000 tasks are submitted, and unblock submission when only 9000 tasks
are still submitted, i.e. 1000 tasks have completed among the 10000 which were submitted when submission was
blocked. Of course this may reduce parallelism if the threshold is set too low. The precise balance depends on the
application task graph.
These values can also be specified with the functions starpu_set_limit_min_submitted_tasks() and starpu_set_limit_max_submitted_tasks().
An idea of how much memory is used for tasks and data handles can be obtained by setting the environment
variable STARPU_MAX_MEMORY_USE to 1.

25.11 How To Reuse Memory

When your application needs to allocate more data than the available amount of memory usable by StarPU (given by
starpu_memory_get_available()), the allocation cache system can reuse data buffers used by previously executed
tasks. For this system to work with MPI tasks, you need to submit tasks progressively instead of as soon as possible,
because in the case of MPI receives, the allocation cache check for reusing data buffers will be done at submission
time, not at execution time.
There are two options to control the task submission flow. The first one is by controlling the number of
submitted tasks during the whole execution. This can be done whether by setting the environment vari-

Generated by Doxygen

25.12 Performance Model Calibration 163

ables STARPU_LIMIT_MAX_SUBMITTED_TASKS and STARPU_LIMIT_MIN_SUBMITTED_TASKS to tell Star←↩

PU when to stop submitting tasks and when to wake up and submit tasks again, or by explicitly calling
starpu_task_wait_for_n_submitted() in your application code for finest grain control (for example, between two iter-
ations of a submission loop).
The second option is to control the memory size of the allocation cache. This can be done in the application by
using jointly starpu_memory_get_available() and starpu_memory_wait_available() to submit tasks only when there
is enough memory space to allocate the data needed by the task, i.e. when enough data are available for reuse in
the allocation cache.

25.12 Performance Model Calibration

Most schedulers are based on an estimation of codelet duration on each kind of processing unit. For this to be
possible, the application programmer needs to configure a performance model for the codelets of the application
(see Performance Model Example for instance). History-based performance models use on-line calibration. When
using a scheduler which requires such performance model, StarPU will automatically calibrate codelets which have
never been calibrated yet, and save the result in $STARPU_HOME/.starpu/sampling/codelets. The
models are indexed by machine name. They can then be displayed various ways, see Performance Of Codelets .
By default, StarPU stores separate performance models according to the hostname of the system. To avoid having to
calibrate performance models for each node of a homogeneous cluster for instance, the model can be shared by us-
ing export STARPU_HOSTNAME=some_global_name (STARPU_HOSTNAME), where some_global←↩

_name is the name of the cluster for instance, which thus overrides the hostname of the system.
By default, StarPU stores separate performance models for each GPU. To avoid having to calibrate
performance models for each GPU of a homogeneous set of GPU devices for instance, the model
can be shared by using the environment variables STARPU_PERF_MODEL_HOMOGENEOUS_CUDA,
STARPU_PERF_MODEL_HOMOGENEOUS_OPENCL and STARPU_PERF_MODEL_HOMOGENEOUS_MPI_MS
depending on your GPU device type.
export STARPU_PERF_MODEL_HOMOGENEOUS_CUDA=1
export STARPU_PERF_MODEL_HOMOGENEOUS_OPENCL=1
export STARPU_PERF_MODEL_HOMOGENEOUS_MPI_MS=1

To force continuing calibration, use export STARPU_CALIBRATE=1 (STARPU_CALIBRATE). This may
be necessary if your application has not-so-stable performance. It may also be useful to use STARPU_←↩

SCHED=eager to get tasks distributed over the various workers. StarPU will force calibration (and thus ignore
the current result) until 10 (_STARPU_CALIBRATION_MINIMUM) measurements have been made on each ar-
chitecture, to avoid bad scheduling decisions just because the first measurements were not so good.
Note that StarPU will not record the very first measurement for a given codelet and a given size, because it would
most often be hit by computation library loading or initialization. StarPU will also throw measurements away if it
notices that after computing an average execution time, it notices that most subsequent tasks have an execution
time largely outside the computed average ("Too big deviation for model..." warning messages). By looking at the
details of the message and their reported measurements, it can highlight that your computation library really has
non-stable measurements, which is probably an indication of an issue in the computation library, or the execution
environment (e.g. rogue daemons).
Details on the current performance model status can be obtained with the tool starpu_perfmodel_←↩

display: the option -l lists the available performance models, and the option -s allows choosing the per-
formance model to be displayed. The result looks like:

$ starpu_perfmodel_display -s starpu_slu_lu_model_getrf
performance model for cpu_impl_0
hash size flops mean dev n
914f3bef 1048576 0.000000e+00 2.503577e+04 1.982465e+02 8
3e921964 65536 0.000000e+00 5.527003e+02 1.848114e+01 7
e5a07e31 4096 0.000000e+00 1.717457e+01 5.190038e+00 14
...

It shows that for the LU 11 kernel with a 1MiB matrix, the average execution time on CPUs was about 25ms,
with a 0.2ms standard deviation, over 8 samples. It is a good idea to check this before doing actual performance
measurements.
A graph can be drawn by using the tool starpu_perfmodel_plot:

$ starpu_perfmodel_plot -s starpu_slu_lu_model_getrf
4096 16384 65536 262144 1048576 4194304
$ gnuplot starpu_starpu_slu_lu_model_getrf.gp
$ gv starpu_starpu_slu_lu_model_getrf.eps

Generated by Doxygen

164 Check List When Performance Are Not There

If a kernel source code was modified (e.g. performance improvement), the calibration information is stale and
should be dropped, to re-calibrate from start. This can be done by using export STARPU_CALIBRATE=2
(STARPU_CALIBRATE).
Note: history-based performance models get calibrated only if a performance-model-based scheduler is chosen.
The history-based performance models can also be explicitly filled by the application without execution, if e.g. the
application already has a series of measurements. This can be done by using starpu_perfmodel_update_history(),
for instance:
static struct starpu_perfmodel perf_model =
{

.type = STARPU_HISTORY_BASED,

.symbol = "my_perfmodel",
};
struct starpu_codelet cl =
{

.cuda_funcs = { cuda_func1, cuda_func2 },

.nbuffers = 1,

.modes = {STARPU_W},

.model = &perf_model
};
void feed(void)
{

struct my_measure *measure;
struct starpu_task task;
starpu_task_init(&task);
task.cl = &cl;
for (measure = &measures[0]; measure < measures[last]; measure++)
{

starpu_data_handle_t handle;
starpu_vector_data_register(&handle, -1, 0, measure->size, sizeof(float));
task.handles[0] = handle;
starpu_perfmodel_update_history(&perf_model, &task, STARPU_CUDA_DEFAULT + measure->cudadev, 0,

measure->implementation, measure->time);
starpu_task_clean(&task);
starpu_data_unregister(handle);

}
}

Measurement has to be provided in milliseconds for the completion time models, and in Joules for the energy
consumption models.

Generated by Doxygen

25.13 Profiling 165

25.13 Profiling

A quick view of how many tasks each worker has executed can be obtained by setting export STARPU_←↩

WORKER_STATS=1 (STARPU_WORKER_STATS). This is a convenient way to check that execution did hap-
pen on accelerators, without penalizing performance with the profiling overhead. The environment variable
STARPU_WORKER_STATS_FILE can be defined to specify a filename in which to display statistics, by default
statistics are printed on the standard error stream.
A quick view of how much data transfers have been issued can be obtained by setting export STARPU_BUS←↩

_STATS=1 (STARPU_BUS_STATS). The environment variable STARPU_BUS_STATS_FILE can be defined to
specify a filename in which to display statistics, by default statistics are printed on the standard error stream.
More detailed profiling information can be enabled by using export STARPU_PROFILING=1 (STARPU_PROFILING)
or by calling starpu_profiling_status_set() from the source code. Statistics on the execution can then be obtained
by using export STARPU_BUS_STATS=1 and export STARPU_WORKER_STATS=1 . More details on
performance feedback are provided in the next chapter.

25.14 Overhead Profiling

Offline Performance Tools can already provide an idea of to what extent and which part of StarPU brings an over-
head on the execution time. To get a more precise analysis of which parts of StarPU bring the most overhead,
gprof can be used.
First, recompile and reinstall StarPU with gprof support:
../configure --enable-perf-debug --disable-shared --disable-build-tests --disable-build-examples

Make sure not to leave a dynamic version of StarPU in the target path: remove any remaining libstarpu-∗.so
Then relink your application with the static StarPU library, make sure that running ldd on your application does not
mention any libstarpu (i.e. it's really statically-linked).
gcc test.c -o test $(pkg-config --cflags starpu-1.4) $(pkg-config --libs starpu-1.4)

Now you can run your application, this will create a file gmon.out in the current directory, it can be processed by
running gprof on your application:
gprof ./test

This will dump an analysis of the time spent in StarPU functions.

Generated by Doxygen

166 Check List When Performance Are Not There

Generated by Doxygen

Chapter 26

Frequently Asked Questions

26.1 How To Initialize A Computation Library Once For Each Worker?

Some libraries need to be initialized once for each concurrent instance that may run on the machine. For instance,
a C++ computation class which is not thread-safe by itself, but for which several instantiated objects of that class
can be used concurrently. This can be used in StarPU by initializing one such object per worker. For instance, the
libstarpufft example does the following to be able to use FFTW on CPUs.
Some global array stores the instantiated objects:
fftw_plan plan_cpu[STARPU_NMAXWORKERS];

At initialization time of libstarpu, the objects are initialized:
int workerid;
for (workerid = 0; workerid < starpu_worker_get_count(); workerid++)
{

switch (starpu_worker_get_type(workerid))
{

case STARPU_CPU_WORKER:
plan_cpu[workerid] = fftw_plan(...);
break;

}
}

And in the codelet body, they are used:
static void fft(void *descr[], void *_args)
{

int workerid = starpu_worker_get_id();
fftw_plan plan = plan_cpu[workerid];
...
fftw_execute(plan, ...);

}

We call starpu_worker_get_id() to retrieve the worker ID associated with the currently executing task, or call
starpu_worker_get_id_check() with the error checking.
This however is not sufficient for FFT on CUDA: initialization has to be done from the workers themselves. This can
be done thanks to starpu_execute_on_each_worker() or starpu_execute_on_each_worker_ex() with a specified
task name, or starpu_execute_on_specific_workers() with specified workers. For instance, libstarpufft does
the following.
static void fft_plan_gpu(void *args)
{

plan plan = args;
int n2 = plan->n2[0];
int workerid = starpu_worker_get_id();
cufftPlan1d(&plan->plans[workerid].plan_cuda, n, _CUFFT_C2C, 1);
cufftSetStream(plan->plans[workerid].plan_cuda, starpu_cuda_get_local_stream());

}
void starpufft_plan(void)
{

starpu_execute_on_each_worker(fft_plan_gpu, plan, STARPU_CUDA);
}

26.2 Hardware Topology

26.2.1 Interoperability hwloc

If hwloc is used, we can call starpu_get_hwloc_topology() to get the hwloc topology used by StarPU, and call
starpu_get_pu_os_index() to get the OS index of a PU. We can call starpu_worker_get_hwloc_cpuset() to retrieve
the hwloc CPU set associated with a worker.

Generated by Doxygen

168 Frequently Asked Questions

26.2.2 Memory

There are various functions that we can use to retrieve information of memory node, such as to get
the name of a memory node we call starpu_memory_node_get_name() and to get the kind of a mem-
ory node we call starpu_node_get_kind(). To retrieve the device ID associated with a memory node
we call starpu_memory_node_get_devid(). We can call starpu_worker_get_local_memory_node() to re-
trieve the local memory node associated with the current worker. We can also specify a worker and call
starpu_worker_get_memory_node() to retrieve the associated memory node. To get the type of memory node
associated with a kind of worker we call starpu_worker_get_memory_node_kind(). If we want to know the to-
tal number of memory nodes in the system we can call starpu_memory_nodes_get_count(), and we can also
retrieve the total number of memory nodes in the system that match a specific memory node kind by calling
starpu_memory_nodes_get_count_by_kind(). We can call starpu_memory_node_get_ids_by_type() to get the
identifiers of memory nodes in the system that match a specific memory node type. To obtain a bitmap representing
logical indexes of NUMA nodes we can call starpu_get_memory_location_bitmap().

26.2.3 Workers

StarPU provides a range of functions for querying and managing the worker configurations on a given system.
One such function is starpu_worker_get_count(), which returns the total number of workers in the system. In
addition to this, there are also specific functions to obtain the number of workers associated with various pro-
cessing units controlled by StarPU: to retrieve the number of CPUs we can call starpu_cpu_worker_get_count(),
to retrieve the number of CUDA devices we can call starpu_cuda_worker_get_count(), to retrieve the num-
ber of HIP devices we can call starpu_hip_worker_get_count(), to retrieve the number of OpenCL devices we
can call starpu_opencl_worker_get_count(), to retrieve the number of MPI Master Slave workers we can call
starpu_mpi_ms_worker_get_count(), and to retrieve the number of TCPIP Master Slave workers we can call
starpu_tcpip_ms_worker_get_count().
There are various functions that we can use to retrieve information of the worker. We call starpu_worker_get_name()
to get the name of the worker, we call starpu_worker_get_devid() to get the device ID of the worker
or call starpu_worker_get_devids() to retrieve the list of device IDs that are associated with a worker,
and call starpu_worker_get_devnum() to get number of the device controlled by the worker which begin
from 0. We call starpu_worker_get_subworkerid() to get the ID of sub-worker for the device. We call
starpu_worker_get_sched_ctx_list() to retrieve a list of scheduling contexts that a worker is associated with.
We call starpu_worker_get_stream_workerids() to retrieve the list of worker IDs that share the same stream as a
given worker.
To retrieve the total number of NUMA nodes in the system we call starpu_memory_nodes_get_numa_count(). To
get the device identifier associated with a specific NUMA node and to get the NUMA node identifier associated with a
specific device we can call starpu_memory_nodes_numa_id_to_devid() and starpu_memory_nodes_numa_devid_to_id()
respectively.
We can also print out information about the workers currently registered with StarPU. starpu_worker_display_all()
prints out information of all workers, starpu_worker_display_names() prints out information of all the workers of the
given type, starpu_worker_display_count() prints out the number of workers of the given type.
StarPU provides various functions associated to the type of processing unit, such as starpu_worker_get_type(),
which returns the type of processing unit associated to the worker, e.g. CPU or CUDA. We can call
starpu_worker_get_type_as_string() to retrieve a string representation of the type of a worker or call
starpu_worker_get_type_from_string() to retrieve a worker type enumeration value from a string representa-
tion of a worker type or call starpu_worker_get_type_as_env_var() to retrieve a string representation of the type
of a worker that can be used as an environment variable. Another function, starpu_worker_get_count_by_type(),
returns the number of workers of a specific type. starpu_worker_get_ids_by_type() returns a list of worker IDs for
a specific type, and starpu_worker_get_by_type() returns the ID of the specific worker that has the specific type,
starpu_worker_get_by_devid() returns the ID of the worker that has the specific type and device ID. To get the
type of worker associated with a kind of memory node we call starpu_memory_node_get_worker_archtype().
To check if type of processing unit matches one of StarPU's defined worker architectures we can call
starpu_worker_archtype_is_valid(), while in order to convert an architecture mask to a worker architecture we
can call starpu_arch_mask_to_worker_archtype().
To retrieve the binding ID of the worker associated with the currently executing task we can call starpu_worker_get_bindid(),
it is useful for applications that require information about the binding of a particular task to a specific processor. We
can call starpu_bindid_get_workerids() to retrieve the list of worker IDs that are bound to a given binding ID.
We can call starpu_workers_get_tree() to get information about the tree facilities provided by StarPU.

Generated by Doxygen

26.3 Using The Driver API 169

26.2.4 Bus

StarPU provides several functions to declare or retrieve information about the buses in a machine. The function
starpu_bus_get_count() can be used to get the total number of buses available. To obtain the identifier of the
bus between a source and destination point, the function starpu_bus_get_id() can be called. The source and
destination points of a bus can be obtained by calling the functions starpu_bus_get_src() and starpu_bus_get_dst()
respectively. Furthermore, users can use the function starpu_bus_set_direct() to declare that there is a direct link
between a GPU and memory to the driver. The direct link can significantly reduce data transfer latency and improve
overall performance. Moreover, users can use the function starpu_bus_get_direct() to retrieve information about
whether a direct link has been established between a GPU and memory using the starpu_bus_set_direct() function.
starpu_bus_set_ngpus() and starpu_bus_get_ngpus() functions can be used to declare and retrieve the number of
GPUs of this bus that users need.

26.3 Using The Driver API

Running Drivers
int ret;
struct starpu_driver =
{

.type = STARPU_CUDA_WORKER,

.id.cuda_id = 0
};
ret = starpu_driver_init(&d);
if (ret != 0)

error();
while (some_condition)
{

ret = starpu_driver_run_once(&d);
if (ret != 0)

error();
}
ret = starpu_driver_deinit(&d);
if (ret != 0)

error();

same as:
int ret;
struct starpu_driver =
{

.type = STARPU_CUDA_WORKER,

.id.cuda_id = 0
};
ret = starpu_driver_run(&d);
if (ret != 0)

error();

The function starpu_driver_run() initializes the given driver, run it until starpu_drivers_request_termination() is
called.
To add a new kind of device to the structure starpu_driver, one needs to:

1. Add a member to the union starpu_driver::id

2. Modify the internal function _starpu_launch_drivers() to make sure the driver is not always
launched.

3. Modify the function starpu_driver_run() so that it can handle another kind of architecture. The function
starpu_driver_run() is equal to call starpu_driver_init(), then to call starpu_driver_run_once() in a loop, and
finally to call starpu_driver_deinit().

4. Write the new function _starpu_run_foobar() in the corresponding driver.

26.4 On-GPU Rendering

Graphical-oriented applications need to draw the result of their computations, typically on the very GPU where these
happened. Technologies such as OpenGL/CUDA interoperability permit to let CUDA directly work on the Open←↩

GL buffers, making them thus immediately ready for drawing, by mapping OpenGL buffer, textures or renderbuffer
objects into CUDA. CUDA however imposes some technical constraints: peer memcpy has to be disabled, and the
thread that runs OpenGL has to be the one that runs CUDA computations for that GPU.
To achieve this with StarPU, pass the option --disable-cuda-memcpy-peer to configure (TODO: make it dy-
namic), OpenGL/GLUT has to be initialized first, and the interoperability mode has to be enabled by using the

Generated by Doxygen

170 Frequently Asked Questions

field starpu_conf::cuda_opengl_interoperability, and the driver loop has to be run by the application, by using
the field starpu_conf::not_launched_drivers to prevent StarPU from running it in a separate thread, and by using
starpu_driver_run() to run the loop. The examples gl_interop and gl_interop_idle show how it articu-
lates in a simple case, where rendering is done in task callbacks. The former uses glutMainLoopEvent to
make GLUT progress from the StarPU driver loop, while the latter uses glutIdleFunc to make StarPU progress
from the GLUT main loop.
Then, to use an OpenGL buffer as a CUDA data, StarPU simply needs to be given the CUDA pointer at registration,
for instance:
/* Get the CUDA worker id */
for (workerid = 0; workerid < starpu_worker_get_count(); workerid++)

if (starpu_worker_get_type(workerid) == STARPU_CUDA_WORKER)
break;

/* Build a CUDA pointer pointing at the OpenGL buffer */
cudaGraphicsResourceGetMappedPointer((void**)&output, &num_bytes, resource);
/* And register it to StarPU */
starpu_vector_data_register(&handle, starpu_worker_get_memory_node(workerid), output, num_bytes /

sizeof(float4), sizeof(float4));
/* The handle can now be used as usual */
starpu_task_insert(&cl, STARPU_RW, handle, 0);
/* ... */
/* This gets back data into the OpenGL buffer */
starpu_data_unregister(handle);

and display it e.g. in the callback function.

26.5 Using StarPU With MKL 11 (Intel Composer XE 2013)

Some users had issues with MKL 11 and StarPU (versions 1.1rc1 and 1.0.5) on Linux with MKL, using 1 thread for
MKL and doing all the parallelism using StarPU (no multithreaded tasks), setting the environment variable MKL_←↩

NUM_THREADS to 1, and using the threaded MKL library, with iomp5.
Using this configuration, StarPU only uses 1 core, no matter the value of STARPU_NCPU. The problem is actually
a thread pinning issue with MKL.
The solution is to set the environment variable KMP_AFFINITY to disabled (http://software.←↩

intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler←↩

_c/optaps/common/optaps_openmp_thread_affinity.htm).

26.6 Thread Binding on NetBSD

When using StarPU on a NetBSD machine, if the topology discovery library hwloc is used, thread binding will fail.
To prevent the problem, you should at least use the version 1.7 of hwloc, and also issue the following call:

$ sysctl -w security.models.extensions.user_set_cpu_affinity=1

Or add the following line in the file /etc/sysctl.conf

security.models.extensions.user_set_cpu_affinity=1

26.7 StarPU permanently eats 100% of all CPUs

Yes, this is on purpose.
By default, StarPU uses active polling on task queues to minimize wake-up latency for better overall performance.
We can call starpu_is_paused() to check whether the task processing by workers has been paused or not.
If eating CPU time is a problem (e.g. application running on a desktop), pass option --enable-blocking-drivers to
configure. This will add some overhead when putting CPU workers to sleep or waking them, but avoid eating
100% CPU permanently.

26.8 Interleaving StarPU and non-StarPU code

If your application only partially uses StarPU, and you do not want to call starpu_init() / starpu_shutdown() at the
beginning/end of each section, StarPU workers will poll for work between the sections. To avoid this behavior, you
can "pause" StarPU with the starpu_pause() function. This will prevent the StarPU workers from accepting new
work (tasks that are already in progress will not be frozen), and stop them from polling for more work.

Generated by Doxygen

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm
http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm
http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm

26.9 When running with CUDA or OpenCL devices, I am seeing less CPU cores 171

Note that this does not prevent you from submitting new tasks, but they won't execute until starpu_resume() is called.
Also note that StarPU must not be paused when you call starpu_shutdown(), and that this function pair works in a
push/pull manner, i.e. you need to match the number of calls to these functions to clear their effect.
One way to use these functions could be:
starpu_init(NULL);
starpu_worker_wait_for_initialisation(); // Wait for the worker to complete its initialization process
starpu_pause(); // To submit all the tasks without a single one executing
submit_some_tasks();
starpu_resume(); // The tasks start executing
starpu_task_wait_for_all();
starpu_pause(); // Stop the workers from polling
starpu_resume();
starpu_shutdown();

26.9 When running with CUDA or OpenCL devices, I am seeing less CPU
cores

Yes, this is on purpose.
Since GPU devices are way faster than CPUs, StarPU needs to react quickly when a task is finished, to feed
the GPU with another task (StarPU actually submits a couple of tasks in advance to pipeline this, but filling the
pipeline still has to be happening often enough), and thus it has to dedicate threads for this, and this is a very
CPU-consuming duty. StarPU thus dedicates one CPU core for driving each GPU by default.
Such dedication is also useful when a codelet is hybrid, i.e. while kernels are running on the GPU, the codelet can
run some computation, which thus be run by the CPU core instead of driving the GPU.
One can choose to dedicate only one thread for all the CUDA devices by setting the STARPU_CUDA_THREAD_PER_DEV
environment variable to 1. The application however should use STARPU_CUDA_ASYNC on its CUDA codelets
(asynchronous execution), otherwise the execution of a synchronous CUDA codelet will monopolize the thread, and
other CUDA devices will thus starve while it is executing.

26.10 StarPU does not see my CUDA device

First, make sure that CUDA is properly running outside StarPU: build and run the following program with -lcudart
:
#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>
int main(void)
{

int n, i, version;
cudaError_t err;
err = cudaGetDeviceCount(&n);
if (err)
{

fprintf(stderr,"cuda error %d\n", err);
exit(1);

}
cudaDriverGetVersion(&version);
printf("driver version %d\n", version);
cudaRuntimeGetVersion(&version);
printf("runtime version %d\n", version);
printf("\n");
for (i = 0; i < n; i++)
{

struct cudaDeviceProp props;
printf("CUDA%d\n", i);
err = cudaGetDeviceProperties(&props, i);
if (err)
{

fprintf(stderr,"cudaGetDeviceProperties cuda error %d\n", err);
continue;

}
printf("%s\n", props.name);
printf("%0.3f GB\n", (float) props.totalGlobalMem / (1«30));
printf("%u MP\n", props.multiProcessorCount);
printf("\n");
err = cudaSetDevice(i);
if (err)
{

fprintf(stderr,"cudaSetDevice(%d) cuda error %d\n", err, i);
continue;

}
err = cudaFree(0);
if (err)

Generated by Doxygen

172 Frequently Asked Questions

{
fprintf(stderr,"cudaFree(0) on %d cuda error %d\n", err, i);
continue;

}
}
return 0;

}

If that program does not find your device, the problem is not at the StarPU level, but with the CUDA drivers,
check the documentation of your CUDA setup. This program is available in the source directory of StarPU in
tools/gpus/check_cuda.c, along with another CUDA program tools/gpus/cuda_list.cu.

26.11 StarPU does not see my OpenCL device

First, make sure that OpenCL is properly running outside StarPU: build and run the following program with -l←↩

OpenCL :
#include <CL/cl.h>
#include <stdio.h>
#include <assert.h>
int main(void)
{

cl_device_id did[16];
cl_int err;
cl_platform_id pid, pids[16];
cl_uint nbplat, nb;
char buf[128];
size_t size;
int i, j;
err = clGetPlatformIDs(sizeof(pids)/sizeof(pids[0]), pids, &nbplat);
assert(err == CL_SUCCESS);
printf("%u platforms\n", nbplat);
for (j = 0; j < nbplat; j++)
{

pid = pids[j];
printf(" platform %d\n", j);
err = clGetPlatformInfo(pid, CL_PLATFORM_VERSION, sizeof(buf)-1, buf, &size);
assert(err == CL_SUCCESS);
buf[size] = 0;
printf(" platform version %s\n", buf);
err = clGetDeviceIDs(pid, CL_DEVICE_TYPE_ALL, sizeof(did)/sizeof(did[0]), did, &nb);
if (err == CL_DEVICE_NOT_FOUND)

nb = 0;
else

assert(err == CL_SUCCESS);
printf("%d devices\n", nb);
for (i = 0; i < nb; i++)
{

err = clGetDeviceInfo(did[i], CL_DEVICE_VERSION, sizeof(buf)-1, buf, &size);
buf[size] = 0;
printf(" device %d version %s\n", i, buf);

}
}
return 0;

}

If that program does not find your device, the problem is not at the StarPU level, but with the OpenCL drivers, check
the documentation of your OpenCL implementation. This program is available in the source directory of StarPU in
tools/gpus/check_opencl.c.

26.12 There seems to be errors when copying to and from CUDA devices

You should first try to disable asynchronous copies between CUDA and CPU workers. You can either
do that with the configuration parameter --disable-asynchronous-cuda-copy or with the environment variable
STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY.
If your application keeps failing, you will find in the source directory of StarPU, a directory named tools/gpus
with various programs. cuda_copy.cu is testing the direct or undirect copy between CUDA devices.
You can also try to just disable the direct gpu-gpu transfers (known to fail under some hardware/cuda combinations)
by setting the STARPU_ENABLE_CUDA_GPU_GPU_DIRECT environment variable to 0.

26.13 I keep getting a "Incorrect performance model file" error

The performance model file, used by StarPU to record the performance of codelets, seem to have been corrupted.
Perhaps a previous run of StarPU stopped abruptly, and thus could not save it properly. You can have a look at the

Generated by Doxygen

26.13 I keep getting a "Incorrect performance model file" error 173

file if you can fix it, but the simplest way is to just remove the file and run again, StarPU will just have to re-perform
calibration for the corresponding codelet.

Generated by Doxygen

174 Frequently Asked Questions

Generated by Doxygen

Part VI

StarPU Language Bindings

Generated by Doxygen

Chapter 27

Organization

This part shows how StarPU which is natively written in C, has been extended to allow applications written in other
languages to use it.

• You can learn to natively access most of StarPU functionalities from Fortran 2008+ codes with some expla-
nations and examples in Chapter The StarPU Native Fortran Support.

• You can find out how to execute Java applications with some important StarPU APIs in Chapter
StarPU Java Interface.

• Python interface supports most of the main StarPU functionalities, and new functions especially adapted to
Python have been added as well. There are detailed explanations and examples in Chapter Python Interface.

• You can learn how to execute OpenMP tasks with some specific functions in Chapter The StarPU OpenMP Runtime Support (SORS).

Generated by Doxygen

178 Organization

Generated by Doxygen

Chapter 28

Native Fortran Support

StarPU provides the necessary routines and support to natively access most of its functionalities from Fortran 2008+
codes.
All symbols (functions, constants) are defined in fstarpu_mod.f90. Every symbol of the Native Fortran support
API is prefixed by fstarpu_.
Note: Mixing uses of fstarpu_ and starpu_ symbols in the same Fortran code has unspecified behavior. See
Valid API Mixes and Language Mixes for a discussion about valid and unspecified combinations.

28.1 Implementation Details and Specificities

28.1.1 Prerequisites

The Native Fortran support relies on Fortran 2008 specific constructs, as well as on the support for interoperability
of assumed-shape arrays introduced as part of Fortran's Technical Specification ISO/IEC TS 29113:2012, for which
no equivalent are available in previous versions of the standard. It has currently been tested successfully with GNU
GFortran 4.9, GFortran 5.x, GFortran 6.x and the Intel Fortran Compiler >= 2016. It is known not to work with GNU
GFortran < 4.9, Intel Fortran Compiler < 2016.
See Section Using StarPU with Older Fortran Compilers for information on how to write StarPU Fortran code with
older compilers.

28.1.2 Configuration

The Native Fortran API is enabled and its companion fstarpu_mod.f90 Fortran module source file is in-
stalled by default when a Fortran compiler is found, unless the detected Fortran compiler is known not to sup-
port the requirements for the Native Fortran API. The support can be disabled through the configure option
--disable-fortran. Conditional compiled source codes may check for the availability of the Native Fortran Support by
testing whether the preprocessor macro STARPU_HAVE_FC is defined or not.

28.1.3 Examples

Several examples using the Native Fortran API are provided in StarPU's examples/native_fortran/ ex-
amples directory, to showcase the Fortran flavor of various basic and more advanced StarPU features.

28.1.4 Compiling a Native Fortran Application

The Fortran module fstarpu_mod.f90 installed in StarPU's include/ directory provides all the necessary
API definitions. It must be compiled with the same compiler (same vendor, same version) as the application itself,
and the resulting fstarpu_mod.o object file must be linked with the application executable.
Each example provided in StarPU's examples/native_fortran/ examples directory comes with its own
dedicated Makefile for out-of-tree build. Such example Makefiles may be used as starting points for building appli-
cation codes with StarPU.

Generated by Doxygen

180 Native Fortran Support

28.2 Fortran Translation for Common StarPU API Idioms

All these examples assume that the standard Fortran module iso_c_binding is in use.

• Specifying a NULL pointer
type(c_ptr) :: my_ptr ! variable to store the pointer
! [...]
my_ptr = c_null_ptr ! assign standard constant for null ptr

• Obtaining a pointer to some object:
real(8), dimension(:), allocatable, target :: va
type(c_ptr) :: p_va ! variable to store a pointer to array va
! [...]
p_va = c_loc(va)

• Obtaining a pointer to some subroutine:
! pointed routine definition
recursive subroutine myfunc () bind(C)
! [...]
type(c_funptr) :: p_fun ! variable to store the routine pointer
! [...]
p_fun = c_funloc(my_func)

• Obtaining the size of some object:
real(8) :: a
integer(c_size_t) :: sz_a ! variable to store the size of a
! [...]
sz_a = c_sizeof(a)

• Obtaining the length of an array dimension:
real(8), dimension(:,:), allocatable, target :: vb
integer(c_int) :: ln_vb_1 ! variable to store the length of vb’s dimension 1
integer(c_int) :: ln_vb_2 ! variable to store the length of vb’s dimension 2
! [...]
ln_vb_1 = 1+ubound(vb,1)-lbound(vb,1) ! get length of dimension 1 of vb
ln_vb_2 = 1+ubound(vb,2)-lbound(vb,2) ! get length of dimension 2 of vb

• Specifying a string constant:
type(c_ptr) :: my_cl ! a StarPU codelet
! [...]
! set the name of a codelet to string ’my_codele’t:
call fstarpu_codelet_set_name(my_cl, c_char_"my_codelet"//c_null_char)
! note: using the C_CHAR_ prefix and the //C_NULL_CHAR concatenation at the end ensures
! that the string constant is properly ’\0’ terminated, and compatible with StarPU’s
! internal C routines
!
! note: plain Fortran string constants are not ’\0’ terminated, and as such, must not be
! passed to starpu routines.

• Combining multiple flag constants with a bitwise 'or':
type(c_ptr) :: my_cl ! a pointer for the codelet structure
! [...]
! add a managed buffer to a codelet, specifying both the Read/Write access mode and the Locality hint
call fstarpu_codelet_add_buffer(my_cl, fstarpu_rw.ior.fstarpu_locality)

A basic example is available in examples/native_fortran/nf_vector_scal.f90.

28.3 Uses, Initialization and Shutdown

The snippet below show an example of minimal StarPU code using the Native Fortran support. The program should
use the standard module iso_c_binding as well as StarPU's fstarpu_mod. The StarPU runtime engine
is initialized with a call to function fstarpu_init, which returns an integer status of 0 if successful or non-0
otherwise. Eventually, a call to fstarpu_shutdown ends the runtime engine and frees all internal StarPU data
structures.
program nf_initexit

use iso_c_binding ! C interfacing module
use fstarpu_mod ! StarPU interfacing module
implicit none ! Fortran recommended best practice
integer(c_int) :: err ! return status for fstarpu_init
! initialize StarPU with default settings
err = fstarpu_init(c_null_ptr)
if (err /= 0) then

stop 1 ! StarPU initialization failure
end if

! - add StarPU Native Fortran API calls here
! shut StarPU down
call fstarpu_shutdown()

end program nf_initexit

Generated by Doxygen

28.4 Fortran Flavor of StarPU's Variadic Insert_task 181

28.4 Fortran Flavor of StarPU's Variadic Insert_task

Fortran does not have a construction similar to C variadic functions, on which starpu_task_insert() relies at the
time of this writing. However, Fortran's variable length arrays of c_ptr elements enable to emulate much of the
convenience of C's variadic functions. This is the approach retained for implementing fstarpu_task_insert.
The general syntax for using fstarpu_task_insert is as follows:
call fstarpu_task_insert((/ <codelet ptr> &

[, <access mode flags>, <data handle>]* &
[, <argument type constant>, <argument>]* &
, c_null_ptr /))

There is thus a unique array argument (/ ... /) passed to fstarpu_task_insert which itself contains
the task settings. Each element of the array must be of type type(c_ptr). The last element of the array must
be C_NULL_PTR.
Example extracted from nf_vector.f90:
call fstarpu_task_insert((/ cl_vec, & ! codelet

fstarpu_r, dh_va, & ! a first data handle
fstarpu_rw.ior.fstarpu_locality, dh_vb, & ! a second data handle
c_null_ptr /)) ! no more args

The full example is available in examples/native_fortran/nf_vector.f90.

28.5 Functions and Subroutines Expecting Data Structures Arguments

Several StarPU structures that are expected to be passed to the C API, are replaced by function/subroutine wrapper
sets to allocate, set fields and free such structure. This strategy has been preferred over defining native Fortran
equivalent of such structures using Fortran's derived types, to avoid potential layout mismatch between C and
Fortran StarPU data structures. Examples of such data structures wrappers include fstarpu_conf_allocate
and alike, fstarpu_codelet_allocate and alike, fstarpu_data_filter_allocate and alike.
Here is an example of allocating, filling and deallocating a codelet structure:
! a pointer for the codelet structure
type(c_ptr) :: cl_vec
! [...]
! allocate an empty codelet structure
cl_vec = fstarpu_codelet_allocate()
! add a CPU implementation function to the codelet
call fstarpu_codelet_add_cpu_func(cl_vec, c_funloc(cl_cpu_func_vec))
! add a CUDA implementation function to the codelet
call fstarpu_codelet_add_cuda_func(cl_vec, c_funloc(cl_cuda_func_vec))
! set the codelet name
call fstarpu_codelet_set_name(cl_vec, c_char_"my_vec_codelet"//c_null_char)
! add a Read-only mode data buffer to the codelet
call fstarpu_codelet_add_buffer(cl_vec, fstarpu_r)
! add a Read-Write mode data buffer to the codelet
call fstarpu_codelet_add_buffer(cl_vec, fstarpu_rw.ior.fstarpu_locality)
! [...]
! free codelet structure
call fstarpu_codelet_free(cl_vec)

The full example is available in examples/native_fortran/nf_vector.f90.

28.6 Additional Notes about the Native Fortran Support

28.6.1 Using StarPU with Older Fortran Compilers

When using older compilers, Fortran applications may still interoperate with StarPU using C marshalling functions
as examplified in StarPU's examples/fortran/ and examples/fortran90/ example directories, though
the process will be less convenient.
Basically, the main FORTRAN code calls some C wrapper functions to submit tasks to StarPU. Then, when StarPU
starts a task, another C wrapper function calls the FORTRAN routine for the task.
Note that this marshalled FORTRAN support remains available even when specifying configure option
--disable-fortran (which only disables StarPU's native Fortran layer).

28.6.2 Valid API Mixes and Language Mixes

Mixing uses of fstarpu_ and starpu_ symbols in the same Fortran code has unspecified behavior. Using
fstarpu_ symbols in C code has unspecified behavior.
For multi-language applications using both C and Fortran source files:

Generated by Doxygen

182 Native Fortran Support

• C source files must use starpu_ symbols exclusively

• Fortran sources must uniformly use either fstarpu_ symbols exclusively, or starpu_ symbols exclusively.
Every other combination has unspecified behavior.

Generated by Doxygen

Chapter 29

StarPU Java Interface

The StarPU Java Interface provides the ability to execute Java applications on top of StarPU.
The interface allows to write either StarPU-like applications
package fr.labri.hpccloud.starpu.examples;
import fr.labri.hpccloud.starpu.Codelet;
import fr.labri.hpccloud.starpu.StarPU;
import fr.labri.hpccloud.starpu.data.DataHandle;
import fr.labri.hpccloud.starpu.data.IntegerVariableHandle;
import fr.labri.hpccloud.starpu.data.VectorHandle;
import java.util.Random;
import static fr.labri.hpccloud.starpu.data.DataHandle.AccessMode.*;
public class VectorScal
{

public static final int NX = 10;
public static final Float factor = 3.14f;
static final Codelet scal = new Codelet()
{

@Override
public void run(DataHandle[] buffers)
{

VectorHandle<Float> array = (VectorHandle<Float>)buffers[0];
int n = array.getSize();
System.out.println(String.format("scaling array %s with %d elements", array, n));
for (int i = 0; i < n; i++)
{

array.setValueAt(i, factor * array.getValueAt(i));
}

}
@Override
public DataHandle.AccessMode[] getAccessModes()
{

return new DataHandle.AccessMode[]
{

STARPU_RW
};

}
};
public static void main(String[] args) throws Exception
{

int nx = (args.length == 0) ? NX : Integer.valueOf(args[0]);
compute(nx);

}
public static void compute(int nx) throws Exception
{

StarPU.init();
System.out.println(String.format("VECTOR[#nx=%d]", nx));
VectorHandle<Float> arrayHandle = VectorHandle.register(nx);
System.out.println(String.format("scaling array %s", arrayHandle));
for(int i=0 ; i<nx ; i++)
{

arrayHandle.setValueAt(i, i+1.0f);
}
StarPU.submitTask(scal, false, arrayHandle);
arrayHandle.acquire();
for(int i=0 ; i<nx ; i++)
{

System.out.println(String.format("v[%d] = %f", i, arrayHandle.getValueAt(i)));
}
arrayHandle.release();
arrayHandle.unregister();
StarPU.shutdown();

}
}

or Spark applications.
package fr.labri.hpccloud.starpu.examples;

Generated by Doxygen

184 StarPU Java Interface

import fr.labri.hpccloud.starpu.StarPU;
import fr.labri.hpccloud.starpu.data.DataPairSet;
import fr.labri.hpccloud.starpu.data.DataSet;
import fr.labri.hpccloud.starpu.data.Tuple2;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Arrays;
import java.util.regex.Pattern;
public class WordCount
{

static InputStream openFile(String filename) throws Exception
{

return WordCount.class.getResourceAsStream(filename);
}
private static final Pattern SPACE = Pattern.compile(" ");
public static void main(String[] args) throws Exception
{

InputStream input = new FileInputStream(args[0]);
StarPU.init();
compute(input);
input.close();
StarPU.shutdown();

}
private static void compute(InputStream input) throws Exception
{

DataSet<String> lines = DataSet.readFile (input, s->s).splitByBlocks(10);
DataSet<String> words = lines.flatMap(s ->

Arrays.asList(SPACE.split(s)).iterator()).splitByBlocks(10);
DataPairSet<String,Integer> ones = (DataPairSet<String,Integer>)words.mapToPair(w-> new

Tuple2<>(w,1));
DataPairSet<String,Integer> counts = ones.reduceByKey((c1,c2)-> c1 + c2);
for(Tuple2<String,Integer> p : counts.collect())
{

System.out.println("("+p._1()+","+p._2()+")");
}

}
}

The installation process is not yet included in the StarPU autotools mechanism. However, a file INSTALL.org is
provided in the starpujni directory to explain how to proceed with the installation, and shows how to run some
basic examples.
hadoop needs to be installed before running the installation process.

Generated by Doxygen

Chapter 30

Python Interface

This chapter presents the StarPU Python Interface. It provides for those used to the Python language a more
concise and easy-to-use StarPU interface.
This interface supports most of the main StarPU functionalities. While not all features of the C API are replicated in
the Python Interface, additional functions tailored for Python's ease of use have been incorporated.
Several examples using the Python API are provided in the directory starpupy/examples/.

30.1 Installation of the Python Interface

Calling configure will enable by default the StarPU Python Interface. You can also specify the option
--enable-starpupy which will fail if some requirements are missing. For now, the only requirement is the availability
of the python3 interpreter.
The python modules joblib and cloudpickle are mandatory to run parallel codes.
The python module numpy is recommended, but not mandatory.

$ pip3 install joblib
$ pip3 install cloudpickle
$ pip3 install numpy
$../configure --enable-starpupy --enable-blocking-drivers --prefix=$HOME/usr/starpu
$ make
$ make install

You can then go to the directory in which StarPU is installed, and test the provided Python examples.

$ cd $HOME/usr/starpu
$. ./bin/starpu_env
Setting StarPU environment for ...
$ cd lib/starpu/python
$ python3 starpu_py.py
Example 1:
Hello, world!
...
$

30.2 Python Parallelism

Python interpreters share the Global Interpreter Lock (GIL), which requires that at any time, one and only one
thread has the right to execute a task. With Python versions up to 3.11, if the application is pure Python script, even
with multi-interpreters, the program cannot be executed in parallel. The sharedGIL makes the multiple interpreters
execution of Python actually serial rather than parallel, and the execution of Python program is single-threaded
essentially.
For the pure Python script with python versions up to 3.11, the only way to achieve parallelism is to use the master-
slave mechanism (Section Master Slave Support). Parallelism may be implemented with multi-interpreters in the
future Python version. Details can be found in Section Multiple Interpreters. Otherwise parallelism can be achieved
when external C applications are called or external APIs e.g. BLAS API is used for Numpy objects.
Starting from python version 3.12, multiple interpreters can use a separate GIL, to allow parallelism of pure python
code. This can be enabled by setting STARPUPY_OWN_GIL to 1. Some corner cases are however not supported
yet in python 3.12, notably the usage of futures.

Generated by Doxygen

186 Python Interface

30.3 Using StarPU in Python

The StarPU module should be imported in any Python code wanting to use the StarPU Python interface.
import starpu

Before using any StarPU functionality, it is necessary to call starpu.init(). The function starpu.←↩

shutdown() should be called after all StarPU functions have been called.
import starpu
starpu.init()
...
starpu.shutdown()

30.3.1 Submitting Tasks

One of the fundamental aspects of StarPU is the task submission. The Python Interface greatly simplifies this
process, allowing for direct calls to the submission function without any extra complexities.
The Python function used for task submission follows the format: task_submit(options)(func, ∗args,
∗∗kwargs). In this structure:

• func represents any Python function.

• args and kwargs denote the function's arguments.

You can also provide the function as a string.
By submitting tasks through this function, you enable StarPU to perform optimizations for your program's execution.
It's recommended to submit all tasks to ensure StarPU's efficient scheduling of the underlying tasks. It's important
to note that submitted tasks do not execute immediately, and you can retrieve the return value only after the task
execution.
The first set of parentheses allows to specify various options. Keep in mind that each option has a default value,
and even if you're not providing any options, the parentheses should be retained. The options are as follows:

• name (string, default: None) : Set the name of the task. This can be useful for debugging purposes.

• synchronous (unsigned, default: 0) : If this flag is set, task_submit() only returns when the task
has been executed (or if no worker is able to process the task). Otherwise, task_submit() returns
immediately.

• priority (int, default: 0) : Set the level of priority for the task. This is an integer value whose value
must be greater than the return value of the function starpu.sched_get_min_priority() (for the
least important tasks), and lower or equal to the return value of the function starpu.sched_get_max←↩

_priority() (for the most important tasks). Default priority is defined as 0 in order to allow static task
initialization. Scheduling strategies that take priorities into account can use this parameter to take better
scheduling decisions, but the scheduling policy may also ignore it.

• color (unsigned, default: None) : Set the color of the task to be used in dag.dot.

• flops (double, default: None) : Set the number of floating points operations that the task will have to
achieve. This is useful for easily getting GFlops/s curves from the function starpu.perfmodel_plot,
and for the hypervisor load balancing.

• perfmodel (string, default: None) : Set the name of the performance model. This name will be used
as the filename where the performance model information will be saved. After the task is executed, one can
call the function starpu.perfmodel_plot() by giving the symbol of perfmodel to view its performance
curve.

30.3.2 Returning Future Object

In order to realize asynchronous frameworks, the task_submit() function returns a Future object. This is
an extended use of StarPU provided by the Python interface. A Future represents an eventual result of an
asynchronous operation. It is an awaitable object, Coroutines can await on Future objects until they either
have a result or an exception set, or until they are canceled. Some basic examples are available in the script
starpupy/examples/starpu_py.py.
This feature needs the asyncio module to be imported.
import starpu
import asyncio

Generated by Doxygen

30.3 Using StarPU in Python 187

starpu.init()
def add(a, b):

return a+b
async def main():

fut = starpu.task_submit()(add, 1, 2)
res = await fut
print("The result of function is", res)

asyncio.run(main())
starpu.shutdown()

Execution:

The result of function is 3

When using at least the version 3.8 of python, one can also use the parameter -m asyncio which allows to
directly use await instead of asyncio.run().

$ python3 -m asyncio
>>> import asyncio

import starpu
starpu.init()
def add(a, b):

print("The result is ready!")
return a+b

fut = starpu.task_submit()(add, 1, 2)

The result is ready!

res = await fut
res

3

You can also use the decorator starpu.delayed to wrap a function. The function can then directly be submitted
to StarPU and will automatically create a Future object.
@starpu.delayed
def add_deco(a, b):

print("The result is ready!")
return a+b

fut = add_deco(1, 2)

The result is ready!

res = await fut
res

3

To specify options when using the decorator, just do as follows:
@starpu.delayed(name="add", color=2, perfmodel="add_deco")
def add_deco(a, b):

print("The result is ready!")
return a+b

fut = add_deco(1, 2)

The result is ready!

res = await fut
res

3

A Future object can also be used for the next step calculation even before being ready. The calculation will be
postponed until the Future has a result.
In this example, after submitting the first task, a Future object fut1 is created, and it is used as an argument of a
second task. The second task is submitted even without having the return value of the first task.
import asyncio
import starpu
import time
starpu.init()
def add(a, b):

time.sleep(10)
print("The first result is ready!")
return a+b

def sub(x, a):
print("The second result is ready!")
return x-a

fut1 = starpu.task_submit()(add, 1, 2)
fut2 = starpu.task_submit()(sub, fut1, 1)

The first result is ready!
The second result is ready!

res = await fut2
res

2

Generated by Doxygen

188 Python Interface

30.3.3 Submit Python Objects Supporting The Buffer Protocol

The Python buffer protocol is a framework in which Python objects can expose raw byte arrays to other Python
objects. This can be extremely useful to efficiently store and manipulate large arrays of data. The StarPU Python
Interface allows users to use such objects as task parameters.
import asyncio
import starpu
import time
import numpy as np
starpu.init()
def add(a,b):

c = np.zeros(np.size(a))
for i in range(np.size(a)):

c[i] = a[i] + b[i]
return c

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
fut = starpu.task_submit()(add, a, b)
res = await fut
res

array([5., 7., 9.])

StarPU uses a specific data interface to handle Python objects supporting buffer protocol, such python objects are
then managed by the StarPU data management library which allows minimizing data transfers between accelerators,
and avoids copying the object each time.
We show the performances below of the numpy addition (numpy.add running the script test_perf.sh) with
different array sizes (10, 20, ..., 100, 200, ..., 1000, 2000, ..., 10000, 20000, ..., 100000, 200000, ..., 1000000,
2000000, ..., 10000000, ..., 50000000). We compare two cases:

1. Using StarPU,

2. Without using StarPU tasks, but directly calling the numpy.add function.

The first plot compares the task submission time when using StarPU and the program execution time without using
StarPU. We can see that there is an obvious optimization using StarPU when the test array size is large. The task
has not finished its execution yet as shown in second figure, the time can be used to perform other operations.

We can also define our own function to do the numpy operation, e.g. the element addition:
def add(a, b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

We will compare operation performances with the same two cases, but based on our custom function add(a, b).
We can see that the custom function is not as efficient as the numpy function overall. The optimization for large
arrays is the same when using StarPU.

Generated by Doxygen

30.3 Using StarPU in Python 189

30.3.3.1 Access Mode Annotation

StarPU defines different access modes for a data, it can be readable (access mode is R), writable (access mode is
W), or both readable and writable (access mode is RW). The default access mode is R.
For the Python interface, these modes can be defined as shown below.

1. Using the decorator starpu.access(arg="R/W/RW") to wrap the function.
a = np.array([1, 2, 3, 4, 5, 6])
e = np.array([0, 0, 0, 0, 0, 0, 0])
@starpu.access(a="R", b="W")
def assign(a,b):

for i in range(min(np.size(a), np.size(b))):
b[i]=a[i]

fut = starpu.task_submit()(assign, a, e)
starpu.acquire(e)

array([1, 2, 3, 4, 5, 6, 0])

starpu.release(e)

2. Using the decorator starpu.delayed(options, arg="R/W/RW").
@starpu.delayed(a="R", b="W")
def assign(a,b):

for i in range(min(np.size(a), np.size(b))):
b[i]=a[i]

fut = assign(a, e)
starpu.acquire(e)

array([1, 2, 3, 4, 5, 6, 0])

starpu.release(e)

3. Using the method starpu.set_access(func, arg="R/W/RW") that will create a new function.
def assign(a,b):

for i in range(min(np.size(a), np.size(b))):
b[i]=a[i]

assign_access=starpu.set_access(assign, a="R", b="W")
fut = starpu.task_submit()(assign_access, a, e)
starpu.acquire(e)

array([1, 2, 3, 4, 5, 6, 0])

starpu.release(e)

30.3.3.2 Methods

Once the access mode of one argument is set to at least W, it may be modified during the task execution. We should
pay attention that before the task is finished, we cannot get the up-to-date value of this argument by simply using
print function. For example:

Generated by Doxygen

190 Python Interface

import asyncio
import starpu
import time
import numpy as np
starpu.init()
a = np.array([1, 2, 3, 4, 5, 6])
e = np.array([0, 0, 0, 0, 0, 0, 0])
@starpu.access(a="R", b="W")
def assign(a,b):

time.sleep(10)
for i in range(min(np.size(a), np.size(b))):

b[i]=a[i]
fut = starpu.task_submit()(assign, a, e)
print(e) # before the task is finished

[0 0 0 0 0 0 0]

We print argument e right after submitting the task, but since the task is not finished yet, we can only get its
unchanged value. If we want to get its up-to-date value, we need extra functions.
In order to access data registered to StarPU outside tasks, we provide an acquire and release mechanism.

• The starpu.acquire(data, mode) method should be called to access registered data outside tasks
(Refer to the C API starpu_data_acquire()). StarPU will ensure that the application will get an up-to-date copy
of handle in main memory located where the data was originally registered, and that all concurrent accesses
(e.g. from tasks) will be consistent with the access mode specified with the given mode (R the default mode,
W or RW).

• The starpu.release(data) method must be called once the application no longer needs to access
the piece of data (Refer to the C API starpu_data_release()).

• The starpu.unregister(data) method must be called to unregister the Python object from StarPU.
(Refer to the C API starpu_data_unregister()). This method waits for all calculations to be finished before
unregistering data.

With acquire, even we ask to access the argument right after submitting the task, the up-to-date value will be
printed once the task is finished.
starpu.acquire(e) # before the task is finished

array([1, 2, 3, 4, 5, 6, 0])

In order to complete the addition operation example, execution steps are:
import asyncio
import starpu
import time
import numpy as np
starpu.init()
@starpu.access(a="RW", b="R")
def add(a,b):

time.sleep(10)
for i in range(np.size(a)):

a[i] = a[i] + b[i]
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
starpu.acquire(a, mode="R")

array([1, 2, 3])

starpu.release(a)
fut = starpu.task_submit()(add, a, b)
starpu.acquire(b, mode="R")

array([4, 5, 6])

starpu.acquire(a, mode="R") # before the task is finished

array([5, 7, 9])

starpu.release(a)
starpu.release(b)
starpu.unregister(a)
starpu.unregister(b)

The result of b is printed directly right after calling acquire, but the up-to-date value of a is printed after the task
is finished. Here we need to pay attention that if we want to modify an argument during the task execution and get
its up-to-date value for the future operation, we should set the access mode of this argument to at least W, otherwise

Generated by Doxygen

30.4 StarPU Data Interface for Python Objects 191

this argument object is not synchronous, and the next task which needs this object will not wait its up-to-date value
to execute.
If we call acquire but not release before the task submission, the task will not start to execute until the object
is released.
An example is shown below:
import asyncio
import starpu
import numpy as np
import time
starpu.init()
@starpu.access(a="RW")
def add(a,b):

print("This is the addition function")
time.sleep(10)
for i in range(np.size(a)):

a[i] = a[i] + b[i]
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
starpu.acquire(a, mode="R")

array([1, 2, 3])

fut = starpu.task_submit()(add, a, b)
starpu.release(a)

This is the addition function # The task will not start until "a" is released

starpu.acquire(a, mode="R") # Before the task is finished

array([5, 7, 9]) # After the task is finished

starpu.release(a)
starpu.unregister(a)
starpu.unregister(b)

30.4 StarPU Data Interface for Python Objects

StarPU uses data handles to manage a piece of data. A data handle keeps track of replicates of the same data
(registered by the application) over various memory nodes. The data management library manages to keep them
coherent. That also allows minimizing the data transfers, and avoids copying the object each time. Data handles
are managed through specific data interfaces. Some examples applying this specific interface are available in script
starpupy/examples/starpu_py_handle.py.

30.4.1 Interface for Ordinary Python Objects

A specific data interface has been defined to manage Python objects, such as constant (integer, float...), string, list,
etc. This interface is defined with the class Handle. When submitting a task, instead of specifying a function and
its arguments, we specify a function and the handles of its arguments.
In addition to returning a Future object, it is also possible to return a StarPU handle object when submitting a
function. To do so, you need to set the starpu.task_submit option ret_handle to True, its default value
is False.
import starpu
from starpu import Handle
starpu.init()
def add(x, y):

return x + y
x = Handle(2)
y = Handle(3)
res = starpu.task_submit(ret_handle=True)(add, x, y)

We then need to call the method get() to get the latest version of this Python Object.
res.get()

5

When not setting the parameter ret_handle, the return object is a Future.
res_fut = starpu.task_submit()(add, x, y)
await res_fut

If the Python object is immutable (such as int, float, str, tuple...), registering the same object several times is
authorised. That means you can do this:
x = Handle(2)
x1 = Handle(2)

x and x1 are two different Handle objects.

Generated by Doxygen

192 Python Interface

30.4.2 Interface for Python Objects Supporting Buffer Protocol

This StarPU data interface can also be used to manage Python objects supporting buffer protocol, i.e numpy array,
bytes, bytearray, array.array and memoryview object.
import numpy as np
import starpu
from starpu import Handle
starpu.init()
def add(a,b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

return a
a = np.array([1, 2, 3])
b = np.array([2, 4, 6])
a_h = Handle(a)
b_h = Handle(b)
res = starpu.task_submit(ret_handle=True)(add, a_h, b_h)
res.get()

array([3, 6, 9])

Different from immutable Python object, all Python objects supporting buffer protocol are mutable, and registering
the same object one more time is not authorized. If you do this:
a = np.array([1, 2, 3])
a_h = Handle(a)
a1_h = Handle(a)

You will get an error message:

starpupy.error: Should not register the same mutable python object once more.

You may refer to Section Submit Python Objects Supporting The Buffer Protocol, and realize that StarPU Python
interface uses data handles to manage Python objects supporting buffer protocol by default. These objects are
usually relatively large, such as a big NumPy matrix. We want to avoid multiple copies and transfers of this data
over various memory nodes, so we set the default starpu.task_submit() option arg_handle to True for
users to allow their applications to get the most optimization. To deactivate the use of this data interface, you need
to set the option arg_handle to False.
Since we use data handles by default, registration is implemented in the step of task submission. Therefore, you
should be careful not to register again the same object after the task submission, like this:
a = np.array([1, 2, 3])
b = np.array([2, 4, 6])
res = starpu.task_submit(ret_handle=True)(add, a, b)
a_h = Handle(a)

You will get the error message:

starpupy.error: Should not register the same mutable python object once more.

As performances, we showed in Section Submit Python Objects Supporting The Buffer Protocol, we add one case
to compare with the others two cases. We still test the numpy addition (numpy.add running the script test_←↩

handle_perf.sh) with different array sizes (10, 20, ..., 100, 200, ..., 1000, 2000, ..., 10000, 20000, ..., 100000,
200000, ..., 1000000, 2000000, ..., 10000000, ..., 50000000). Three cases are:

1. Using StarPU and returning future object,

2. Using StarPU and returning handle object,

3. Without using StarPU tasks, but directly calling the numpy.add function.

The first plot compares the task submission time when using StarPU either returning a Future or a handle object and
the program execution time without using StarPU. We can see that there is an obvious optimization using StarPU,
either returning a Future or a handle object when the test array size is large. The task has not finished its execution
yet as shown in second figure, the time can be used to perform other operations. When array size is not very large,
returning a handle has a better execution performance than returning a Future.

Generated by Doxygen

30.4 StarPU Data Interface for Python Objects 193

We can also define our own function to do the numpy operation, e.g. the element addition:
def add(a, b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

We will compare operation performances with the same three cases but based on our custom function add(a,
b).
We can see that the custom function is not as efficient as the numpy function overall. The optimisation for large
arrays is the same when using StarPU.

30.4.2.1 Methods

As in Section Methods, the Handle class defines methods to provide an acquire and release mechanism.

• The method Handle::acquire(mode) should be called before accessing the object outside tasks (Re-
fer to the C API starpu_data_acquire()). The access mode can be "R", "W", "RW", the default value is "R".
We will get an up-to-date copy of Python object by calling this method.

Generated by Doxygen

194 Python Interface

• The method Handle::release() must be called once the application no longer needs to access the
registered data (Refer to the C API starpu_data_release()).

• The method Handle::unregister() to unregister the Python object handle from StarPU (Refer to the
C API starpu_data_unregister()). This method will wait for all calculations to be finished before unregistering
data.

The previous example can be coded as follows:
import numpy as np
import starpu
from starpu import Handle
starpu.init()
@starpu.access(a="RW", b="R")
def add(a,b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

a = np.array([1, 2, 3])
b = np.array([2, 4, 6])
a_h = Handle(a)
b_h = Handle(b)
a_h.acquire(mode = "R")
array([1, 2, 3])
a_h.release()
starpu.task_submit(ret_handle=True)(add, a_h, b_h)
a_h.acquire(mode = "R") # we get the up-to-date value

array([3, 6, 9])

a_h.release()
a_h.unregister()

30.4.3 Interface for Empty Numpy Array

We can register an empty numpy array by calling HandleNumpy(size, type). The default value for type
is float64.
You will find below an example which defines the function assign taking two arrays as parameters, the second
one being an empty array which will be assigned the values of the first array.
import numpy as np
import starpu
from starpu import Handle
from starpu import HandleNumpy
starpu.init()
@starpu.access(b="W")
def assign(a,b):

for i in range(min(np.size(a,0), np.size(b,0))):
for j in range(min(np.size(a,1), np.size(b,1))):

b[i][j] = a[i][j]
return b

a = np.array([[1, 2, 3], [4, 5, 6]])
a_h = Handle(a)
e_h = HandleNumpy((5,10), a.dtype)
res = starpu.task_submit(ret_handle=True)(assign, a_h, e_h)
e_h.acquire()

array([[1, 2, 3, 0, 0, 0, 0, 0, 0, 0],
[4, 5, 6, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

e_h.release()

30.4.4 Array Partitioning

A n-dim numpy array can be split into several sub-arrays by calling the method Handle::partition(nchildren,
dim, chunks_list) (Refer to the C API starpu_data_partition_plan()).

• nchildren is the number of sub-handles,

• dim is the dimension that we want to partition along, it can be 0 for vertical dimension, 1 for horizontal
dimension, 2 for depth dimension, 3 for time dimension, ...etc.

• chunks_list is a list containing the size of each segment. The total length of segments in this list must
be equal to the length of the selected dimension.

Generated by Doxygen

30.4 StarPU Data Interface for Python Objects 195

The method will return a sub-handle list, each of the sub-handles can be used when submitting a task with task←↩

_submit(). This allows to process an array in parallel, once the execution of each sub-handle is finished, the
result will be directly reflected in the original n-dim array.
When the sub-handles are no longer needed, the method Handle::unpartition(handle_list,
nchildren) should be called to clear the partition and unregister all the sub-handles (Refer to the C API
starpu_data_partition_clean()).

• handle_list is the sub-handle list which was previously returned by the method Handle←↩

::partition(),

• nchildren is the number of sub-handles.

Here is an example to use these methods.
import numpy as np
import starpu
from starpu import Handle
starpu.init()
@starpu.access(a="RW", b="R")
def add(a,b):

np.add(a,b,out=a)
n, m = 20, 10
arr = np.arange(n*m).reshape(n, m)
arr_h = Handle(arr)
arr_h.acquire(mode=’RW’)

[[0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]
[100 101 102 103 104 105 106 107 108 109]
[110 111 112 113 114 115 116 117 118 119]
[120 121 122 123 124 125 126 127 128 129]
[130 131 132 133 134 135 136 137 138 139]
[140 141 142 143 144 145 146 147 148 149]
[150 151 152 153 154 155 156 157 158 159]
[160 161 162 163 164 165 166 167 168 169]
[170 171 172 173 174 175 176 177 178 179]
[180 181 182 183 184 185 186 187 188 189]
[190 191 192 193 194 195 196 197 198 199]]

arr_h.release()
split_num = 3
arr_h_list = arr_h.partition(split_num, 1, [3,2,5]) # split into 3 sub-handles, and partition along the

horizontal dimension
for i in range(split_num):

res=starpu.task_submit(ret_handle=True)(add, arr_h_list[i], arr_h_list[i])
arr_h.acquire(mode=’RW’)

[[0 2 4 12 16 40 48 56 64 72]
[80 88 96 104 112 120 128 136 144 152]
[160 168 176 184 192 200 208 216 224 232]
[240 248 256 264 272 280 288 296 304 312]
[320 328 336 172 176 180 184 188 192 196]
[200 204 208 212 216 220 224 228 232 236]
[120 122 124 126 128 130 132 134 136 138]
[140 142 144 146 148 150 152 154 156 158]
[160 162 164 166 168 170 172 174 176 178]
[180 182 184 186 188 190 192 194 196 198]
[200 202 204 206 208 105 106 107 108 109]
[110 111 112 113 114 115 116 117 118 119]
[120 121 122 123 124 125 126 127 128 129]
[130 131 132 133 134 135 136 137 138 139]
[140 141 142 143 144 145 146 147 148 149]
[150 151 152 153 154 155 156 157 158 159]
[160 161 162 163 164 165 166 167 168 169]
[170 171 172 173 174 175 176 177 178 179]
[180 181 182 183 184 185 186 187 188 189]
[190 191 192 193 194 195 196 197 198 199]]

Generated by Doxygen

196 Python Interface

arr_h.release()
arr_h.unpartition(arr_h_list, split_num)
arr_h.unregister()

The method Handle::get_partition_size(handle_list) can be used to get the array size of each
sub-array.
arr_h_list = arr_h.partition(split_num, 1, [3,2,5])
arr_h.get_partition_size(arr_h_list)

[60, 40, 100]

The full script is available in starpupy/examples/starpu_py_partition.py.

30.5 Benchmark

This benchmark gives a glimpse into how long a task should be (in µs) for the StarPU Python interface overhead to
be low enough to keep efficiency. Running starpupy/benchmark/tasks_size_overhead.sh generates
a plot of the speedup of tasks of various sizes, depending on the number of CPUs being used.
In the first figure, the return value is a handle object. In the second figure, the return value is a future object. In the
third figure, the return value is None.
For example, in the figure of returning handle object, for a 571 µs task (the green line), StarPU overhead is low
enough to guarantee a good speedup if the number of CPUs is not more than 12. But with the same number of
CPUs, a 314 µs task (the blue line) cannot have a correct speedup. We need to decrease the number of CPUs to
about 8 if we want to keep efficiency.

Generated by Doxygen

30.5 Benchmark 197

Generated by Doxygen

198 Python Interface

30.6 Running Python Functions as Pipeline Jobs (Imitating Joblib
Library)

The StarPU Python interface also provides parallel computing for loops using multiprocessing, similarly to the
Joblib Library that can simply turn out Python code into parallel computing code and thus increase the
computing speed.

30.6.1 Examples

• The most basic usage is to parallelize a simple iteration.
from math import log10
[log10(10 ** i) for i in range(10)]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

In order to spread it over several CPUs, you need to import the starpu.joblib module, and use its
Parallel class:
import starpu.joblib
from math import log10
starpu.init()
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(log10)(10**i)for i in range(10))

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

It is also possible to first create an object of the Parallel class, and then call starpu.joblib.←↩

delayed to execute the generator expression.
import starpu.joblib
from math import log10
starpu.init()
parallel=starpu.joblib.Parallel(n_jobs=2)
parallel(starpu.joblib.delayed(log10)(10**i)for i in range(10))

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

• Instead of a generator expression, a list of functions can also be submitted as a task through the Parallel
class.
import starpu.joblib
starpu.init()
#generate a list to store functions
g_func=[]
#function no input no output print hello world
def hello():

print ("Example 1: Hello, world!")
g_func.append(starpu.joblib.delayed(hello)())
#function has 2 int inputs and 1 int output
def multi(a, b):

res_multi = a*b
print("Example 2: The result of ",a,"*",b,"is",res_multi)
return res_multi

g_func.append(starpu.joblib.delayed(multi)(2, 3))
#function has 4 float inputs and 1 float output
def add(a, b, c, d):

res_add = a+b+c+d
print("Example 3: The result of ",a,"+",b,"+",c,"+",d,"is",res_add)
return res_add

g_func.append(starpu.joblib.delayed(add)(1.2, 2.5, 3.6, 4.9))
#function has 2 int inputs 1 float input and 1 float output 1 int output
def sub(a, b, c):

res_sub1 = a-b-c
res_sub2 = a-b
print ("Example 4: The result of ",a,"-",b,"-",c,"is",res_sub1,"and the result

of",a,"-",b,"is",res_sub2)
return res_sub1, res_sub2

g_func.append(starpu.joblib.delayed(sub)(6, 2, 5.9))
#input is iterable function list
starpu.joblib.Parallel(n_jobs=2)(g_func)

Execution:

Example 3: The result of 1.2 + 2.5 + 3.6 + 4.9 is 12.200000000000001
Example 1: Hello, world!
Example 4: The result of 6 - 2 - 5.9 is -1.9000000000000004 and the result of 6 - 2 is 4
Example 2: The result of 2 * 3 is 6
[None, 6, 12.200000000000001, (-1.9000000000000004, 4)]

Generated by Doxygen

https://joblib.readthedocs.io/en/latest/index.html
https://joblib.readthedocs.io/en/latest/index.html

30.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library) 199

• The function can also take array parameters.
import starpu.joblib
import numpy as np
starpu.init()
def multi_array(a, b):

for i in range(len(a)):
a[i] = a[i]*b[i]

A = np.arange(10)
B = np.arange(10, 20, 1)
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(multi_array)((i for i in A), (j for j in B)))
A

Here the array A has not been modified.

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

If we pass A directly as an argument, its value is updated
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(multi_array)(A, B))
A

array([0, 11, 24, 39, 56, 75, 96, 119, 144, 171])

In the next call, the value of A is also updated.
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(multi_array)(b=(j for j in B), a=A))
A

array([0, 121, 288, 507, 784, 1125, 1536, 2023, 2592, 3249])

The above three writing methods are equivalent and their execution time are very close. However, when using
directly a numpy arrays, its value will be updated, this does not happen when generators are provided. When
using a numpy array, it will be handled by StarPU with a data interface.

• Here an example mixing scalar objects and numpy arrays or generator expressions.
import starpu.joblib
import numpy as np
starpu.init()
def scal(a, t):

for i in range(len(t)):
t[i] = t[i]*a

A = np.arange(10)
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(scal)(2, (i for i in A)))
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(scal)(2,A))

Again, the value of A is modified by the 2nd call.
A

array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

The full script is available in starpupy/examples/starpu_py_parallel.py.

30.6.2 Parallel Parameters

The starpu.joblib.Parallel class accepts the following parameters:

• mode (string, default: "normal")

A string with the value "normal" or "future". With the "normal" mode, you can call starpu.←↩

joblib.Parallel directly without using the asyncio module, and you will get the result when the task
is executed. With the "future" mode, when calling starpu.joblib.Parallel, you will get a Future
object as a return value. By setting the parameter end_msg, the given message will be displayed when the
result is ready, then you can call await to get the result. The asyncio module should be imported in this
case.
import starpu
import asyncio
from math import log10
starpu.init()
fut = starpu.joblib.Parallel(mode="future", n_jobs=3, end_msg="The result is
ready!")(starpu.joblib.delayed(log10)(10**i)for i in range(10))
The result is ready! <_GatheringFuture finished result=[[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0,
8.0, 9.0]]>
await fut

[[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]

Generated by Doxygen

200 Python Interface

• end_msg (string, default: None)

A message that will be displayed when the task is executed and the result is ready. When the parameter is
unset, no message will be displayed when the result is ready. In any case, you need to perform awaiting to
get the result.

• n_jobs (int, default: None)

The maximum number of concurrently running jobs. If -1 all CPUs are used. If 1 is given, no parallel computing
code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used.
Thus, for n_jobs = -2, all CPUs but one are used. None is a marker for ‘unset’ that will be interpreted
as n_jobs=1 (sequential execution). n_cpus is the number of CPUs detected by StarPU on the running
device.

• perfmodel (string, default : None)

Set the name of the performance model. This name will be used as the filename where the perfor-
mance model information will be saved. After the task is executed, one can call the function starpu.←↩

perfmodel_plot() by giving the symbol of perfmodel to view its performance curve.

30.6.3 Performances

• We compare the performances of the two methods for passing arguments to the starpu.joblib.delayed func-
tion. The first method defines a function that contains only scalars calculations, and then we pass a generator
expression as an argument. The second method defines a function that contains arrays calculations, and
then we pass either numpy arrays or generators as arguments. The second method takes less time.
import starpu.joblib
import numpy as np
import time
starpu.init()
N=1000000
def multi(a,b):

res_multi = a*b
return res_multi

print("--First method")
A = np.arange(N)
B = np.arange(N, 2*N, 1)
start_exec1 = time.time()
start_cpu1 = time.process_time()
starpu.joblib.Parallel(n_jobs=-1)(starpu.joblib.delayed(multi)(i,j) for i,j in zip(A,B))
end_exec1 = time.time()
end_cpu1 = time.process_time()
print("the program execution time is", end_exec1-start_exec1)
print("the cpu execution time is", end_cpu1-start_cpu1)
def multi_array(a, b):

for i in range(len(a)):
a[i] = a[i]*b[i]

return a
print("--Second method with Numpy arrays")
A = np.arange(N)
B = np.arange(N, 2*N, 1)
start_exec2 = time.time()
start_cpu2 = time.process_time()
starpu.joblib.Parallel(n_jobs=-1)(starpu.joblib.delayed(multi_array)(A, B))
end_exec2 = time.time()
end_cpu2 = time.process_time()
print("the program execution time is", end_exec2-start_exec2)
print("the cpu execution time is", end_cpu2-start_cpu2)
print("--Second method with generators")
A = np.arange(N)
B = np.arange(N, 2*N, 1)
start_exec3 = time.time()
start_cpu3 = time.process_time()
starpu.joblib.Parallel(n_jobs=-1)(starpu.joblib.delayed(multi_array)((i for i in A), (j for j in B)))
end_exec3 = time.time()
end_cpu3 = time.process_time()
print("the program execution time is", end_exec3-start_exec3)
print("the cpu execution time is", end_cpu3-start_cpu3)

Execution:

--First method
the program execution time is 3.000865936279297
the cpu execution time is 5.17138062
--Second method with Numpy arrays
the program execution time is 0.7571873664855957
the cpu execution time is 0.9166007309999991
--Second method with generators

Generated by Doxygen

30.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library) 201

the program execution time is 0.7259719371795654
the cpu execution time is 1.1182918959999988

• Performance can also be shown with the performance model. Here an example with the function log10.
from math import log10
for x in [10, 100, 1000, 10000, 100000, 1000000]:

for X in range(x, x*10, x):
starpu.joblib.Parallel(n_jobs=-1, perfmodel="log_list")(starpu.joblib.delayed(log10)(i+1)for i

in range(X))
starpu.perfmodel_plot(perfmodel="log_list")

If we use a numpy array as parameter, the calculation can withstand larger size, as shown below.
from math import log10
def log10_arr(t):

for i in range(len(t)):
t[i] = log10(t[i])

return t
for x in [10, 100, 1000, 10000, 100000, 1000000, 10000000]:

for X in range(x, x*10, x):
A = np.arange(1,X+1,1)
starpu.joblib.Parallel(n_jobs=-1, perfmodel="log_arr")(starpu.joblib.delayed(log10_arr)(A))

starpu.perfmodel_plot(perfmodel="log_arr")

Generated by Doxygen

202 Python Interface

30.7 Multiple Interpreters

It is possible to use multiple interpreters when running python applications. To do so, you need to set the variable
STARPUPY_MULTI_INTERPRETER when running a StarPU Python application.
Python interpreters share the Global Interpreter Lock (GIL), which requires that at any time, one and only one thread
has the right to execute a task. In other words, GIL makes the multiple interpreters execution of Python actually
serial rather than parallel, and the execution of Python program is single-threaded essentially. Therefore, if the
application is pure Python script, even with multi-interpreters, the program cannot be executed in parallel, unless an
external C application is called.
Fortunately now there is a quite positive development. Python developers are preparing to implement stop shar-
ing the GIL between interpreters (https://peps.nogil.dev/pep-0684/) or even make GIL optional so
that Python code can be run without GIL (https://peps.nogil.dev/pep-0701/), that will facilitate true
parallelism with the next Python version.
In order to transfer data between interpreters, the module cloudpickle is used to serialize Python objects in
contiguous byte array. This mechanism increases the overhead of the StarPU Python interface, as shown in the
following plots, to be compared to the plots given in Benchmark.
In the first figure, the return value is a handle object. In the second figure, the return value is a future object. In the
third figure, the return value is None.

Generated by Doxygen

https://peps.nogil.dev/pep-0684/
https://peps.nogil.dev/pep-0701/

30.7 Multiple Interpreters 203

Generated by Doxygen

204 Python Interface

In order to reflect this influence more intuitively, we make a performance comparison.
By default, StarPU uses virtually shared memory manager for Python objects supporting buffer protocol that allows
to minimize data transfers. But in the case of multi-interpreter, if we do not use virtually shared memory manager,
data transfer can be realized only with the help of cloudpickle.
We will show the operation performances below (Running test_handle_perf_pickle.sh). The operation
that we test is numpy addition (numpy.add), and the array size is 10, 20, ..., 100, 200, ..., 1000, 2000, ..., 10000,
2000, ..., 100000,200000, ..., 1000000, 2000000, ..., 10000000, ..., 50000000. We compared three cases: first,
using virtually shared memory manager, second, without using virtually shared memory manager, third, without
using StarPU task submitting, but directly calling numpy.add function.
In the first figure, we compare the submission time when using StarPU and the execution time without using Star←↩

PU. We can see that there is still an obvious optimization using StarPU virtually shared memory manager when
the test array size is large. However, if only using cloudpickle, StarPU Python interface cannot provide an effective
optimization. And in the second figure, we can see that the same operation will take more time to finish the program
execution when only using cloudpickle.

Generated by Doxygen

30.8 Master Slave Support 205

We can also define our own function to do the numpy operation, e.g. the element addition:
def add(a, b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

We will compare operation performances of the same three cases, but based on the custom function add(a, b).
We can see that the custom function takes more time than numpy function overall. Although the same operation
still takes more time to submit the task when only using cloudpickle than with virtually shared memory manager,
there is still a better optimization. The operation takes less time than only calling a custom function even when the
array is not very large.

30.8 Master Slave Support

StarPU Python interface provides MPI master slave support as well. Please refer to MPI Master Slave Support for
the specific usage.
When you write your Python script, make sure to import all required functions before the starpumodule. Functions
imported after the starpu module can only be submitted using their name as a string when calling task_←↩

submit(), this will decrease the submission efficiency.
(TODO)

30.9 StarPUPY and Simgrid

In simgrid mode, the Python interpreter will not be aware of simgrid and will thus not notify it when some thread
is blocked waiting for something to happen in another thread. This notably means that the asyncio mode and
waiting for a future will not work, and one thus has to use StarPUPY-provided functions to wait for completion,
such as starpupy.task_wait_for_all() or data.acquire.
Also, we have not yet implemented not calling the actual call of the task function, so the execution time will be
longer than in real execution, since not only it executes computations, but also sequentially, and adds the simulation
overhead.

Generated by Doxygen

206 Python Interface

Generated by Doxygen

Chapter 31

The StarPU OpenMP Runtime Support (SORS)

StarPU provides the necessary routines and support to implement an OpenMP (http://www.openmp.←↩

org/) runtime compliant with the revision 3.1 of the language specification, and compliant with the task-related
data dependency functionalities introduced in the revision 4.0 of the language. This StarPU OpenMP Runtime
Support (SORS) has been designed to be targeted by OpenMP compilers such as the Klang-OMP compiler. Most
supported OpenMP directives can both be implemented inline or as outlined functions.
All functions are defined in OpenMP Runtime Support.
Several examples supporting OpenMP API are provided in StarPU's tests/openmp/ directory.

31.1 Implementation Details and Specificities

31.1.1 Main Thread

When using SORS, the main thread gets involved in executing OpenMP tasks just like every other threads, in order
to be compliant with the specification execution model. This contrasts with StarPU's usual execution model, where
the main thread submit tasks but does not take part in executing them.

31.1.2 Extended Task Semantics

The semantics of tasks generated by SORS are extended with respect to regular StarPU tasks in that SORS' tasks
may block and be preempted by SORS call, whereas regular StarPU tasks cannot. SORS tasks may coexist with
regular StarPU tasks. However, only the tasks created using SORS API functions inherit from extended semantics.

31.2 Configuration

SORS can be compiled into libstarpu through the configure option --enable-openmp. Conditional compiled
source codes may check for the availability of the OpenMP Runtime Support by testing whether the C preprocessor
macro STARPU_OPENMP is defined or not.

31.3 Initialization and Shutdown

SORS needs to be executed/terminated by the starpu_omp_init() / starpu_omp_shutdown() instead of starpu_init()
/ starpu_shutdown(). This requirement is necessary to make sure that the main thread gets the proper execution
environment to run OpenMP tasks. These calls will usually be performed by a compiler runtime. Thus, they can be
executed from a constructor/destructor such as this:
__attribute__((constructor))
static void omp_constructor(void)
{

int ret = starpu_omp_init();
STARPU_CHECK_RETURN_VALUE(ret, "starpu_omp_init");

}
__attribute__((destructor))
static void omp_destructor(void)
{

starpu_omp_shutdown();
}

Generated by Doxygen

http://www.openmp.org/
http://www.openmp.org/

208 The StarPU OpenMP Runtime Support (SORS)

Basic examples are available in the files tests/openmp/init_exit_01.c and tests/openmp/init←↩

_exit_02.c.

See also

starpu_omp_init()

starpu_omp_shutdown()

31.4 Parallel Regions and Worksharing

SORS provides functions to create OpenMP parallel regions, as well as mapping work on participating workers. The
current implementation does not provide nested active parallel regions: Parallel regions may be created recursively,
however only the first level parallel region may have more than one worker. From an internal point-of-view, SORS'
parallel regions are implemented as a set of implicit, extended semantics StarPU tasks, following the execution
model of the OpenMP specification. Thus, SORS' parallel region tasks may block and be preempted, by SORS
calls, enabling constructs such as barriers.

31.4.1 Parallel Regions

Parallel regions can be created with the function starpu_omp_parallel_region() which accepts a set of attributes
as parameter. The execution of the calling task is suspended until the parallel region completes. The field
starpu_omp_parallel_region_attr::cl is a regular StarPU codelet. However, only CPU codelets are supported for
parallel regions. Here is an example of use:
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
pthread_t tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d\n", (void *)tid, worker_id);

}
void f(void)
{

struct starpu_omp_parallel_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = parallel_region_f;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
starpu_omp_parallel_region(&attr);
return 0;

}

A basic example is available in the file tests/openmp/parallel_01.c.

See also

struct starpu_omp_parallel_region_attr

starpu_omp_parallel_region()

31.4.2 Parallel For

OpenMP for loops are provided by the starpu_omp_for() group of functions. Variants are available for inline or
outlined implementations. SORS supports static, dynamic, and guided loop scheduling clauses. The auto
scheduling clause is implemented as static. The runtime scheduling clause honors the scheduling mode
selected through the environment variable OMP_SCHEDULE or the starpu_omp_set_schedule() function. For loops
with the ordered clause are also supported. An implicit barrier can be enforced or skipped at the end of the
worksharing construct, according to the value of the nowait parameter.
The canonical family of starpu_omp_for() functions provide each instance with the first iteration number and the
number of iterations (possibly zero) to perform. The alternate family of starpu_omp_for_alt() functions provide each
instance with the (possibly empty) range of iterations to perform, including the first and excluding the last. An
example is available in the file tests/openmp/parallel_for_01.c.
The family of starpu_omp_ordered() functions enable to implement OpenMP's ordered construct, a region with a
parallel for loop that is guaranteed to be executed in the sequential order of the loop iterations. An example is
available in the file tests/openmp/parallel_for_ordered_01.c.
void for_g(unsigned long long i, unsigned long long nb_i, void *arg)
{

(void) arg;

Generated by Doxygen

31.4 Parallel Regions and Worksharing 209

for (; nb_i > 0; i++, nb_i--)
{

array[i] = 1;
}

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
starpu_omp_for(for_g, NULL, NB_ITERS, CHUNK, starpu_omp_sched_static, 0, 0);

}

See also

starpu_omp_for()

starpu_omp_for_inline_first()

starpu_omp_for_inline_next()

starpu_omp_for_alt()

starpu_omp_for_inline_first_alt()

starpu_omp_for_inline_next_alt()

starpu_omp_ordered()

starpu_omp_ordered_inline_begin()

starpu_omp_ordered_inline_end()

31.4.3 Sections

OpenMP sections worksharing constructs are supported using the set of starpu_omp_sections() variants. The
general principle is either to provide an array of per-section functions or a single function that will redirect the
execution to the suitable per-section functions. An implicit barrier can be enforced or skipped at the end of the
worksharing construct, according to the value of the nowait parameter.
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
section_funcs[0] = f;
section_funcs[1] = g;
section_funcs[2] = h;
section_funcs[3] = i;
section_args[0] = arg_f;
section_args[1] = arg_g;
section_args[2] = arg_h;
section_args[3] = arg_i;
starpu_omp_sections(4, section_f, section_args, 0);

}

An example is available in the file tests/openmp/parallel_sections_01.c.

See also

starpu_omp_sections()

starpu_omp_sections_combined()

31.4.4 Single

OpenMP single workharing constructs are supported using the set of starpu_omp_single() variants. An implicit
barrier can be enforced or skipped at the end of the worksharing construct, according to the value of the nowait
parameter. An example is available in the file tests/openmp/parallel_single_nowait_01.c.
void single_f(void *arg)
{

(void) arg;
pthread_t tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d -- single\n", (void *)tid, worker_id);

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
starpu_omp_single(single_f, NULL, 0);

}

Generated by Doxygen

210 The StarPU OpenMP Runtime Support (SORS)

SORS also provides dedicated support for single sections with copyprivate clauses through the
starpu_omp_single_copyprivate() function variants. The OpenMP master directive is supported as well, using
the starpu_omp_master() function variants. An example is available in the file tests/openmp/parallel_←↩

single_copyprivate_01.c.

See also

starpu_omp_master()

starpu_omp_master_inline()

starpu_omp_single()

starpu_omp_single_inline()

starpu_omp_single_copyprivate()

starpu_omp_single_copyprivate_inline_begin()

starpu_omp_single_copyprivate_inline_end()

31.5 Tasks

SORS implements the necessary support of OpenMP 3.1 and OpenMP 4.0's so-called explicit tasks, together with
OpenMP 4.0's data dependency management.

31.5.1 Explicit Tasks

Explicit OpenMP tasks are created with SORS using the starpu_omp_task_region() function. The implementation
supports if, final, untied and mergeable clauses as defined in the OpenMP specification. Unless specified
otherwise by the appropriate clause(s), the created task may be executed by any participating worker of the current
parallel region.
The current SORS implementation requires explicit tasks to be created within the context of an active parallel region.
In particular, an explicit task cannot be created by the main thread outside a parallel region. Explicit OpenMP tasks
created using starpu_omp_task_region() are implemented as StarPU tasks with extended semantics, and may as
such be blocked and preempted by SORS routines.
The current SORS implementation supports recursive explicit tasks creation, to ensure compliance with the Open←↩

MP specification. However, it should be noted that StarPU is not designed nor optimized for efficiently scheduling
of recursive task applications.
The code below shows how to create 4 explicit tasks within a parallel region.
void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
pthread tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d: explicit task \"g\"\n", (void *)tid, worker_id);

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
struct starpu_omp_task_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);

}

An example is available in the file tests/openmp/parallel_01.c.

See also

struct starpu_omp_task_region_attr

starpu_omp_task_region()

Generated by Doxygen

31.5 Tasks 211

31.5.2 Data Dependencies

SORS implements inter-tasks data dependencies as specified in OpenMP 4.0. Data dependencies are
expressed using regular StarPU data handles (starpu_data_handle_t) plugged into the task's attr.cl
codelet. The family of starpu_vector_data_register() -like functions, the starpu_omp_handle_register() and
starpu_omp_handle_unregister() functions, and the starpu_omp_data_lookup() function may be used to regis-
ter a memory area and to retrieve the current data handle associated with a pointer respectively. The testcase
./tests/openmp/task_02.c gives a detailed example of using OpenMP 4.0 tasks dependencies with
SORS implementation.
Note: the OpenMP 4.0 specification only supports data dependencies between sibling tasks, that are tasks created
by the same implicit or explicit parent task. The current SORS implementation also only supports data dependencies
between sibling tasks. Consequently, the behavior is unspecified if dependencies are expressed between tasks that
have not been created by the same parent task.

31.5.3 TaskWait and TaskGroup

SORS implements both the taskwait and taskgroup OpenMP task synchronization constructs specified in
OpenMP 4.0, with the starpu_omp_taskwait() and starpu_omp_taskgroup() functions, respectively.
An example of starpu_omp_taskwait() use, creating two explicit tasks and waiting for their completion:
void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
printf("Hello, World!\n");

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
struct starpu_omp_task_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_taskwait();

An example is available in the file tests/openmp/taskwait_01.c.
An example of starpu_omp_taskgroup() use, creating a task group of two explicit tasks:
void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
printf("Hello, World!\n");

}
void taskgroup_f(void *arg)
{

(void)arg;
struct starpu_omp_task_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
starpu_omp_taskgroup(taskgroup_f, (void *)NULL);

}

An example is available in the file tests/openmp/taskgroup_01.c.

See also

starpu_omp_task_region()

starpu_omp_taskwait()

starpu_omp_taskgroup()

Generated by Doxygen

212 The StarPU OpenMP Runtime Support (SORS)

starpu_omp_taskgroup_inline_begin()

starpu_omp_taskgroup_inline_end()

31.6 Synchronization Support

SORS implements objects and method to build common OpenMP synchronization constructs.

31.6.1 Simple Locks

SORS Simple Locks are opaque starpu_omp_lock_t objects enabling multiple tasks to synchronize with each oth-
ers, following the Simple Lock constructs defined by the OpenMP specification. In accordance with such spec-
ification, simple locks may not be acquired multiple times by the same task, without being released in-between;
otherwise, deadlocks may result. Codes requiring the possibility to lock multiple times recursively should use
Nestable Locks (NestableLock). Codes NOT requiring the possibility to lock multiple times recursively should use
Simple Locks as they incur less processing overhead than Nestable Locks. An example is available in the file
tests/openmp/parallel_simple_lock_01.c.

See also

starpu_omp_lock_t

starpu_omp_init_lock()

starpu_omp_destroy_lock()

starpu_omp_set_lock()

starpu_omp_unset_lock()

starpu_omp_test_lock()

31.6.2 Nestable Locks

SORS Nestable Locks are opaque starpu_omp_nest_lock_t objects enabling multiple tasks to synchronize with
each others, following the Nestable Lock constructs defined by the OpenMP specification. In accordance with
such specification, nestable locks may be acquired multiple times recursively by the same task without dead-
locking. Nested locking and unlocking operations must be well parenthesized at any time, otherwise deadlock
and/or undefined behavior may occur. Codes requiring the possibility to lock multiple times recursively should use
Nestable Locks. Codes NOT requiring the possibility to lock multiple times recursively should use Simple Locks
(SimpleLock) instead, as they incur less processing overhead than Nestable Locks. An example is available in the
file tests/openmp/parallel_nested_lock_01.c.

See also

starpu_omp_nest_lock_t

starpu_omp_init_nest_lock()

starpu_omp_destroy_nest_lock()

starpu_omp_set_nest_lock()

starpu_omp_unset_nest_lock()

starpu_omp_test_nest_lock()

31.6.3 Critical Sections

SORS implements support for OpenMP critical sections through the family of starpu_omp_critical functions.
Critical sections may optionally be named. There is a single, common anonymous critical section. Mu-
tual exclusion only occur within the scope of single critical section, either a named one or the anonymous
one. Corresponding examples are available in the files tests/openmp/parallel_critical_01.c and
tests/openmp/parallel_critical_inline_01.c.

Generated by Doxygen

31.7 Example: An OpenMP LLVM Support 213

See also

starpu_omp_critical()

starpu_omp_critical_inline_begin()

starpu_omp_critical_inline_end()

31.6.4 Barriers

SORS provides the starpu_omp_barrier() function to implement barriers over parallel region teams. In accordance
with the OpenMP specification, the starpu_omp_barrier() function waits for every implicit task of the parallel region
to reach the barrier and every explicit task launched by the parallel region to complete, before returning. An example
is available in the file tests/openmp/parallel_barrier_01.c.

See also

starpu_omp_barrier()

31.7 Example: An OpenMP LLVM Support

SORS has been used to implement an OpenMP LLVM Support. This allows to seamlessly run OpenMP applications
on top of StarPU.
To enable this support, one just needs to call configure with the option --enable-openmp-llvm.
After installation, the directory lib/starpu/examples/starpu_openmp_llvm contains a OpenMP appli-
cation, its source code and the executable compiled with the StarPU OpenMP LLVM support, as well as a README
file explaining how to use the support for your own application.
One just needs to compile an OpenMP application with clang and to execute it the StarPU OpenMP LLVM support
library file instead of the default libomp.so.

31.8 OpenMP Standard Functions in StarPU

StarPU provides severals functions which are very similar to their OpenMP counterparts but are adapted to the
StarPU runtime system. These functions are:

• starpu_omp_set_num_threads()

• starpu_omp_get_num_threads()

• starpu_omp_get_thread_num()

• starpu_omp_get_max_threads()

• starpu_omp_get_num_procs() which is used to get the number of available StarPU CPU workers.

• starpu_omp_in_parallel()

• starpu_omp_set_dynamic()

• starpu_omp_get_dynamic()

• starpu_omp_set_nested()

• starpu_omp_get_nested()

• starpu_omp_get_cancellation()

• starpu_omp_set_schedule()

• starpu_omp_get_schedule()

• starpu_omp_get_thread_limit()

• starpu_omp_set_max_active_levels()

Generated by Doxygen

214 The StarPU OpenMP Runtime Support (SORS)

• starpu_omp_get_max_active_levels()

• starpu_omp_get_level()

• starpu_omp_get_ancestor_thread_num()

• starpu_omp_get_team_size()

• starpu_omp_get_active_level()

• starpu_omp_in_final()

• starpu_omp_get_proc_bind()

• starpu_omp_get_num_places()

• starpu_omp_get_place_num_procs()

• starpu_omp_get_place_proc_ids()

• starpu_omp_get_place_num()

• starpu_omp_get_partition_num_places()

• starpu_omp_get_partition_place_nums()

• starpu_omp_set_default_device()

• starpu_omp_get_default_device()

• starpu_omp_get_num_devices()

• starpu_omp_get_num_teams()

• starpu_omp_get_team_num()

• starpu_omp_is_initial_device()

• starpu_omp_get_initial_device()

• starpu_omp_get_max_task_priority()

• starpu_omp_get_wtime()

• starpu_omp_get_wtick()

Generated by Doxygen

Part VII

StarPU Extensions

Generated by Doxygen

Chapter 32

Organization

This part explains the advanced concepts of StarPU. It is intended for users whose applications need more than
basic task submission.
You can learn more knowledge about some important and core concepts in StarPU:

• After reading Chapter Tasks In StarPU, you can get more information about how to manage tasks in StarPU
in Chapter Advanced Tasks In StarPU.

• After reading Chapter Data Management, you can know more about how to manage the data layout of your
applications in Chapter Advanced Data Management.

• After reading Chapter Scheduling, you can get some advanced scheduling policies in StarPU in Chapters
Advanced Scheduling, Scheduling Contexts and Scheduling Context Hypervisor.

• Chapter How To Define A New Scheduling Policy explains how to define a StarPU task scheduling policy ei-
ther in a basic monolithic way, or in a modular way.

Other chapters cover some further usages of StarPU.

• Chapters CUDA Support and OpenCL Support show how to use GPU devices with CUDA or OpenCL. Chap-
ter Maxeler FPGA Support explains how StarPU support Field Programmable Gate Array (FPGA) applications
exploiting DFE configurations.

• If you need to store more data than what the main memory (RAM) can store, Chapter Out Of Core presents
how to add a new memory node on a disk and how to use it.

• Chapter MPI Support shows how to integrate MPI processes in StarPU.

• Chapter TCP/IP Support shows a TCP/IP master slave mechanism which can execute application across
many remote cores without thinking about data distribution.

• Chapter Transactions shows how to cancel a sequence of already submitted tasks based on a just-in-time
decision.

• Chapter Fault Tolerance explains how StarPU provide supports for failure of tasks or even failure of complete
nodes.

• Chapter FFT Support explains how StarPU provides a similar library to both fftw and cufft, but by adding
a support from both CPUs and GPUs.

• Chapter SOCL OpenCL Extensions explains how OpenCL applications can transparently be run using Star←↩

PU, by givings unified access to every available OpenCL device.

• We propose a hierarchical tasks model in Chapter Hierarchical DAGS to enable tasks subgraphs at runtime
for a more dynamic task graph.

• You can find how to partition a machine into parallel workers in Chapter Creating Parallel Workers On A Machine.

• Chapter Interoperability Support shows how StarPU can coexist with other parallel software elements without
resulting in computing core oversubscription or undersubscription.

Generated by Doxygen

218 Organization

• Chapter SimGrid Support shows you how to simulate execution on an arbitrary platform.

• Tools to help debugging applications are presented in Chapter Debugging Tools.

And finally, chapter Helpers gives a list of StarPU utility functions.

Generated by Doxygen

Chapter 33

Advanced Tasks In StarPU

33.1 Task Dependencies

33.1.1 Sequential Consistency

By default, task dependencies are inferred from data dependency (sequential coherency) by StarPU. The application
can however disable sequential coherency for some data, and dependencies can be specifically expressed.
Setting (or unsetting) sequential consistency can be done at the data level by calling starpu_data_set_sequential_consistency_flag()
for a specific data (an example is in the file examples/dependency/task_end_dep.c) or starpu_data_set_default_sequential_consistency_flag()
for all data (an example is in the file tests/main/subgraph_repeat.c).
The sequential consistency mode can also be gotten by calling starpu_data_get_sequential_consistency_flag() for a
specific data or get the default sequential consistency flag by calling starpu_data_get_default_sequential_consistency_flag().
Setting (or unsetting) sequential consistency can also be done at task level by setting the field starpu_task::sequential_consistency
to 0 (an example is in the file tests/main/deploop.c).
Sequential consistency can also be set (or unset) for each handle of a specific task, this is done by using the
field starpu_task::handles_sequential_consistency. When set, its value should be an array with the number of
elements being the number of handles for the task, each element of the array being the sequential consistency
for the i-th handle of the task. The field can easily be set when calling starpu_task_insert() with the flag
STARPU_HANDLES_SEQUENTIAL_CONSISTENCY
char *seq_consistency = malloc(cl.nbuffers * sizeof(char));
seq_consistency[0] = 1;
seq_consistency[1] = 1;
seq_consistency[2] = 0;
ret = starpu_task_insert(&cl,

STARPU_RW, handleA, STARPU_RW, handleB, STARPU_RW, handleC,
STARPU_HANDLES_SEQUENTIAL_CONSISTENCY, seq_consistency,
0);

free(seq_consistency);

A full code example is available in the file examples/dependency/sequential_consistency.c.
The internal algorithm used by StarPU to set up implicit dependency is as follows:
if (sequential_consistency(task) == 1)

for(i=0 ; i<STARPU_TASK_GET_NBUFFERS(task) ; i++)
if (sequential_consistency(i-th data, task) == 1)
if (sequential_consistency(i-th data) == 1)

create_implicit_dependency(...)

33.1.2 Tasks And Tags Dependencies

One can explicitly set dependencies between tasks using starpu_task_declare_deps() or starpu_task_declare_deps_array().
Dependencies between tasks can be expressed through tags associated to a tag with the field starpu_task::tag_id
and using the function starpu_tag_declare_deps() or starpu_tag_declare_deps_array(). The example
tests/main/tag_task_data_deps.c shows how to set dependencies between tasks with different
functions.
The termination of a task can be delayed through the function starpu_task_end_dep_add() which specifies the
number of calls to the function starpu_task_end_dep_release() needed to trigger the task termination. One can
also use starpu_task_declare_end_deps() or starpu_task_declare_end_deps_array() to delay the termination of a
task until the termination of other tasks. A simple example is available in the file tests/main/task_end_←↩

dep.c.
starpu_tag_notify_from_apps() can be used to explicitly unlock a specific tag, but if it is called several times on the

Generated by Doxygen

220 Advanced Tasks In StarPU

same tag, notification will be done only on first call. However, one can call starpu_tag_restart() to clear the already
notified status of a tag which is not associated with a task, and then calling starpu_tag_notify_from_apps() again
will notify the successors. Alternatively, starpu_tag_notify_restart_from_apps() can be used to atomically call both
starpu_tag_notify_from_apps() and starpu_tag_restart() on a specific tag.
To get the task associated to a specific tag, one can call starpu_tag_get_task(). Once the corresponding task has
been executed and when there is no other tag that depend on this tag anymore, one can call starpu_tag_remove()
to release the resources associated to the specific tag.

33.2 Waiting For Tasks

StarPU provides several advanced functions to wait for termination of tasks. One can wait for some explicit tasks,
or for some tag attached to some tasks, or for some data results.
starpu_task_wait_array() is a function that waits for an array of tasks to complete their execution. starpu_task_wait_for_all_in_ctx()
is a function that waits for all tasks in a specific context to complete their execution. starpu_task_wait_for_n_submitted_in_ctx()
is a function that waits for a specified number of tasks to be submitted to a specific context. starpu_task_wait_for_no_ready()
is a function that waits for all tasks to become unready, which means that they are either completed or blocked on a
data dependency. In order to successfully call these functions to wait for termination of tasks, starpu_task::detach
should be set to 0 before task submission.
The function starpu_task_nready() returns the number of tasks that are ready to execute, which means that all their
data dependencies are satisfied and they are waiting to be scheduled, while the function starpu_task_nsubmitted()
returns the number of tasks that have been submitted and not completed yet.
The function starpu_task_finished() can be used to determine whether a specific task has completed its execution.
starpu_tag_wait() and starpu_tag_wait_array() are two blocking functions that can be used to wait for tasks with
specific tags to complete their execution. The former one waits for a specified task to complete while the latter one
waits for a group of tasks to complete.
When using e.g. starup_task_insert(), it may be more convenient to wait for the result of a task rather than waiting
for a given task explicitly. That can be done thanks to starpu_data_acquire() or starpu_data_acquire_cb() that
wait for the result to be available in the home node of the data. That will thus wait for all the tasks that lead to
that result. One can also use starpu_data_acquire_on_node() and give it STARPU_ACQUIRE_NO_NODE to tell
to just wait for tasks to complete, but not wait for the data to be available in the home node. One can also use
starpu_data_acquire_try() or starpu_data_acquire_on_node_try() to just test for the termination.
If a task is created by using starpu_task_create() or starpu_task_insert(), the field starpu_task::destroy is set to 1
by default, which means that the task structure will be automatically freed after termination. On the other hand, if
the task is initialized by using starpu_task_init(), the field starpu_task::destroy is set to 0 by default, which means
that the task structure will not be freed until starpu_task_destroy() is called explicitly. Otherwise, we can manually
set starpu_task::destroy to 1 before submission or call starpu_task_set_destroy() after submission to activate the
automatic freeing of the task structure.

33.3 Using Multiple Implementations Of A Codelet

One may want to write multiple implementations of a codelet for a single type of device and let StarPU choose which
one to run. As an example, we will show how to use SSE to scale a vector. The codelet can be written as follows:
#include <xmmintrin.h>
void scal_sse_func(void *buffers[], void *cl_arg)
{

float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
unsigned int n_iterations = n/4;
if (n % 4 != 0)

n_iterations++;
__m128 *VECTOR = (__m128*) vector;
__m128 factor __attribute__((aligned(16)));
factor = _mm_set1_ps(*(float *) cl_arg);
unsigned int i;
for (i = 0; i < n_iterations; i++)

VECTOR[i] = _mm_mul_ps(factor, VECTOR[i]);
}
struct starpu_codelet cl =
{

.cpu_funcs = { scal_cpu_func, scal_sse_func },

.cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },

.nbuffers = 1,

.modes = { STARPU_RW }
};

Generated by Doxygen

33.4 Enabling Implementation According To Capabilities 221

The full code of this example is available in the file examples/basic_examples/vector_scal.c.
Schedulers which are multi-implementation aware (only dmda and pheft for now) will use the performance models
of all the provided implementations, and pick the one which seems to be the fastest.

33.4 Enabling Implementation According To Capabilities

Some implementations may not run on some devices. For instance, some CUDA devices do not support double
floating point precision, and thus the kernel execution would just fail; or the device may not have enough shared
memory for the implementation being used. The field starpu_codelet::can_execute permits to express this. For
instance:
static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
{

const struct cudaDeviceProp *props;
if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
return 1;

/* Cuda device */
props = starpu_cuda_get_device_properties(workerid);
if (props->major >= 2 || props->minor >= 3)
/* At least compute capability 1.3, supports doubles */
return 1;

/* Old card, does not support doubles */
return 0;

}
struct starpu_codelet cl =
{

.can_execute = can_execute,

.cpu_funcs = { cpu_func },

.cpu_funcs_name = { "cpu_func" },

.cuda_funcs = { gpu_func }

.nbuffers = 1,

.modes = { STARPU_RW }
};

A full example is available in the file examples/reductions/dot_product.c.
This can be essential e.g. when running on a machine which mixes various models of CUDA devices, to take benefit
from the new models without crashing on old models.
Note: the function starpu_codelet::can_execute is called by the scheduler each time it tries to match a task with a
worker, and should thus be very fast. The function starpu_cuda_get_device_properties() provides quick access to
CUDA properties of CUDA devices to achieve such efficiency.
Another example is to compile CUDA code for various compute capabilities, resulting with two CUDA functions, e.g.
scal_gpu_13 for compute capability 1.3, and scal_gpu_20 for compute capability 2.0. Both functions can
be provided to StarPU by using starpu_codelet::cuda_funcs, and starpu_codelet::can_execute can then be used to
rule out the scal_gpu_20 variant on a CUDA device which will not be able to execute it:
static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
{

const struct cudaDeviceProp *props;
if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
return 1;

/* Cuda device */
if (nimpl == 0)
/* Trying to execute the 1.3 capability variant, we assume it is ok in all cases. */
return 1;

/* Trying to execute the 2.0 capability variant, check that the card can do it. */
props = starpu_cuda_get_device_properties(workerid);
if (props->major >= 2 || props->minor >= 0)
/* At least compute capability 2.0, can run it */
return 1;

/* Old card, does not support 2.0, will not be able to execute the 2.0 variant. */
return 0;

}
struct starpu_codelet cl =
{

.can_execute = can_execute,

.cpu_funcs = { cpu_func },

.cpu_funcs_name = { "cpu_func" },

.cuda_funcs = { scal_gpu_13, scal_gpu_20 },

.nbuffers = 1,

.modes = { STARPU_RW }
};

Another example is having specialized implementations for some given common sizes, for instance here we have a
specialized implementation for 1024x1024 matrices:
static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
{

const struct cudaDeviceProp *props;
if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
return 1;

/* Cuda device */

Generated by Doxygen

222 Advanced Tasks In StarPU

switch (nimpl)
{
case 0:

/* Trying to execute the generic capability variant. */
return 1;

case 1:
{

/* Trying to execute the size == 1024 specific variant. */
struct starpu_matrix_interface *interface = starpu_data_get_interface_on_node(task->handles[0]);
return STARPU_MATRIX_GET_NX(interface) == 1024 && STARPU_MATRIX_GET_NY(interface == 1024);

}
}

}
struct starpu_codelet cl =
{

.can_execute = can_execute,

.cpu_funcs = { cpu_func },

.cpu_funcs_name = { "cpu_func" },

.cuda_funcs = { potrf_gpu_generic, potrf_gpu_1024 },

.nbuffers = 1,

.modes = { STARPU_RW }
};

Note that the most generic variant should be provided first, as some schedulers are not able to try the different
variants.

33.5 Getting Task Children

It may be interesting to get the list of tasks which depend on a given task, notably when using implicit dependencies,
since this list is computed by StarPU. starpu_task_get_task_succs() or starpu_task_get_task_scheduled_succs()
provides it. For instance:
struct starpu_task *tasks[4];
ret = starpu_task_get_task_succs(task, sizeof(tasks)/sizeof(*tasks), tasks);

And the full example of getting task children is available in the file tests/main/get_children_tasks.c

33.6 Parallel Tasks

StarPU can leverage existing parallel computation libraries by the means of parallel tasks. A parallel task is a
task which is run by a set of CPUs (called a parallel or combined worker) at the same time, by using an existing
parallel CPU implementation of the computation to be achieved. This can also be useful to improve the load balance
between slow CPUs and fast GPUs: since CPUs work collectively on a single task, the completion time of tasks on
CPUs become comparable to the completion time on GPUs, thus relieving from granularity discrepancy concerns.
hwloc support needs to be enabled to get good performance, otherwise StarPU will not know how to better group
cores.
Two modes of execution exist to accommodate with existing usages.

33.6.1 Fork-mode Parallel Tasks

In the Fork mode, StarPU will call the codelet function on one of the CPUs of the combined worker. The codelet
function can use starpu_combined_worker_get_size() to get the number of threads it is allowed to start to achieve
the computation. The CPU binding mask for the whole set of CPUs is already enforced, so that threads created by
the function will inherit the mask, and thus execute where StarPU expected, the OS being in charge of choosing
how to schedule threads on the corresponding CPUs. The application can also choose to bind threads by hand,
using e.g. sched_getaffinity to know the CPU binding mask that StarPU chose.
For instance, using OpenMP (full source is available in examples/openmp/vector_scal.c):
void scal_cpu_func(void *buffers[], void *_args)
{

unsigned i;
float *factor = _args;
struct starpu_vector_interface *vector = buffers[0];
unsigned n = STARPU_VECTOR_GET_NX(vector);
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);

#pragma omp parallel for num_threads(starpu_combined_worker_get_size())
for (i = 0; i < n; i++)

val[i] *= *factor;
}
static struct starpu_codelet cl =
{

.modes = { STARPU_RW },

.where = STARPU_CPU,

.type = STARPU_FORKJOIN,

Generated by Doxygen

33.6 Parallel Tasks 223

.max_parallelism = INT_MAX,

.cpu_funcs = {scal_cpu_func},

.cpu_funcs_name = {"scal_cpu_func"},

.nbuffers = 1,
};

Other examples include for instance calling a BLAS parallel CPU implementation (see examples/mult/xgemm.←↩

c).

33.6.2 SPMD-mode Parallel Tasks

In the SPMD mode, StarPU will call the codelet function on each CPU of the combined worker. The codelet function
can use starpu_combined_worker_get_size() to get the total number of CPUs involved in the combined worker, and
thus the number of calls that are made in parallel to the function, and starpu_combined_worker_get_rank() to get
the rank of the current CPU within the combined worker. For instance:
static void func(void *buffers[], void *args)
{

unsigned i;
float *factor = _args;
struct starpu_vector_interface *vector = buffers[0];
unsigned n = STARPU_VECTOR_GET_NX(vector);
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);
/* Compute slice to compute */
unsigned m = starpu_combined_worker_get_size();
unsigned j = starpu_combined_worker_get_rank();
unsigned slice = (n+m-1)/m;
for (i = j * slice; i < (j+1) * slice && i < n; i++)

val[i] *= *factor;
}
static struct starpu_codelet cl =
{

.modes = { STARPU_RW },

.type = STARPU_SPMD,

.max_parallelism = INT_MAX,

.cpu_funcs = { func },

.cpu_funcs_name = { "func" },

.nbuffers = 1,
}

A full example is available in examples/spmd/vector_scal_spmd.c.
Of course, this trivial example will not really benefit from parallel task execution, and was only meant to be simple
to understand. The benefit comes when the computation to be done is so that threads have to e.g. exchange
intermediate results, or write to the data in a complex but safe way in the same buffer.

33.6.3 Parallel Tasks Performance

To benefit from parallel tasks, a parallel-task-aware StarPU scheduler has to be used. When exposed to codelets
with a flag STARPU_FORKJOIN or STARPU_SPMD, the schedulers pheft (parallel-heft) and peager (parallel
eager) will indeed also try to execute tasks with several CPUs. It will automatically try the various available com-
bined worker sizes (making several measurements for each worker size) and thus be able to avoid choosing a
large combined worker if the codelet does not actually scale so much. Examples using parallel-task-aware StarPU
scheduler are available in tests/parallel_tasks/parallel_kernels.c and tests/parallel_←↩

tasks/parallel_kernels_spmd.c.
This is however for now only proof of concept, and has not really been optimized yet.

33.6.4 Combined Workers

By default, StarPU creates combined workers according to the architecture structure as detected by hwloc.
It means that for each object of the hwloc topology (NUMA node, socket, cache, ...) a combined worker
will be created. If some nodes of the hierarchy have a big arity (e.g. many cores in a socket without
a hierarchy of shared caches), StarPU will create combined workers of intermediate sizes. The variable
STARPU_SYNTHESIZE_ARITY_COMBINED_WORKER permits to tune the maximum arity between levels of com-
bined workers.
The combined workers actually produced can be seen in the output of the tool starpu_machine_display
(the environment variable STARPU_SCHED has to be set to a combined worker-aware scheduler such as pheft
or peager).

Generated by Doxygen

224 Advanced Tasks In StarPU

33.6.5 Concurrent Parallel Tasks

Unfortunately, many environments and libraries do not support concurrent calls.
For instance, most OpenMP implementations (including the main ones) do not support concurrent pragma omp
parallel statements without nesting them in another pragma omp parallel statement, but StarPU does
not yet support creating its CPU workers by using such pragma.
Other parallel libraries are also not safe when being invoked concurrently from different threads, due to the use of
global variables in their sequential sections, for instance.
The solution is then to use only one combined worker at a time. This can be done by setting the field
starpu_conf::single_combined_worker to 1, or setting the environment variable STARPU_SINGLE_COMBINED_WORKER
to 1. StarPU will then run only one parallel task at a time (but other CPU and GPU tasks are not affected and can
be run concurrently). The parallel task scheduler will however still try varying combined worker sizes to look for the
most efficient ones. A full example is available in examples/spmd/vector_scal_spmd.c.

33.7 Synchronization Tasks

For the application convenience, it may be useful to define tasks which do not actually make any computation, but
wear for instance dependencies between other tasks or tags, or to be submitted in callbacks, etc.
The obvious way is of course to make kernel functions empty, but such task will thus have to wait for a worker to
become ready, transfer data, etc.
A much lighter way to define a synchronization task is to set its field starpu_task::cl to NULL. The task will thus be
a mere synchronization point, without any data access or execution content: as soon as its dependencies become
available, it will terminate, call the callbacks, and release dependencies.
An intermediate solution is to define a codelet with its field starpu_codelet::where set to STARPU_NOWHERE, for
instance:
struct starpu_codelet cl =
{

.where = STARPU_NOWHERE,

.nbuffers = 1,

.modes = { STARPU_R },
}
task = starpu_task_create();
task->cl = &cl;
task->handles[0] = handle;
starpu_task_submit(task);

will create a task which simply waits for the value of handle to be available for read. This task can then be
depended on, etc. A full example is available in examples/filters/fmultiple_manual.c.
StarPU provides starpu_task_create_sync() to create a new synchronization task, the same as the previous ex-
ample but without submitting the task. The function starpu_create_sync_task() is also used to create a new syn-
chronization task and submit it, which is a task that waits for specific tags and calls the specified callback function
when the task is finished. The function starpu_create_callback_task() can create and submit a synchronization
task, which is a task that completes immediately and calls the specified callback function right after.

Generated by Doxygen

Chapter 34

Advanced Data Management

34.1 Data Interface with Variable Size

Besides the data interfaces already available in StarPU, mentioned in Data Interface, tasks are actually allowed to
change the size of data interfaces.
The simplest case is just changing the amount of data actually used within the allocated buffer. This is for instance
implemented for the matrix interface: one can set the new NX/NY values with STARPU_MATRIX_SET_NX(),
STARPU_MATRIX_SET_NY(), and STARPU_MATRIX_SET_LD() at the end of the task implementation. Data
transfers achieved by StarPU will then use these values instead of the whole allocated size. The val-
ues of course need to be set within the original allocation. To reserve room for increasing the NX/←↩

NY values, one can use starpu_matrix_data_register_allocsize() instead of starpu_matrix_data_register(),
to specify the allocation size to be used instead of the default NX∗NY∗ELEMSIZE. It is also available
for a vector by using starpu_vector_data_register_allocsize() to specify the allocation size to be used in-
stead of the default NX∗ELEMSIZE. To support this, the data interface has to implement the functions
starpu_data_interface_ops::alloc_footprint, starpu_data_interface_ops::alloc_compare, and starpu_data_interface_ops::reuse_data_on_node
for proper StarPU allocation management. It might be useful to implement starpu_data_interface_ops::cache_data_on_node,
otherwise StarPU will just call memcpy().
A more involved case is changing the amount of allocated data. The task implementation can just reallocate the
buffer during its execution, and set the proper new values in the interface structure, e.g. nx, ny, ld, etc. so that the
StarPU core knows the new data layout. The structure starpu_data_interface_ops however then needs to have the
field starpu_data_interface_ops::dontcache set to 1, to prevent StarPU from trying to perform any cached allocation,
since the allocated size will vary. An example is available in tests/datawizard/variable_size.c. The
example uses its own data interface to contain some simulation information for data growth, but the principle can be
applied for any data interface.
The principle is to use starpu_malloc_on_node_flags() to make the new allocation, and use starpu_free_on_node_flags()
to release any previous allocation. The flags have to be precisely like in the example:
unsigned workerid = starpu_worker_get_id_check();
unsigned dst_node = starpu_worker_get_memory_node(workerid);
interface->ptr = starpu_malloc_on_node_flags(dst_node, size + increase, STARPU_MALLOC_PINNED |

STARPU_MALLOC_COUNT | STARPU_MEMORY_OVERFLOW);
starpu_free_on_node_flags(dst_node, old, size, STARPU_MALLOC_PINNED | STARPU_MALLOC_COUNT |

STARPU_MEMORY_OVERFLOW);
interface->size += increase;

so that the allocated area has the expected properties and the allocation is properly accounted for.
Depending on the interface (vector, CSR, etc.) you may have to fix several fields of the data interface: e.g. both nx
and allocsize for vectors, and store the pointer both in ptr and dev_handle.
Some interfaces make a distinction between the actual number of elements stored in the data and the actually
allocated buffer. For instance, the vector interface uses the nx field for the former, and the allocsize for the
latter. This allows for lazy reallocation to avoid reallocating the buffer every time to exactly match the actual number
of elements. Computations and data transfers will use the field nx, while allocation functions will use the field
allocsize. One just has to make sure that allocsize is always bigger or equal to nx.
Important note: one can not change the size of a partitioned data.

Generated by Doxygen

226 Advanced Data Management

34.2 Data Management Allocation

When the application allocates data, whenever possible it should use the function starpu_malloc(), which will ask
CUDA or OpenCL to make the allocation itself and pin the corresponding allocated memory (a basic example is
in examples/basic_examples/block.c), or to use the function starpu_memory_pin() to pin memory allo-
cated by other ways, such as local arrays (a basic example is in examples/basic_examples/vector←↩

_scal.c). This is needed to permit asynchronous data transfer, i.e. permit data transfer to overlap with
computations. Otherwise, the trace will show that the state DriverCopyAsync takes a lot of time, this is
because CUDA or OpenCL then reverts to synchronous transfers. Before shutting down StarPU, the applica-
tion should deallocate any memory that has previously been allocated with starpu_malloc(), by calling either
starpu_free() or starpu_free_noflag() which is more recommended. If the application has pinned memory using
starpu_memory_pin(), it should unpin the memory using starpu_memory_unpin() before freeing the memory.
If an application requires a specific alignment constraint for memory allocations made with starpu_malloc(), it can
use the starpu_malloc_set_align() function to set the alignment requirement.
The application can provide its own allocation function by calling starpu_malloc_set_hooks(). StarPU will then
use them for all data handle allocations in the main memory. An example is in examples/basic_←↩

examples/hooks.c.
StarPU provides several functions to monitor the memory usage and availability on the system. The applica-
tion can use the starpu_memory_get_used() function to monitor its own memory usage on a node, and the
starpu_memory_get_total_all_nodes() function to monitor the amount of total memory on all memory nodes, and
the starpu_memory_get_available_all_nodes() function to monitor the amount of available memory on all memory
nodes. Additionally, the starpu_memory_get_used_all_nodes() function can be used to monitor the amount of used
memory on all memory nodes.
By default, StarPU leaves replicates of data wherever they were used, in case they will be re-used by other tasks,
thus saving the data transfer time. When some task modifies some data, all the other replicates are invalidated,
and only the processing unit which ran this task will have a valid replicate of the data. If the application knows that
this data will not be re-used by further tasks, it should advise StarPU to immediately replicate it to a desired list of
memory nodes (given through a bitmask). This can be understood like the write-through mode of CPU caches.
starpu_data_set_wt_mask(img_handle, 1«0);

will for instance request to always automatically transfer a replicate into the main memory (node 0), as bit 0 of the
write-through bitmask is being set. An example is available in examples/pi/pi.c.
starpu_data_set_wt_mask(img_handle, ~0U);

will request to always automatically broadcast the updated data to all memory nodes. An example is available in
tests/datawizard/wt_broadcast.c.
Setting the write-through mask to ∼0U can also be useful to make sure all memory nodes always have a copy of
the data, so that it is never evicted when memory gets scarce.
Implicit data dependency computation can become expensive if a lot of tasks access the same piece of data. If no
dependency is required on some piece of data (e.g. because it is only accessed in read-only mode, or because write
accesses are actually commutative), use the function starpu_data_set_sequential_consistency_flag() to disable
implicit dependencies on this data.
In the same vein, accumulation of results in the same data can become a bottleneck. The use of the mode
STARPU_REDUX permits to optimize such accumulation (see Data Reduction). To a lesser extent, the use of the
flag STARPU_COMMUTE keeps the bottleneck (see Commute Data Access), but at least permits the accumulation
to happen in any order.
Applications often need a data just for temporary results. In such a case, registration can be made without an initial
value, for instance this produces a vector data:
starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));

StarPU will then allocate the actual buffer only when it is actually needed, e.g. directly on the GPU without allocating
in main memory.
In the same vein, once the temporary results are not useful anymore, the data should be thrown away. If the handle
is not to be reused, it can be unregistered:
starpu_data_unregister_submit(handle);

actual unregistration will be done after all tasks working on the handle terminate.
One can also unregister the data handle by calling:
starpu_data_unregister_no_coherency(handle);

Different from starpu_data_unregister(), a valid copy of the data is not put back into the home node in the buffer that
was initially registered.
If the handle is to be reused, instead of unregistering it, it can simply be deinitialized:
starpu_data_deinitialize(handle);

So that the value will be ignored and not written back to main memory.

Generated by Doxygen

34.3 Data Access 227

Or instead it can even be invalidated (the buffers containing the current value will then be freed, and reallocated
only when another task writes some value to the handle):
starpu_data_invalidate(handle);

if the data transfer is asynchronous, one can use the submit versions:
starpu_data_deinitialize_submit(handle);

or
starpu_data_invalidate_submit(handle);

A basic example is available in the files tests/datawizard/data_deinitialize.c and tests/datawizard/data←↩

_invalidation.c.

34.3 Data Access

To access registered data outside tasks we can call the function starpu_data_acquire(). The access mode can
be read-only mode STARPU_R, write-only mode STARPU_W, and read-write mode STARPU_RW. We will get
an up-to-date copy of handle in memory located where the data was originally registered. The application can
also call starpu_data_acquire_try() instead of starpu_data_acquire() to acquire the data, but if previously-submitted
tasks have not completed when we ask to acquire the data, the program will crash. starpu_data_release() must be
called once the application no longer needs to access the piece of data. Or call starpu_data_release_to() to partly
release the piece of data acquired. We can also access registered data from a given memory node by calling the
function starpu_data_acquire_on_node(), or calling starpu_data_acquire_on_node_try() if all previously-submitted
tasks have completed. Correspondingly, starpu_data_release_on_node() must be called once the application no
longer needs to access the piece of data and the node parameter must be exactly the same as the corresponding
starpu_data_acquire_on_node() call. Or call starpu_data_release_to_on_node() to partly release the piece of data
acquired.
The application may access the requested data asynchronous during the execution of callback by calling
starpu_data_acquire_cb(), and by calling starpu_data_acquire_cb_sequential_consistency() with the possibil-
ity of enabling or disabling data dependencies. The callback function must call starpu_data_release() once
the application no longer needs to access the piece of data. Or call starpu_data_release_to() to partly
release the piece of data acquired. The application can also access registered data from a given mem-
ory node instead of main memory by calling the function starpu_data_acquire_on_node_cb(), and by calling
starpu_data_acquire_on_node_cb_sequential_consistency() with the possibility of enabling or disabling data de-
pendencies. starpu_data_release_on_node() must be called once the application no longer needs to access the
piece of data. Or call starpu_data_release_to_on_node() to partly release the piece of data acquired.

34.4 Data Prefetch

The scheduling policies heft, dmda and pheft perform data prefetch (see STARPU_PREFETCH): as soon as
a scheduling decision is taken for a task, requests are issued to transfer its required data to the target processing
unit, if needed, so that when the processing unit actually starts the task, its data will hopefully be already available,
and it will not have to wait for the transfer to finish.
The application may want to perform some manual prefetching, for several reasons such as excluding initial data
transfers from performance measurements, or setting up an initial statically-computed data distribution on the ma-
chine before submitting tasks, which will thus guide StarPU toward an initial task distribution (since StarPU will try
to avoid further transfers).
This can be achieved by giving the function starpu_data_prefetch_on_node() the handle and the desired tar-
get memory node. An example is available in the file tests/microbenchs/prefetch_data_on_←↩

node.c. The variant starpu_data_idle_prefetch_on_node() can be used to issue the transfer only when the
bus is idle. One can also call starpu_data_request_allocation() for the allocation of a piece of data on the
specified memory node. We can know whether the allocation is done on the specified memory node by using
starpu_data_test_if_allocated_on_node(). We can also know whether the map is done on the specified memory
node by using starpu_data_test_if_mapped_on_node().
If we want higher priority to request data to be replicated to a given node as soon as possible, so that it is available
there for tasks, we can call starpu_data_fetch_on_node(). We can call starpu_data_prefetch_on_node_prio() to
have a priority than starpu_data_prefetch_on_node(). And call starpu_data_idle_prefetch_on_node_prio() to have
a bit higher priority than starpu_data_idle_prefetch_on_node().
Conversely, one can advise StarPU that some data will not be useful in the close future by calling
starpu_data_wont_use(). StarPU will then write its value back to its home node, and evict it from GPUs when
room is needed. An example is available in the file tests/datawizard/partition_wontuse.c. One can

Generated by Doxygen

228 Advanced Data Management

also advise StarPU to evict data from the memory node directly by calling starpu_data_evict_from_node(), but it may
fail if e.g. some tasks are still working on the memory node. To avoid failure one can call starpu_data_can_evict()
to check whether data can be evicted from the memory node. Anyway it is more recommended to use
starpu_data_wont_use().
One can query the status of handle on the specified memory node by calling starpu_data_query_status2() or
starpu_data_query_status(). One can call starpu_memchunk_tidy() to tidy the available memory on the specified
memory node periodically.

34.5 Manual Partitioning

Except the partitioning functions described in Partitioning Data and Asynchronous Partitioning, one can
also handle partitioning by hand, by registering several views on the same piece of data. The idea is
then to manage the coherency of the various views through the common buffer in the main memory.
examples/filters/fmultiple_manual.c is a complete example using this technique.
In short, we first register the same matrix several times:
starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
for (i = 0; i < PARTS; i++)

starpu_matrix_data_register(&vert_handle[i], STARPU_MAIN_RAM, (uintptr_t)&matrix[0][i*(NX/PARTS)], NX,
NX/PARTS, NY, sizeof(matrix[0][0]));

Since StarPU is not aware that the two handles are actually pointing to the same data, we have a danger of
inadvertently submitting tasks to both views, which will bring a mess since StarPU will not guarantee any coherency
between the two views. To make sure we don't do this, we invalidate the view that we will not use:
for (i = 0; i < PARTS; i++)

starpu_data_invalidate(vert_handle[i]);

Then we can safely work on handle.
When we want to switch to the vertical slice view, all we need to do is bring coherency between them by running an
empty task on the home node of the data:
struct starpu_codelet cl_switch =
{

.where = STARPU_NOWHERE,

.nbuffers = 3,

.specific_nodes = 1,

.nodes = { STARPU_MAIN_RAM, STARPU_MAIN_RAM, STARPU_MAIN_RAM },
};
ret = starpu_task_insert(&cl_switch, STARPU_RW, handle,

STARPU_W, vert_handle[0],
STARPU_W, vert_handle[1],
0);

The execution of the task switch will get back the matrix data into the main memory, and thus the vertical slices
will get the updated value there.
Again, we prefer to make sure that we don't accidentally access the matrix through the whole-matrix handle:
starpu_data_invalidate_submit(handle);

Note: when enabling a set of handles in this way, the set must not have any overlapping, i.e. the handles of the set
must not have any part of data in common, otherwise StarPU will not properly handle concurrent accesses between
them.
And now we can start using vertical slices, etc.

34.6 Data handles helpers

Functions starpu_data_set_user_data() and starpu_data_get_user_data() are used to associate user-defined data
with a specific data handle. One can set or retrieve the field user_data of the data handle by calling these two
functions respectively. Similarly, functions starpu_data_set_sched_data() and starpu_data_get_sched_data() are
used to associate scheduling-related data with a specific data handle. One can set or retrieve the field sched←↩

_data of the data handle by calling these two functions respectively. One can set a name for a data handle by
calling starpu_data_set_name().
One can call starpu_data_register_same() to register a new piece of data into a data handle with the same interface
as the specified data handle. If necessary, one can register a void interface by using starpu_void_data_register().
There is no data really associated to this interface, but it may be used as a synchronization mechanism.
One can call starpu_data_cpy() or starpu_data_cpy_priority() to copy data from one memory location to another
memory location, but the latter one allows the application to specify a priority value for the copy operation. The
higher the priority value, the sonner the copy operation will be scheduled and executed. One can also call
starpu_data_dup_ro() function for duplicating, but this function only creates a new read-only data block that is
an exact copy of the original data block. The new data block can be used independently of the original data block

Generated by Doxygen

34.7 Handles data buffer pointers 229

for read-only access.
starpu_data_pack_node() and starpu_data_pack() are functions that are used to pack a data item into a binary buffer
on a node or on local memory node. starpu_data_peek_node() and starpu_data_peek() are functions that allow you
to read in handle's node or local node replicate the data located at the given pointer. starpu_data_unpack_node()
and starpu_data_unpack() are functions that are used to unpack a data item from a binary buffer on a node or on
local memory node.
StarPU provides several functions for querying the size and memory allocation of variable size data items, such as:
starpu_data_get_size() is a function that returns the size of a data associated with handle in bytes. This is the size
of the actual data stored in memory. starpu_data_get_alloc_size() is a function that returns the amount of memory
that has been allocated for a data associated with handle in anticipation. This may be larger than the actual size
of the data item, due to alignment requirements or other implementation details. starpu_data_get_max_size() is a
function that returns the maximum size of a handle data that can be allocated by StarPU.
One can call starpu_data_get_home_node() to retrieve the identifier of the node on which the data handle is origi-
nally stored. One can call starpu_data_print() to print basic information about the data handle and the node to the
specified file.

34.7 Handles data buffer pointers

A simple understanding of StarPU handles is that it's a collection of buffers on each memory node of the machine,
which contain the same data. The picture is however made more complex with the OpenCL support and with
partitioning.
When partitioning a handle, the data buffers of the subhandles will indeed be inside the data buffers of the main
handle (to save transferring data back and forth between the main handle and the subhandles). But in OpenCL,
a cl_mem is not a pointer, but an opaque value on which pointer arithmetic can not be used. That is why data
interfaces contain three fields: dev_handle, offset, and ptr.

• The field dev_handle is what the allocation function returned, and one can not do arithmetic on it.

• The field offset is the offset inside the allocated area, most often it will be 0 because data start at the
beginning of the allocated area, but when the handle is partitioned, the subhandles will have varying offset
values, for each subpiece.

• The field ptr, in the non-OpenCL case, i.e. when pointer arithmetic can be used on dev_handle, is just
the sum of dev_handle and offset, provided for convenience.

This means that:

• computation kernels can use ptr in non-OpenCL implementations.

• computation kernels have to use dev_handle and offset in the OpenCL implementation.

• allocation methods of data interfaces have to store the value returned by starpu_malloc_on_node() in dev←↩

_handle and ptr, and set offset to 0.

• partitioning filters have to copy over dev_handle without modifying it, set in the child different values of
offset, and set ptr accordingly as the sum of dev_handle and offset.

We can call starpu_data_handle_to_pointer() to get ptr associated with the data handle, or call starpu_data_get_local_ptr()
to get the local pointer associated with the data handle.
Examples in the directory examples/interface/complex_dev_handle/ show how to generate and im-
plement an interface supporting OpenCL.
To better notice the difference between simple ptr and dev_handle + offset, one can com-
pare examples/interface/complex_interface.c vs examples/interface/complex_←↩

dev_handle/complex_dev_handle_interface.c and examples/interface/complex←↩

_filters.c vs examples/interface/complex_dev_handle/complex_dev_handle_←↩

filters.c.

34.8 Defining A New Data Filter

StarPU provides a series of predefined filters in Data Partition, but additional filters can be defined by the application.
The principle is that the filter function just fills the memory location of the i-th subpart of a data. Examples are

Generated by Doxygen

230 Advanced Data Management

provided in src/datawizard/interfaces/∗_filters.c, check starpu_data_filter::filter_func for further
details. The helper function starpu_filter_nparts_compute_chunk_size_and_offset() can be used to compute the
division of pieces of data.

34.9 Defining A New Data Interface

This section proposes an example how to define your own interface, when the StarPU-provided interface do
not fit your needs. Here we take a simple example of an array of complex numbers represented by two ar-
rays of double values. The full source code is in examples/interface/complex_interface.c and
examples/interface/complex_interface.h
Let's thus define a new data interface to manage arrays of complex numbers:
/* interface for complex numbers */
struct starpu_complex_interface
{

double *real;
double *imaginary;
int nx;

};

That structure stores enough to describe one buffer of such kind of data. It is used for the buffer stored in the main
memory, another instance is used for the buffer stored in a GPU, etc. A data handle is thus a collection of such
structures, to describe each buffer on each memory node.
Note: one should not make pointers that point into such structures, because StarPU needs to be able to copy over
the content of it to various places, for instance to efficiently migrate a data buffer from one data handle to another
data handle, so the actual address of the structure may vary.

34.9.1 Data registration

Registering such a data to StarPU is easily done using the function starpu_data_register(). The last parameter of
the function, interface_complex_ops, will be described below.
void starpu_complex_data_register(starpu_data_handle_t *handleptr,

unsigned home_node, double *real, double *imaginary, int nx)
{

struct starpu_complex_interface complex =
{

.real = real,

.imaginary = imaginary,

.nx = nx
};
starpu_data_register(handleptr, home_node, &complex, &interface_complex_ops);

}

The struct starpu_complex_interface complex is here used just to store the parameters provided
by users to starpu_complex_data_register. starpu_data_register() will first allocate the handle, and then
pass the structure starpu_complex_interface to the method starpu_data_interface_ops::register_data_handle,
which records them within the data handle (it is called once per node by starpu_data_register()):
static void complex_register_data_handle(starpu_data_handle_t handle, int home_node, void *data_interface)
{

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *) data_interface;
unsigned node;
for (node = 0; node < STARPU_MAXNODES; node++)
{

struct starpu_complex_interface *local_interface = (struct starpu_complex_interface *)
starpu_data_get_interface_on_node(handle, node);

local_interface->nx = complex_interface->nx;
if (node == home_node)
{

local_interface->real = complex_interface->real;
local_interface->imaginary = complex_interface->imaginary;

}
else
{

local_interface->real = NULL;
local_interface->imaginary = NULL;

}
}

}

If the application provided a home node, the corresponding pointers will be recorded for that node. Oth-
ers have no buffer allocated yet. Possibly the interface needs some dynamic allocation (e.g. to store
an array of dimensions that can have variable size). The corresponding deallocation will then be done in
starpu_data_interface_ops::unregister_data_handle.
Different operations need to be defined for a data interface through the type starpu_data_interface_ops. We only
define here the basic operations needed to run simple applications. The source code for the different functions can

Generated by Doxygen

34.9 Defining A New Data Interface 231

be found in the file examples/interface/complex_interface.c, the details of the hooks to be provided
are documented in starpu_data_interface_ops .
static struct starpu_data_interface_ops interface_complex_ops =
{

.register_data_handle = complex_register_data_handle,

.allocate_data_on_node = complex_allocate_data_on_node,

.copy_methods = &complex_copy_methods,

.get_size = complex_get_size,

.footprint = complex_footprint,

.interfaceid = STARPU_UNKNOWN_INTERFACE_ID,

.interface_size = sizeof(struct starpu_complex_interface),
};

The field starpu_data_interface_ops::interfaceid should be defined to STARPU_UNKNOWN_INTERFACE_ID when
defining the interface, its value will be updated the first time a data is registered through the new data interface.
Convenience functions can be defined to access the different fields of the complex interface from a StarPU data
handle after a call to starpu_data_acquire():
double *starpu_complex_get_real(starpu_data_handle_t handle)
{

struct starpu_complex_interface *complex_interface =
(struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, STARPU_MAIN_RAM);

return complex_interface->real;
}
double *starpu_complex_get_imaginary(starpu_data_handle_t handle);
int starpu_complex_get_nx(starpu_data_handle_t handle);

Similar functions need to be defined to access the different fields of the complex interface from a void ∗ pointer
to be used within codelet implementations.
#define STARPU_COMPLEX_GET_REAL(interface) (((struct starpu_complex_interface *)(interface))->real)
#define STARPU_COMPLEX_GET_IMAGINARY(interface) (((struct starpu_complex_interface

*)(interface))->imaginary)
#define STARPU_COMPLEX_GET_NX(interface) (((struct starpu_complex_interface *)(interface))->nx)

Complex data interfaces can then be registered to StarPU.
double real = 45.0;
double imaginary = 12.0;
starpu_complex_data_register(&handle1, STARPU_MAIN_RAM, &real, &imaginary, 1);
starpu_task_insert(&cl_display, STARPU_R, handle1, 0);

and used by codelets.
void display_complex_codelet(void *descr[], void *_args)
{

int nx = STARPU_COMPLEX_GET_NX(descr[0]);
double *real = STARPU_COMPLEX_GET_REAL(descr[0]);
double *imaginary = STARPU_COMPLEX_GET_IMAGINARY(descr[0]);
int i;
for(i=0 ; i<nx ; i++)
{

fprintf(stderr, "Complex[%d] = %3.2f + %3.2f i\n", i, real[i], imaginary[i]);
}

}

The whole code for this complex data interface is available in the directory examples/interface/.

34.9.2 Data footprint

We need to pass a custom footprint function to the method starpu_data_interface_ops::footprint which
computes data size footprint. StarPU provides several functions to compute different type of value←↩

: starpu_hash_crc32c_be_n() is used to compute the CRC of a byte buffer, starpu_hash_crc32c_be_ptr() is
used to compute the CRC of a pointer value, starpu_hash_crc32c_be() is used to compute the CRC of a 32bit
number, starpu_hash_crc32c_string() is used to compute the CRC of a string.

34.9.3 Data allocation

To be able to run tasks on GPUs etc. StarPU needs to know how to allocate a buffer for the interface. In our
example, two allocations are needed in the allocation method complex_allocate_data_on_node(): one
for the real part and one for the imaginary part.
static starpu_ssize_t complex_allocate_data_on_node(void *data_interface, unsigned node)
{

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *) data_interface;
double *addr_real = NULL;
double *addr_imaginary = NULL;
starpu_ssize_t requested_memory = complex_interface->nx * sizeof(complex_interface->real[0]);
addr_real = (double*) starpu_malloc_on_node(node, requested_memory);
if (!addr_real)

goto fail_real;
addr_imaginary = (double*) starpu_malloc_on_node(node, requested_memory);
if (!addr_imaginary)

goto fail_imaginary;
/* update the data properly in consequence */

Generated by Doxygen

232 Advanced Data Management

complex_interface->real = addr_real;
complex_interface->imaginary = addr_imaginary;
return 2*requested_memory;

fail_imaginary:
starpu_free_on_node(node, (uintptr_t) addr_real, requested_memory);

fail_real:
return -ENOMEM;

}

Here we try to allocate the two parts. If either of them fails, we return -ENOMEM. If they succeed, we can record the
obtained pointers and returned the amount of allocated memory (for memory usage accounting).
Conversely, complex_free_data_on_node() frees the two parts:
static void complex_free_data_on_node(void *data_interface, unsigned node)
{

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *) data_interface;
starpu_ssize_t requested_memory = complex_interface->nx * sizeof(complex_interface->real[0]);
starpu_free_on_node(node, (uintptr_t) complex_interface->real, requested_memory);
starpu_free_on_node(node, (uintptr_t) complex_interface->imaginary, requested_memory);

}

We can call starpu_opencl_allocate_memory() to allocate memory on an OpenCL device.
We have not made anything particular for GPUs or whatsoever: it is starpu_free_on_node() which knows how to
actually make the allocation, and returns the resulting pointer, be it in main memory, in GPU memory, etc.

34.9.4 Data copy

Now that StarPU knows how to allocate/free a buffer, it needs to be able to copy over data into/from it. Defining
a method copy_any_to_any() allows StarPU to perform direct transfers between main memory and GPU
memory.
static int copy_any_to_any(void *src_interface, unsigned src_node,

void *dst_interface, unsigned dst_node,
void *async_data)

{
struct starpu_complex_interface *src_complex = src_interface;
struct starpu_complex_interface *dst_complex = dst_interface;
int ret = 0;
if (starpu_interface_copy((uintptr_t) src_complex->real, 0, src_node,

(uintptr_t) dst_complex->real, 0, dst_node,
src_complex->nx*sizeof(src_complex->real[0]),
async_data))

ret = -EAGAIN;
if (starpu_interface_copy((uintptr_t) src_complex->imaginary, 0, src_node,

(uintptr_t) dst_complex->imaginary, 0, dst_node,
src_complex->nx*sizeof(src_complex->imaginary[0]),
async_data))

ret = -EAGAIN;
return ret;

}

We here again have no idea what is main memory or GPU memory, or even if the copy is synchronous
or asynchronous: we just call starpu_interface_copy() according to the interface, passing it the pointers, and
checking whether it returned -EAGAIN, which means the copy is asynchronous, and StarPU will appropri-
ately wait for it thanks to the pointer async_data. This copy method is also available for 2D matrices
starpu_interface_copy2d(), 3D matrices starpu_interface_copy3d(), 4D matrices starpu_interface_copy4d() and N-
dim matrices starpu_interface_copynd().
starpu_interface_copy() will also manage copies between other devices such as CUDA devices, OpenCL devices,
etc. But if necessary, we may manage these copies by ourselves as well. StarPU provides three functions
starpu_cuda_copy_async_sync(), starpu_cuda_copy2d_async_sync() and starpu_cuda_copy3d_async_sync()
that enable copying of 1D, 2D or 3D data between main memory and CUDA device memories. They first try to copy
the data asynchronous, if fail or stream is NULL then copy the data synchronously. StarPU also provides several
functions that are used to transfer data between RAM and OpenCL devices. starpu_opencl_copy_ram_to_opencl()
copies data from RAM to an OpenCL device. starpu_opencl_copy_opencl_to_ram() copies data from an
OpenCL device to RAM. starpu_opencl_copy_opencl_to_opencl() copies data between two OpenCL devices.
starpu_opencl_copy_async_sync() copies data between two devices. If event is NULL, the copy is synchronous,
and checking whether ret is set to -EAGAIN, which means the copy is asynchronous.
This copy method is referenced in a structure starpu_data_copy_methods
static const struct starpu_data_copy_methods complex_copy_methods =
{

.any_to_any = copy_any_to_any
};

which was referenced in the structure starpu_data_interface_ops above.
Other fields of starpu_data_copy_methods allow providing optimized variants, notably for the case of 2D or 3D
matrix tiles with non-trivial ld.
We can call starpu_interface_data_copy() to record in offline execution traces the copy.

Generated by Doxygen

34.9 Defining A New Data Interface 233

When an asynchronous implementation of the data transfer is implemented, we can call starpu_interface_start_driver_copy_async()
and starpu_interface_end_driver_copy_async() to initiate and complete asynchronous data transfers between main
memory and GPU memory.

34.9.5 Data pack/peek/unpack

The copy methods allow for RAM/GPU transfers, but is not enough for e.g. transferring over MPI. That requires defin-
ing the pack/peek/unpack methods. The principle is that the method starpu_data_interface_ops::pack_data con-
catenates the buffer data into a newly-allocated contiguous bytes array, conversely starpu_data_interface_ops::peek_data
extracts from a bytes array into the buffer data, and starpu_data_interface_ops::unpack_data does the same as
starpu_data_interface_ops::peek_data but also frees the bytes array.
static int complex_pack_data(starpu_data_handle_t handle, unsigned node, void **ptr, starpu_ssize_t *count)
{

STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)

starpu_data_get_interface_on_node(handle, node);

*count = complex_get_size(handle);
if (ptr != NULL)
{

char *data;
data = (void*) starpu_malloc_on_node_flags(node, *count, 0);

*ptr = data;
memcpy(data, complex_interface->real, complex_interface->nx*sizeof(double));
memcpy(data+complex_interface->nx*sizeof(double), complex_interface->imaginary,

complex_interface->nx*sizeof(double));
}
return 0;

}

complex_pack_data() first computes the size to be allocated, then allocates it, and copies over into it the
content of the two real and imaginary arrays.
static int complex_peek_data(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)
{

char *data = ptr;
STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)

starpu_data_get_interface_on_node(handle, node);
STARPU_ASSERT(count == 2 * complex_interface->nx * sizeof(double));
memcpy(complex_interface->real, data, complex_interface->nx*sizeof(double));
memcpy(complex_interface->imaginary, data+complex_interface->nx*sizeof(double),

complex_interface->nx*sizeof(double));
return 0;

}

complex_peek_data() simply uses memcpy() to copy over from the bytes array into the data buffer.
static int complex_unpack_data(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)
{

complex_peek_data(handle, node, ptr, count);
starpu_free_on_node_flags(node, (uintptr_t) ptr, count, 0);
return 0;

}

And complex_unpack_data() just calls complex_peek_data() and releases the bytes array.

34.9.6 Pointers inside the data interface

In the example described above, the two pointers stored in the data interface are data buffers, which may point into
main memory, GPU memory, etc. One may also want to store pointers to meta-data for the interface, for instance
the list of dimensions sizes for the n-dimension matrix interface, but such pointers are to be handled completely
differently. More examples are provided in src/datawizard/interfaces/∗_interface.c
More precisely, there are two types of pointers:

• Data pointers, which point to the actual data in RAM/GPU/etc. memory. They may be NULL when the data
is not allocated (yet). StarPU will automatically call starpu_data_interface_ops::allocate_data_on_node to
allocate the data pointers whenever needed, and call starpu_data_interface_ops::free_data_on_node when
memory gets scarce. For instance, for the n-dimension matrix interface the pointers to the actual data (ptr,
dev_handle, offset) are data pointers.

• Meta-data pointers, which always point to RAM memory. They are usually always allocated so that they can
always be used. For instance, for the n-dimension matrix interface the array of dimension sizes and the array
of ld are meta-data pointers.

This means that:

Generated by Doxygen

234 Advanced Data Management

• The starpu_data_interface_ops::register_data_handle method has to allocate the meta-data pointers. If users
provided a buffer for the initial value of the handle, starpu_data_interface_ops::register_data_handle sets the
data pointers of the home_node interface to that buffer.

• The interface can additionally provide a ptr_register helper to set the data pointer of a given node. One
can call starpu_data_ptr_register() to realise.

• The starpu_data_interface_ops::unregister_data_handle method has to deallocate the meta-data pointers

• The starpu_data_interface_ops::allocate_data_on_node method has to allocate the data pointers on the
given node.

• The starpu_data_interface_ops::free_data_on_node method has to deallocate the data pointers on the given
node.

• The starpu_data_interface_ops::cache_data_on_node transfers the data pointers from a source inter-
face to a cached interface. This can notably take the opportunity to clear pointers in the source
interface. This also needs to copy the properties that starpu_data_interface_ops::compare (or
starpu_data_interface_ops::alloc_compare if defined) needs for comparing interfaces for caching com-
patibility.

• The starpu_data_interface_ops::reuse_data_on_node transfers the data pointers from a cached interface to
the destination interface.

• The starpu_data_interface_ops::map_data has to map the data pointers on the given node. One should
define function starpu_interface_map() to set this field.

• The starpu_data_interface_ops::unmap_data has to unmap the data pointers on the given node. One should
define function starpu_interface_unmap() to set this field.

• The starpu_data_interface_ops::update_map has to update the data pointers on the given node. One should
define function starpu_interface_update_map() to set this field.

• The filtering functions have to allocate the meta-data pointers for the child interface, and when the parent
interface has data pointers, it has to set the child data pointers to point into the parent data buffers.

Note: for compressed matrices such as CSR, BCSR, COO, the colind and rowptr arrays are not meta-data
pointers, but data pointers like nzval, because they need to be available in GPU memory for the GPU kernels.
Note: when the interface does not contain meta-data pointers, starpu_data_interface_ops::reuse_data_on_node
does not need to be implemented, StarPU will just use a memcpy. Otherwise, either starpu_data_interface_ops::reuse_data_on_node
must be used to transfer only the data pointers and not the meta-data pointers, or the allocation cache should be
disabled by setting starpu_data_interface_ops::dontcache to 1.
Note: It should be noted that because of the allocation cache, starpu_data_interface_ops::free_data_on_node may
be called on an interface which is not attached to a handle anymore. This means that the meta-data point-
ers will have been deallocated by starpu_data_interface_ops::unregister_data_handle, and cannot be used by
starpu_data_interface_ops::free_data_on_node to e.g. compute the size to be deallocated. For instance, the n-
dimension matrix interface uses an additional scalar allocsize field to store the allocation size, thus still available
even when the interface is in the allocation cache.
Note: if starpu_data_interface_ops::unregister_data_handle is implemented and checks that pointers are NULL,
starpu_data_interface_ops::cache_data_on_node needs to be implemented to clear the pointers when caching the
allocation.

34.9.7 Helpers

We can get the unique identifier of the interface associated with the data handle by calling starpu_data_get_interface_id(),
and get the next available identifier for a newly created data interface by calling starpu_data_interface_get_next_id().

34.10 The Multiformat Interface

It may be interesting to represent the same piece of data using two different data structures: one only used on
CPUs, and one only used on GPUs. This can be done by using the multiformat interface. StarPU will be able to

Generated by Doxygen

34.11 Specifying A Target Node For Task Data 235

convert data from one data structure to the other when needed. Note that the scheduler dmda is the only one
optimized for this interface. Users must provide StarPU with conversion codelets:
#define NX 1024
struct point array_of_structs[NX];
starpu_data_handle_t handle;
/*
* The conversion of a piece of data is itself a task, though it is created,

* submitted and destroyed by StarPU internals and not by the user. Therefore,

* we have to define two codelets.

* Note that for now the conversion from the CPU format to the GPU format has to

* be executed on the GPU, and the conversion from the GPU to the CPU has to be

* executed on the CPU.

*/
#ifdef STARPU_USE_OPENCL
void cpu_to_opencl_opencl_func(void *buffers[], void *args);
struct starpu_codelet cpu_to_opencl_cl =
{

.where = STARPU_OPENCL,

.opencl_funcs = { cpu_to_opencl_opencl_func },

.nbuffers = 1,

.modes = { STARPU_RW }
};
void opencl_to_cpu_func(void *buffers[], void *args);
struct starpu_codelet opencl_to_cpu_cl =
{

.where = STARPU_CPU,

.cpu_funcs = { opencl_to_cpu_func },

.cpu_funcs_name = { "opencl_to_cpu_func" },

.nbuffers = 1,

.modes = { STARPU_RW }
};
#endif
struct starpu_multiformat_data_interface_ops format_ops =
{
#ifdef STARPU_USE_OPENCL

.opencl_elemsize = 2 * sizeof(float),

.cpu_to_opencl_cl = &cpu_to_opencl_cl,

.opencl_to_cpu_cl = &opencl_to_cpu_cl,
#endif

.cpu_elemsize = 2 * sizeof(float),

...
};
starpu_multiformat_data_register(handle, STARPU_MAIN_RAM, &array_of_structs, NX, &format_ops);

Kernels can be written almost as for any other interface. Note that STARPU_MULTIFORMAT_GET_CPU_PTR shall
only be used for CPU kernels. CUDA kernels must use STARPU_MULTIFORMAT_GET_CUDA_PTR, and Open←↩

CL kernels must use STARPU_MULTIFORMAT_GET_OPENCL_PTR. STARPU_MULTIFORMAT_GET_NX may be
used in any kind of kernel.
static void
multiformat_scal_cpu_func(void *buffers[], void *args)
{

struct point *aos;
unsigned int n;
aos = STARPU_MULTIFORMAT_GET_CPU_PTR(buffers[0]);
n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
...

}
extern "C" void multiformat_scal_cuda_func(void *buffers[], void *_args)
{

unsigned int n;
struct struct_of_arrays *soa;
soa = (struct struct_of_arrays *) STARPU_MULTIFORMAT_GET_CUDA_PTR(buffers[0]);
n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
...

}

A full example may be found in examples/basic_examples/multiformat.c.

34.11 Specifying A Target Node For Task Data

When executing a task on GPU, for instance, StarPU would normally copy all the needed data for the tasks to
the embedded memory of the GPU. It may however happen that the task kernel would rather have some of
the data kept in the main memory instead of copied in the GPU, a pivoting vector for instance. This can be
achieved by setting the flag starpu_codelet::specific_nodes to 1, and then fill the array starpu_codelet::nodes (or
starpu_codelet::dyn_nodes when starpu_codelet::nbuffers is greater than STARPU_NMAXBUFS) with the node
numbers where data should be copied to, or STARPU_SPECIFIC_NODE_LOCAL to let StarPU copy it to the mem-
ory node where the task will be executed.
The function starpu_task_get_current_data_node() can be used to retrieve the memory node associated with the
current task being executed.

Generated by Doxygen

236 Advanced Data Management

STARPU_SPECIFIC_NODE_CPU can also be used to request data to be put in CPU-accessible memory (and let
StarPU choose the NUMA node). STARPU_SPECIFIC_NODE_FAST and STARPU_SPECIFIC_NODE_SLOW can
also be used
For instance, with the following codelet:
struct starpu_codelet cl =
{

.cuda_funcs = { kernel },

.nbuffers = 2,

.modes = {STARPU_RW, STARPU_RW},

.specific_nodes = 1,

.nodes = {STARPU_SPECIFIC_NODE_CPU, STARPU_SPECIFIC_NODE_LOCAL},
};

the first data of the task will be kept in the CPU memory, while the second data will be copied to the CUDA GPU as
usual. A working example is available in tests/datawizard/specific_node.c
With the following codelet:
struct starpu_codelet cl =
{

.cuda_funcs = { kernel },

.nbuffers = 2,

.modes = {STARPU_RW, STARPU_RW},

.specific_nodes = 1,

.nodes = {STARPU_SPECIFIC_NODE_LOCAL, STARPU_SPECIFIC_NODE_SLOW},
};

The first data will be copied into fast (but probably size-limited) local memory, while the second data will be left
in slow (but large) memory. This makes sense when the kernel does not make so many accesses to the second
data, and thus data being remote e.g. over a PCI bus is not a performance problem, and avoids filling the fast local
memory with data which does not need the performance.
In cases where the kernel is fine with some data being either local or in the main memory, STARPU_SPECIFIC_NODE_LOCAL_OR_CPU
can be used. StarPU will then be free to leave the data in the main memory and let the kernel access it from accel-
erators, or to move it to the accelerator before starting the kernel, for instance:
struct starpu_codelet cl =
{

.cuda_funcs = { kernel },

.nbuffers = 2,

.modes = {STARPU_RW, STARPU_R},

.specific_nodes = 1,

.nodes = {STARPU_SPECIFIC_NODE_LOCAL, STARPU_SPECIFIC_NODE_LOCAL_OR_CPU},
};

An example for specifying target node is available in tests/datawizard/specific_node.c.

Generated by Doxygen

Chapter 35

Advanced Scheduling

35.1 Energy-based Scheduling

Note: by default, StarPU does not let CPU workers sleep, to let them react to task release as quickly as possible. For
idle time to really let CPU cores save energy, one needs to use the configure option --enable-blocking-drivers.
If the application can provide some energy consumption performance model (through the field starpu_codelet::energy_model),
StarPU will take it into account when distributing tasks. The target function that the scheduler dmda minimizes be-
comes alpha ∗ T_execution + beta ∗ T_data_transfer + gamma ∗ Consumption , where
Consumption is the estimated task consumption in Joules. To tune this parameter, use export STARPU←↩

_SCHED_GAMMA=3000 (STARPU_SCHED_GAMMA) for instance, to express that each Joule (i.e. kW during
1000us) is worth 3000us execution time penalty. Setting alpha and beta to zero permits to only take into account
energy consumption.
This is however not sufficient to correctly optimize energy: the scheduler would simply tend to run all computations
on the most energy-conservative processing unit. To account for the consumption of the whole machine (including
idle processing units), the idle power of the machine should be given by setting export STARPU_IDLE_←↩

POWER=200 (STARPU_IDLE_POWER) for 200W, for instance. This value can often be obtained from the machine
power supplier, e.g. by running

ipmitool -I lanplus -H mymachine-ipmi -U myuser -P mypasswd sdr type Current

The energy actually consumed by the total execution can be displayed by setting export STARPU_←↩

PROFILING=1 STARPU_WORKER_STATS=1 (STARPU_PROFILING and STARPU_WORKER_STATS).
For OpenCL devices, on-line task consumption measurement is currently supported through the OpenCL extension
CL_PROFILING_POWER_CONSUMED, implemented in the MoviSim simulator.
For CUDA devices, on-line task consumption measurement is supported on V100 cards and beyond. This however
only works for quite long tasks, since the measurement granularity is about 10ms.
Applications can however provide explicit measurements by feeding the energy performance model by hand. Fine-
grain measurement is often not feasible with the feedback provided by the hardware, so users can for instance run
a given task a thousand times, measure the global consumption for that series of tasks, divide it by a thousand,
repeat for varying kinds of tasks and task sizes, and eventually feed StarPU with these manual measurements.
For CUDA devices starting with V100, the starpu_energy_start() and starpu_energy_stop() helpers, described in
Measuring energy and power with StarPU below, make it easy.
For older models, one can use nvidia-smi -q -d POWER to get the current consumption in Watt. Multiplying
this value by the average duration of a single task gives the consumption of the task in Joules, which can be given
to starpu_perfmodel_update_history(). (examplified in Performance Model Example with the performance model
energy_model).
Another way to provide the energy performance is to define a perfmodel with starpu_perfmodel::type
STARPU_PER_ARCH or STARPU_PER_WORKER , and set the field starpu_perfmodel::arch_cost_function
or starpu_perfmodel::worker_cost_function to a function which shall return the estimated consumption of the task
in Joules. Such a function can for instance use starpu_task_expected_length() on the task (in µs), multiplied by the
typical power consumption of the device, e.g. in W, and divided by 1000000. to get Joules. An example is in the file
tests/perfmodels/regression_based_energy.c.
There are other functions in StarPU that are used to measure the energy consumed by the system during exe-
cution. The starpu_energy_use() function declares that there are the energy consumptions of the task, while the
starpu_energy_used() function returns the total energy consumed since the start of measurement.

Generated by Doxygen

238 Advanced Scheduling

35.1.1 Measuring energy and power with StarPU

We have extended the performance model of StarPU to measure energy and power values of CPUs. These values
are measured using the existing Performance API (PAPI) analysis library. PAPI provides the tool designer and
application engineer with a consistent interface and methodology for use of the performance counter hardware
found in most major microprocessors. PAPI enables software engineers to see, in near real time, the relation
between software performance and processor events.

• To measure energy consumption of CPUs, we use the RAPL events, which are available on CPU
architecture: RAPL_ENERGY_PKG that represents the whole CPU socket power consumption, and RAPL←↩

_ENERGY_DRAM that represents the RAM power consumption.

PAPI provides a generic, portable interface for the hardware performance counters available on all modern CPUs
and some other components of interest that are scattered across the chip and system.
In order to use the right rapl events for energy measurement, user should check the rapl events available
on the machine, using this command:

$ papi_native_avail

Depending on the system configuration, users may have to run this as root to get the performance counter values.
Since the measurement is for all the CPUs and the memory, the approach taken here is to run a series of tasks on
all of them and to take the overall measurement.

• The example below illustrates the energy and power measurements, using the functions starpu_energy_start()
and starpu_energy_stop().

In this example, we launch several tasks of the same type in parallel. To perform the energy requirement
measurement of a program, we call starpu_energy_start(), which initializes energy measurement counters and
starpu_energy_stop(struct starpu_perfmodel ∗model, struct starpu_task ∗task, unsigned nimpl, unsigned ntasks, int workerid, enum starpu_worker_archtype archi)
to stop counting and update the performance model. This ends up yielding the average energy requirement of a
single task. The example below illustrates this for a given task type.

unsigned N = starpu_cpu_worker_get_count() * 40;
starpu_energy_start(-1, STARPU_CPU_WORKER);
for (i = 0; i < N; i++)

starpu_task_insert(&cl, STARPU_EXECUTE_WHERE, STARPU_CPU, STARPU_R, arg1, STARPU_RW, arg2, 0);
starpu_task_t *specimen = starpu_task_build(&cl, STARPU_R, arg1, STARPU_RW, arg2, 0);
starpu_energy_stop(&codelet.energy_model, specimen, 0, N, -1, STARPU_CPU_WORKER);

. . .

The example starts 40 times more tasks of the same type than there are CPU execution units. Once the tasks
are distributed over all CPUs, the latter are all executing the same type of tasks (with the same data size and
parameters); each CPU will in the end execute 40 tasks. A specimen task is then constructed and passed to
starpu_energy_stop(), which will fold into the performance model the energy requirement measurement for that
type and size of task.
For the energy and power measurements, depending on the system configuration, users may have to run applica-
tions as root to use PAPI library.
The function starpu_energy_stop() uses PAPI_stop() to stop counting and store the values into the
array. We calculate both energy in Joules and power consumption in Watt. We call the function
starpu_perfmodel_update_history() in the performance model to provide explicit measurements.

• In the CUDA case, nvml provides per-GPU energy measurement. We can thus calibrate the performance
models per GPU:

unsigned N = 40;
for (i = 0; i < starpu_cuda_worker_get_count(); i++) {

int workerid = starpu_worker_get_by_type(STARPU_CUDA_WORKER, i);
starpu_energy_start(workerid, STARPU_CUDA_WORKER);
for (i = 0; i < N; i++)

starpu_task_insert(&cl, STARPU_EXECUTE_ON_WORKER, workerid, STARPU_R, arg1, STARPU_RW, arg2, 0);
starpu_task_t *specimen = starpu_task_build(&cl, STARPU_R, arg1, STARPU_RW, arg2, 0);
starpu_energy_stop(&codelet.energy_model, specimen, 0, N, workerid, STARPU_CUDA_WORKER);
}

• A complete example is available in tests/perfmodels/regression_based_memset.c

Generated by Doxygen

35.2 Static Scheduling 239

35.2 Static Scheduling

In some cases, one may want to force some scheduling, for instance force a given set of tasks to GPU0, another set
to GPU1, etc. while letting some other tasks be scheduled on any other device. This can indeed be useful to guide
StarPU into some work distribution, while still letting some degree of dynamism. For instance, to force execution of
a task on CUDA0:
task->execute_on_a_specific_worker = 1;
task->workerid = starpu_worker_get_by_type(STARPU_CUDA_WORKER, 0);

An example is in the file tests/errorcheck/invalid_tasks.c.
or equivalently
starpu_task_insert(&cl, ..., STARPU_EXECUTE_ON_WORKER, starpu_worker_get_by_type(STARPU_CUDA_WORKER, 0),

...);

One can also specify a set of worker(s) which are allowed to take the task, as an array of bit, for instance to allow
workers 2 and 42:
task->workerids = calloc(2,sizeof(uint32_t));
task->workerids[2/32] |= (1 « (2%32));
task->workerids[42/32] |= (1 « (42%32));
task->workerids_len = 2;

One can also specify the order in which tasks must be executed by setting the field starpu_task::workerorder. An
example is available in the file tests/main/execute_schedule.c. If this field is set to a non-zero value, it
provides the per-worker consecutive order in which tasks will be executed, starting from 1. For a given of such task,
the worker will thus not execute it before all the tasks with smaller order value have been executed, notably in case
those tasks are not available yet due to some dependencies. This eventually gives total control of task scheduling,
and StarPU will only serve as a "self-timed" task runtime. Of course, the provided order has to be runnable, i.e. a
task should not depend on another task bound to the same worker with a bigger order.
Note however that using scheduling contexts while statically scheduling tasks on workers could be tricky. Be careful
to schedule the tasks exactly on the workers of the corresponding contexts, otherwise the workers' correspond-
ing scheduling structures may not be allocated or the execution of the application may deadlock. Moreover, the
hypervisor should not be used when statically scheduling tasks.

35.3 Configuring Heteroprio

Within Heteroprio, one priority per processing unit type is assigned to each task, such that a task has several
priorities. Each worker pops the task that has the highest priority for the hardware type it uses, which could be CPU
or CUDA for example. Therefore, the priorities has to be used to manage the critical path, but also to promote the
consumption of tasks by the more appropriate workers.
The tasks are stored inside buckets, where each bucket corresponds to a priority set. Then each worker uses an
indirect access array to know the order in which it should access the buckets. Moreover, all the tasks inside a bucket
must be compatible with all the processing units that may access it (at least).
These priorities are now automatically assigned by Heteroprio in auto calibration mode using heuristics. If you want
to set these priorities manually, you can change STARPU_HETEROPRIO_USE_AUTO_CALIBRATION and follow
the example below.
In this example code, we have 5 types of tasks. CPU workers can compute all of them, but CUDA workers can only
execute tasks of types 0 and 1, and are expected to go 20 and 30 time faster than the CPU, respectively.
#include <starpu_heteroprio.h>
// Before calling starpu_init
struct starpu_conf conf;
starpu_conf_init(&conf);
// Inform StarPU to use Heteroprio
conf.sched_policy_name = "heteroprio";
// Inform StarPU about the function that will init the priorities in Heteroprio
// where init_heteroprio is a function to implement
conf.sched_policy_callback = &init_heteroprio;
// Do other things with conf if needed, then init StarPU
starpu_init(&conf);
void init_heteroprio(unsigned sched_ctx) {

// CPU uses 5 buckets and visits them in the natural order
starpu_heteroprio_set_nb_prios(sched_ctx, STARPU_CPU_WORKER, 5);
// It uses direct mapping idx => idx
for(unsigned idx = 0; idx < 5; ++idx){
starpu_heteroprio_set_mapping(sched_ctx, STARPU_CPU_WORKER, idx, idx);
// If there is no CUDA worker we must tell that CPU is faster
starpu_heteroprio_set_faster_arch(sched_ctx, STARPU_CPU_WORKER, idx);

}
if(starpu_cuda_worker_get_count()){
// CUDA is enabled and uses 2 buckets
starpu_heteroprio_set_nb_prios(sched_ctx, STARPU_CUDA_WORKER, 2);
// CUDA will first look at bucket 1
starpu_heteroprio_set_mapping(sched_ctx, STARPU_CUDA_WORKER, 0, 1);

Generated by Doxygen

240 Advanced Scheduling

// CUDA will then look at bucket 2
starpu_heteroprio_set_mapping(sched_ctx, STARPU_CUDA_WORKER, 1, 2);
// For bucket 1 CUDA is the fastest
starpu_heteroprio_set_faster_arch(sched_ctx, STARPU_CUDA_WORKER, 1);
// And CPU is 30 times slower
starpu_heteroprio_set_arch_slow_factor(sched_ctx, STARPU_CPU_WORKER, 1, 30.0f);
// For bucket 0 CUDA is the fastest
starpu_heteroprio_set_faster_arch(sched_ctx, STARPU_CUDA_WORKER, 0);
// And CPU is 20 times slower
starpu_heteroprio_set_arch_slow_factor(sched_ctx, STARPU_CPU_WORKER, 0, 20.0f);

}
}

Then, when a task is inserted, the priority of the task will be used to select in which bucket is has to be
stored. So, in the given example, the priority of a task will be between 0 and 4 included. However, tasks of priorities
0-1 must provide CPU and CUDA kernels, and tasks of priorities 2-4 must provide CPU kernels (at least). The full
source code of this example is available in the file examples/scheduler/heteroprio_test.c

35.3.1 Using locality aware Heteroprio

Heteroprio supports a mode where locality is evaluated to guide the distribution of the tasks (see https←↩

://peerj.com/articles/cs-190.pdf). Currently, this mode is available using the dedicated function
or an environment variable STARPU_HETEROPRIO_USE_LA, and can be configured using environment variables.
void starpu_heteroprio_set_use_locality(unsigned sched_ctx_id, unsigned use_locality);

In this mode, multiple strategies are available to determine which memory node's workers are the most qualified for
executing a specific task. This strategy can be set with STARPU_LAHETEROPRIO_PUSH and available strategies
are:

• WORKER: the worker which pushed the task is preferred for the execution.

• LcS: the node with the shortest data transfer time (estimated by StarPU) is the most qualified

• LS_SDH: the node with the smallest data amount to be transferred will be preferred.

• LS_SDH2: similar to LS_SDH, but data in write access is counted in a quadratic manner to give them more
importance.

• LS_SDHB: similar to LS_SDH, but data in write access is balanced with a coefficient (its value is set to 1000)
and for the same amount of data, the one with fewer pieces of data to be transferred will be preferred.

• LC_SMWB: similar to LS_SDH, but the amount of data in write access gets multiplied by a coefficient which
gets closer to 2 as the amount of data in read access gets larger than the data in write access.

• AUTO: strategy by default, this one selects the best strategy and changes it in runtime to improve performance

Other environment variables to configure LaHeteteroprio are documented in Configuring LAHeteroprio

35.3.2 Using Heteroprio in auto-calibration mode

In this mode, Heteroprio saves data about each program execution, in order to improve future ones.
By default, these files are stored in the folder used by perfmodel, but this can be changed using the
STARPU_HETEROPRIO_DATA_DIR environment variable. You can also specify the data filename directly us-
ing STARPU_HETEROPRIO_DATA_FILE.
Additionally, to assign priorities to tasks, Heteroprio needs a way to detect that some tasks are similar.
By default, Heteroprio looks for tasks with the same perfmodel, or with the same codelet's name if no
perfmodel was assigned. This behavior can be changed to only consider the codelet's name by setting
STARPU_HETEROPRIO_CODELET_GROUPING_STRATEGY to 1
Other environment variables to configure AutoHeteteroprio are documented in Configuring AutoHeteroprio

Generated by Doxygen

https://peerj.com/articles/cs-190.pdf
https://peerj.com/articles/cs-190.pdf

Chapter 36

Scheduling Contexts

TODO: improve!

36.1 General Ideas

Scheduling contexts represent abstracts sets of workers that allow the programmers to control the distribution of
computational resources (i.e. CPUs and GPUs) to concurrent kernels. The main goal is to minimize interferences
between the execution of multiple parallel kernels, by partitioning the underlying pool of workers using contexts.
Scheduling contexts additionally allow a user to make use of a different scheduling policy depending on the target
resource set.

36.2 Creating A Context

By default, the application submits tasks to an initial context, which disposes of all the computation resources
available to StarPU (all the workers). If the application programmer plans to launch several kernels simultane-
ously, by default these kernels will be executed within this initial context, using a single scheduler policy (see
Task Scheduling Policies). Meanwhile, if the application programmer is aware of the demands of these kernels
and of the specificity of the machine used to execute them, the workers can be divided between several contexts.
These scheduling contexts will isolate the execution of each kernel, and they will permit the use of a scheduling
policy proper to each one of them.
Scheduling Contexts may be created in two ways: either the programmers indicates the set of workers correspond-
ing to each context (providing he knows the identifiers of the workers running within StarPU), or the programmer
does not provide any worker list and leaves the Hypervisor to assign workers to each context according to their
needs (Scheduling Context Hypervisor).
Both cases require a call to the function starpu_sched_ctx_create(), which requires as input the worker list (the
exact list or a NULL pointer), the amount of workers (or -1 to designate all workers on the platform) and a list of
optional parameters such as the scheduling policy, terminated by a 0. The scheduling policy can be a character list
corresponding to the name of a StarPU predefined policy or the pointer to a custom policy. The function returns an
identifier of the context created, which you will use to indicate the context you want to submit the tasks to. A basic
example is available in the file examples/sched_ctx/sched_ctx.c.
/* the list of resources the context will manage */
int workerids[3] = {1, 3, 10};
/* indicate the list of workers assigned to it, the number of workers,
the name of the context and the scheduling policy to be used within
the context */
int id_ctx = starpu_sched_ctx_create(workerids, 3, "my_ctx", STARPU_SCHED_CTX_POLICY_NAME, "dmda", 0);
/* let StarPU know that the following tasks will be submitted to this context */
starpu_sched_ctx_set_context(id);
/* submit the task to StarPU */
starpu_task_submit(task);

Note: Parallel greedy and parallel heft scheduling policies do not support the existence of several disjoint contexts
on the machine. Combined workers are constructed depending on the entire topology of the machine, not only the
one belonging to a context.

Generated by Doxygen

242 Scheduling Contexts

36.2.1 Creating A Context With The Default Behavior

If no scheduling policy is specified when creating the context, it will be used as another type of resource: a
parallel worker. A parallel worker is a context without scheduler (eventually delegated to another runtime). For more
information, see Creating Parallel Workers On A Machine. It is therefore mandatory to stipulate a scheduler to use
the contexts in this traditional way.
To create a context with the default scheduler, that is either controlled through the environment variable STARPU←↩

_SCHED or the StarPU default scheduler, one can explicitly use the option STARPU_SCHED_CTX_POLICY_←↩

NAME, "" as in the following example:
/* the list of resources the context will manage */
int workerids[3] = {1, 3, 10};
/* indicate the list of workers assigned to it, the number of workers,
and use the default scheduling policy. */
int id_ctx = starpu_sched_ctx_create(workerids, 3, "my_ctx", STARPU_SCHED_CTX_POLICY_NAME, "", 0);
/* */

A full example is available in the file examples/sched_ctx/two_cpu_contexts.c.

36.3 Creating A Context To Partition a GPU

The contexts can also be used to group a set of SMs of an NVIDIA GPU in order to isolate the parallel kernels and
allow them to coexecution on a specified partition of the GPU.
Each context will be mapped to a stream and users can indicate the number of SMs. The context can be added to
a larger context already grouping CPU cores. This larger context can use a scheduling policy that assigns tasks to
both CPUs and contexts (partitions of the GPU) based on performance models adjusted to the number of SMs.
The GPU implementation of the task has to be modified accordingly and receive as a parameter the number of SMs.
/* get the available streams (suppose we have nstreams = 2 by specifying them with STARPU_NWORKER_PER_CUDA=2

*/
int nstreams = starpu_worker_get_stream_workerids(gpu_devid, stream_workerids, STARPU_CUDA_WORKER);
int sched_ctx[nstreams];
sched_ctx[0] = starpu_sched_ctx_create(&stream_workerids[0], 1, "subctx", STARPU_SCHED_CTX_CUDA_NSMS, 6,

0);
sched_ctx[1] = starpu_sched_ctx_create(&stream_workerids[1], 1, "subctx", STARPU_SCHED_CTX_CUDA_NSMS, 7,

0);
int ncpus = 4;
int workers[ncpus+nstreams];
workers[ncpus+0] = stream_workerids[0];
workers[ncpus+1] = stream_workerids[1];
big_sched_ctx = starpu_sched_ctx_create(workers, ncpus+nstreams, "ctx1", STARPU_SCHED_CTX_SUB_CTXS,

sched_ctxs, nstreams, STARPU_SCHED_CTX_POLICY_NAME, "dmdas", 0);
starpu_task_submit_to_ctx(task, big_sched_ctx);

A full example is available in the file examples/sched_ctx/gpu_partition.c.

36.4 Modifying A Context

A scheduling context can be modified dynamically. The application may change its requirements during the exe-
cution, and the programmer can add additional workers to a context or remove those no longer needed. In the
following example, we have two scheduling contexts sched_ctx1 and sched_ctx2. After executing a part of
the tasks, some of the workers of sched_ctx1 will be moved to context sched_ctx2.
/* the list of resources that context 1 will give away */
int workerids[3] = {1, 3, 10};
/* add the workers to context 1 */
starpu_sched_ctx_add_workers(workerids, 3, sched_ctx2);
/* remove the workers from context 2 */
starpu_sched_ctx_remove_workers(workerids, 3, sched_ctx1);

An example is available in the file examples/sched_ctx/sched_ctx_remove.c.

36.5 Submitting Tasks To A Context

The application may submit tasks to several contexts, either simultaneously or sequentially. If several threads of
submission are used, the function starpu_sched_ctx_set_context() may be called just before starpu_task_submit().
Thus, StarPU considers that the current thread will submit tasks to the corresponding context. An example is
available in the file examples/sched_ctx/gpu_partition.c.
When the application may not assign a thread of submission to each context, the id of the context must be indicated
by using the function starpu_task_submit_to_ctx() or the field STARPU_SCHED_CTX for starpu_task_insert(). An
example is available in the file examples/sched_ctx/sched_ctx.c.

Generated by Doxygen

36.6 Deleting A Context 243

36.6 Deleting A Context

When a context is no longer needed, it must be deleted. The application can indicate which context should keep the
resources of a deleted one. All the tasks of the context should be executed before doing this. Thus, the programmer
may use either a barrier and then delete the context directly, or just indicate that other tasks will not be submitted
later on to the context (such that when the last task is executed its workers will be moved to the inheritor) and delete
the context at the end of the execution (when a barrier will be used eventually).
/* when the context 2 is deleted context 1 inherits its resources */
starpu_sched_ctx_set_inheritor(sched_ctx2, sched_ctx1);
/* submit tasks to context 2 */
for (i = 0; i < ntasks; i++)

starpu_task_submit_to_ctx(task[i],sched_ctx2);
/* indicate that context 2 finished submitting and that */
/* as soon as the last task of context 2 finished executing */
/* its workers can be moved to the inheritor context */
starpu_sched_ctx_finished_submit(sched_ctx1);
/* wait for the tasks of both contexts to finish */
starpu_task_wait_for_all();
/* delete context 2 */
starpu_sched_ctx_delete(sched_ctx2);
/* delete context 1 */
starpu_sched_ctx_delete(sched_ctx1);

A full example is available in the file examples/sched_ctx/sched_ctx.c.

36.7 Emptying A Context

A context may have no resources at the beginning or at a certain moment of the execution. Tasks can still be
submitted to these contexts, they will be executed as soon as the contexts will have resources. A list of tasks
pending to be executed is kept and will be submitted when workers are added to the contexts.
/* create a empty context */
unsigned sched_ctx_id = starpu_sched_ctx_create(NULL, 0, "ctx", 0);
/* submit a task to this context */
starpu_sched_ctx_set_context(&sched_ctx_id);
ret = starpu_task_insert(&codelet, 0);
STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
/* add CPU workers to the context */
int procs[STARPU_NMAXWORKERS];
int nprocs = starpu_cpu_worker_get_count();
starpu_worker_get_ids_by_type(STARPU_CPU_WORKER, procs, nprocs);
starpu_sched_ctx_add_workers(procs, nprocs, sched_ctx_id);
/* and wait for the task termination */
starpu_task_wait_for_all();

The full example is available in the file examples/sched_ctx/sched_ctx_empty.c.
However, if resources are never allocated to the context, the application will not terminate. If these
tasks have low priority, the application can inform StarPU to not submit them by calling the function
starpu_sched_ctx_stop_task_submission().

Generated by Doxygen

244 Scheduling Contexts

Generated by Doxygen

Chapter 37

Scheduling Context Hypervisor

37.1 What Is The Hypervisor

StarPU proposes a platform to construct Scheduling Contexts, to delete and modify them dynamically. A parallel
kernel, can thus be isolated into a scheduling context and interferences between several parallel kernels are avoided.
If users know exactly how many workers each scheduling context needs, they can assign them to the contexts at
their creation time or modify them during the execution of the program.
The Scheduling Context Hypervisor Plugin is available for users who do not dispose of a regular parallelism, who
cannot know in advance the exact size of the context and need to resize the contexts according to the behavior of
the parallel kernels.
The Hypervisor receives information from StarPU concerning the execution of the tasks, the efficiency of the re-
sources, etc. and it decides accordingly when and how the contexts can be resized. Basic strategies of resizing
scheduling contexts already exist, but a platform for implementing additional custom ones is available.
Several examples of hypervisor are provided in sc_hypervisor/examples/∗.c

37.2 Start the Hypervisor

The Hypervisor must be initialized once at the beginning of the application. At this point, a resizing policy should be
indicated. This strategy depends on the information the application is able to provide to the hypervisor, as well as on
the accuracy needed for the resizing procedure. For example, the application may be able to provide an estimation
of the workload of the contexts. In this situation, the hypervisor may decide what resources the contexts need.
However, if no information is provided, the hypervisor evaluates the behavior of the resources and of the application
and makes a guess about the future. The hypervisor resizes only the registered contexts. The basic example is
available in the file sc_hypervisor/examples/sched_ctx_utils/sched_ctx_utils.c.

37.3 Interrogate The Runtime

The runtime provides the hypervisor with information concerning the behavior of the resources and the application.
This is done by using the performance_counters which represent callbacks indicating when the resources
are idle or not efficient, when the application submits tasks or when it becomes too slow.

37.4 Trigger the Hypervisor

The resizing is triggered either when the application requires it (sc_hypervisor_resize_ctxs()) or when the initial
distribution of resources alters the performance of the application (the application is too slow or the resource are
idle for too long time). An example is available in the file sc_hypervisor/examples/hierarchical_←↩

ctxs/resize_hierarchical_ctxs.c.
If the environment variable SC_HYPERVISOR_TRIGGER_RESIZE is set to speed, the monitored speed of the
contexts is compared to a theoretical value computed with a linear program, and the resizing is triggered whenever
the two values do not correspond. Otherwise, if the environment variable is set to idle the hypervisor triggers
the resizing algorithm whenever the workers are idle for a period longer than the threshold indicated by the pro-
grammer. When this happens, different resizing strategy are applied that target minimizing the total execution of the

Generated by Doxygen

246 Scheduling Context Hypervisor

application, the instant speed or the idle time of the resources.

37.5 Resizing Strategies

The plugin proposes several strategies for resizing the scheduling context.
The Application driven strategy uses users's input concerning the moment when they want to resize the
contexts. Thus, users tag the task that should trigger the resizing process. One can set directly the field
starpu_task::hypervisor_tag or use the macro STARPU_HYPERVISOR_TAG in the function starpu_task_insert().
task.hypervisor_tag = 2;

or
starpu_task_insert(&codelet,

...,
STARPU_HYPERVISOR_TAG, 2,
0);

Then users have to indicate that when a task with the specified tag is executed, the contexts should resize.
sc_hypervisor_resize(sched_ctx, 2);

Users can use the same tag to change the resizing configuration of the contexts if they consider it necessary.
sc_hypervisor_ctl(sched_ctx,

SC_HYPERVISOR_MIN_WORKERS, 6,
SC_HYPERVISOR_MAX_WORKERS, 12,
SC_HYPERVISOR_TIME_TO_APPLY, 2,
NULL);

The Idleness based strategy moves workers unused in a certain context to another one needing them. (see
Scheduling Context Hypervisor - Regular usage)
int workerids[3] = {1, 3, 10};
int workerids2[9] = {0, 2, 4, 5, 6, 7, 8, 9, 11};
sc_hypervisor_ctl(sched_ctx_id,

SC_HYPERVISOR_MAX_IDLE, workerids, 3, 10000.0,
SC_HYPERVISOR_MAX_IDLE, workerids2, 9, 50000.0,
NULL);

The Gflops/s rate based strategy resizes the scheduling contexts such that they all finish at the same time. The
speed of each of them is computed and once one of them is significantly slower, the resizing process is triggered.
In order to do these computations, users have to input the total number of instructions needed to be executed by
the parallel kernels and the number of instruction to be executed by each task.
The number of flops to be executed by a context are passed as parameter when they are registered to the hypervisor,
sc_hypervisor_register_ctx(sched_ctx_id, flops)

and the one to be executed by each task are passed when the task is submitted. The corresponding field is
starpu_task::flops and the corresponding macro in the function starpu_task_insert() is STARPU_FLOPS (Caution:
but take care of passing a double, not an integer, otherwise parameter passing will be bogus). When the task is
executed, the resizing process is triggered.
task.flops = 100;

or
starpu_task_insert(&codelet,

...,
STARPU_FLOPS, (double) 100,
0);

The Feft strategy uses a linear program to predict the best distribution of resources such that the application finishes
in a minimum amount of time. As for the Gflops/s rate strategy, the programmers have to indicate the total number
of flops to be executed when registering the context. This number of flops may be updated dynamically during
the execution of the application whenever this information is not very accurate from the beginning. The function
sc_hypervisor_update_diff_total_flops() is called in order to add or to remove a difference to the flops left to be
executed. Tasks are provided also the number of flops corresponding to each one of them. During the execution
of the application, the hypervisor monitors the consumed flops and recomputes the time left and the number of
resources to use. The speed of each type of resource is (re)evaluated and inserter in the linear program in order to
better adapt to the needs of the application.
The Teft strategy uses a linear program too, that considers all the types of tasks and the number of each of them, and
it tries to allocate resources such that the application finishes in a minimum amount of time. A previous calibration
of StarPU would be useful in order to have good predictions of the execution time of each type of task.
The types of tasks may be determined directly by the hypervisor when they are submitted. However, there are
applications that do not expose all the graph of tasks from the beginning. In this case, in order to let the hypervisor
know about all the tasks, the function sc_hypervisor_set_type_of_task() will just inform the hypervisor about future
tasks without submitting them right away.
The Ispeed strategy divides the execution of the application in several frames. For each frame, the hypervisor
computes the speed of the contexts and tries making them run at the same speed. The strategy requires less
contribution from users, as the hypervisor requires only the size of the frame in terms of flops.
int workerids[3] = {1, 3, 10};

Generated by Doxygen

37.6 Defining A New Hypervisor Policy 247

int workerids2[9] = {0, 2, 4, 5, 6, 7, 8, 9, 11};
sc_hypervisor_ctl(sched_ctx_id,

SC_HYPERVISOR_ISPEED_W_SAMPLE, workerids, 3, 2000000000.0,
SC_HYPERVISOR_ISPEED_W_SAMPLE, workerids2, 9, 200000000000.0,
SC_HYPERVISOR_ISPEED_CTX_SAMPLE, 60000000000.0,

NULL);

The Throughput strategy focuses on maximizing the throughput of the resources and resizes the contexts such
that the machine is running at its maximum efficiency (maximum instant speed of the workers).

37.6 Defining A New Hypervisor Policy

While Scheduling Context Hypervisor Plugin comes with a variety of resizing policies (see Resizing Strategies), it
may sometimes be desirable to implement custom policies to address specific problems. The API described below
allows users to write their own resizing policy.
Here is an example of how to define a new policy
struct sc_hypervisor_policy dummy_policy =
{

.handle_poped_task = dummy_handle_poped_task,

.handle_pushed_task = dummy_handle_pushed_task,

.handle_idle_cycle = dummy_handle_idle_cycle,

.handle_idle_end = dummy_handle_idle_end,

.handle_post_exec_hook = dummy_handle_post_exec_hook,

.custom = 1,

.name = "dummy"
};

Examples are provided in sc_hypervisor/src/hypervisor_policies/∗_policy.c

Generated by Doxygen

248 Scheduling Context Hypervisor

Generated by Doxygen

Chapter 38

How To Define a New Scheduling Policy

38.1 Introduction

StarPU provides two ways of defining a scheduling policy, a basic monolithic way, and a modular way.
The basic monolithic way is directly connected with the core of StarPU, which means that the policy then has to
handle all performance details, such as data prefetching, task performance model calibration, worker locking, etc.
examples/scheduler/dummy_sched.c is a trivial example which does not handle this, and thus e.g. does
not achieve any data prefetching or smart scheduling.
The modular way allows implementing just one component, and reuse existing components to cope with all these
details. examples/scheduler/dummy_modular_sched.c is a trivial example very similar to dummy_←↩

sched.c, but implemented as a component, which allows assembling it with other components, and notably get
data prefetching support for free, and task performance model calibration is properly performed, which allows to
easily extend it into taking task duration into account, etc.

38.2 Helper functions for defining a scheduling policy (Basic or modular)

Make sure to have a look at the Scheduling Policy section, which provides a complete list of the functions available
for writing advanced schedulers.
This includes getting an estimation for a task computation completion with starpu_task_expected_length(), for a
speedup factor relative to CPU speed with starpu_worker_get_relative_speedup(), for the expected data transfer
time in micro-seconds with starpu_task_expected_data_transfer_time(), starpu_task_expected_data_transfer_time_for(),
or starpu_data_expected_transfer_time(), for the expected conversion time in micro-seconds with starpu_task_expected_conversion_time(),
for the required energy with starpu_task_expected_energy() or starpu_task_worker_expected_energy(), etc. Per-
worker variants are also available with starpu_task_worker_expected_length(), etc. The average over work-
ers is also available with starpu_task_expected_length_average() and starpu_task_expected_energy_average().
Other useful functions include starpu_transfer_bandwidth(), starpu_transfer_latency(), starpu_transfer_predict(),
... The successors of a task can be obtained with starpu_task_get_task_succs(). One can also directly test
the presence of a data handle with starpu_data_is_on_node(). Prefetches can be triggered by calling either
starpu_prefetch_task_input_for(), starpu_idle_prefetch_task_input_for(), starpu_prefetch_task_input_for_prio(),
or starpu_idle_prefetch_task_input_for_prio(). And prefetching data on a specified node can use either
starpu_prefetch_task_input_on_node(), starpu_prefetch_task_input_on_node_prio(), starpu_idle_prefetch_task_input_on_node(),
or starpu_idle_prefetch_task_input_on_node_prio(). The _prio versions allow specifying a priority for the transfer
(instead of taking the task priority by default). These prefetches are only processed when there are no fetch data
requests (i.e. a task is waiting for it) to process. The _idle versions queue the transfers on the idle prefetch
queue, which is only processed when there are no non-idle prefetches to process. starpu_get_prefetch_flag() is
a convenient helper for checking the value of the STARPU_PREFETCH environment variable. When a scheduler
does such prefetching, it should set the prefetches field of the starpu_sched_policy to 1, to prevent the
core from triggering its own prefetching.
For applications that need to prefetch data or to perform other pre-execution setup before a task is exe-
cuted, it is useful to call the function starpu_task_notify_ready_soon_register() which registers a callback func-
tion when a task is about to become ready for execution. starpu_worker_set_going_to_sleep_callback() and
starpu_worker_set_waking_up_callback() allow to register an external resource manager callback function that will
be notified about workers going to sleep or waking up, when StarPU is compiled with support for blocking drivers

Generated by Doxygen

250 How To Define a New Scheduling Policy

and worker callbacks.
Schedulers should call starpu_task_set_implementation() or starpu_task_get_implementation() to specify or to re-
trieve the codelet implementation to be executed when executing a specific task.
One can determine if a worker type is capable of executing a specific task by calling the function
starpu_worker_type_can_execute_task(). The function starpu_sched_find_all_worker_combinations() must be
used to identify all viable worker combinations that can execute a parallel task. starpu_combined_worker_get_count()
and starpu_worker_is_combined_worker() can be used to determine the number of different combined workers
and whether a particular worker is a combined worker respectively. starpu_combined_worker_get_id() allows
to get the identifier of the current combined worker. starpu_combined_worker_assign_workerid() allow users
to or register a new combined worker and get its identifier, it then needs to be given to a worker collection
with the starpu_worker_collection::add. starpu_combined_worker_get_desceiption() returns the description of
a combined worker. Additionally, the function starpu_worker_is_blocked_in_parallel() is utilized to determine if
a worker is currently blocked in a parallel task, whereas starpu_worker_is_slave_somewhere() can be called
to determine if a worker is presently functioning as a slave for another worker. StarPU also provides two
functions for initializing and preparing the execution of parallel tasks: starpu_parallel_task_barrier_init() and
starpu_parallel_task_barrier_init_n().
Usual functions can be used on tasks, for instance one can use the following to get the data size for a task.
size = 0;
write = 0;
if (task->cl)

for (i = 0; i < STARPU_TASK_GET_NBUFFERS(task); i++)
{

starpu_data_handle_t data = STARPU_TASK_GET_HANDLE(task, i)
size_t datasize = starpu_data_get_size(data);
size += datasize;
if (STARPU_TASK_GET_MODE(task, i) & STARPU_W)

write += datasize;
}

Task queues can be implemented with the starpu_task_list functions. The function starpu_task_list_init() is
used to initialize an empty list structure. Once the list is initialized, new tasks can be added to it using the
starpu_task_list_push_front() and starpu_task_list_push_back() to add a task to the front or back of the list re-
spectively. starpu_task_list_front() and starpu_task_list_back() can be used to get the first or last task in the list
without removing it. starpu_task_list_begin() and starpu_task_list_end() can be used to get the task iterators from
the beginning of the list and check whether it is the end of the list respectively. starpu_task_list_next() can be used
to get the next task in the list, which is not erase-safe. starpu_task_list_empty() can be used to check whether the
list is empty. To remove tasks from the queue, the function starpu_task_list_erase() is used to remove a specific
task from the list. starpu_task_list_pop_front() and starpu_task_list_pop_back() can be used to remove the first or
last task from the list. Finally, the function starpu_task_list_ismember() is used to check whether a given task is
contained in the list. The function starpu_task_list_move() is used to move list from one head to another.
Access to the hwloc topology is available with starpu_worker_get_hwloc_obj().

38.3 Defining A New Basic Scheduling Policy

A full example showing how to define a new scheduling policy is available in the StarPU sources in
examples/scheduler/dummy_sched.c.
The scheduler has to provide methods:
static struct starpu_sched_policy dummy_sched_policy =
{

.init_sched = init_dummy_sched,

.deinit_sched = deinit_dummy_sched,

.add_workers = dummy_sched_add_workers,

.remove_workers = dummy_sched_remove_workers,

.push_task = push_task_dummy,

.pop_task = pop_task_dummy,

.policy_name = "dummy",

.policy_description = "dummy scheduling strategy"
};

The idea is that when a task becomes ready for execution, the starpu_sched_policy::push_task method is called
to give the ready task to the scheduler. Then call starpu_push_task_end() to notify that the specified task has
been pushed. When a worker is idle, the starpu_sched_policy::pop_task method is called to get a task from the
scheduler. It is up to the scheduler to implement what is between. A simple eager scheduler is for instance to make
starpu_sched_policy::push_task push the task to a global list, and make starpu_sched_policy::pop_task pop from
this list. A scheduler can also use starpu_push_local_task() to directly push tasks to a per-worker queue, and then
StarPU does not even need to implement starpu_sched_policy::pop_task. If there are no ready tasks within the
scheduler, it can just return NULL, and the worker will sleep.

Generated by Doxygen

38.3 Defining A New Basic Scheduling Policy 251

starpu_sched_policy::add_workers and starpu_sched_policy::remove_workers are used to add or remove workers
to or from a scheduling policy, so that the number of workers in a policy can be dynamically adjusted. After adding
or removing workers from a scheduling policy, the worker task lists should be updated to ensure that the workers are
assigned tasks appropriately. By calling starpu_sched_ctx_worker_shares_tasks_lists(), you can specify whether a
worker may pop tasks from the task list of other workers or if there is a central list with tasks for all the workers.
The starpu_sched_policy section provides the exact rules that govern the methods of the policy.
One can enumerate the workers with this iterator:
struct starpu_worker_collection *workers = starpu_sched_ctx_get_worker_collection(sched_ctx_id);
struct starpu_sched_ctx_iterator it;
workers->init_iterator(workers, &it);
while(workers->has_next(workers, &it))
{

unsigned worker = workers->get_next(workers, &it);
...

}

To provide synchronization between workers, a per-worker lock exists to protect the data structures of a given
worker. It is acquired around scheduler methods, so that the scheduler does not need any additional mutex to
protect its per-worker data.
In case the scheduler wants to access another scheduler's data, it should use starpu_worker_lock() and
starpu_worker_unlock(), or use starpu_worker_trylock() which will not block if the lock is not immediately available,
or use starpu_worker_lock_self() and starpu_worker_unlock_self() to acquire and to release a lock on the worker
associated with the current thread.
Calling
starpu_worker_lock(B)

from a worker A will however thus make worker A wait for worker B to complete its scheduling method. That may be
a problem if that method takes a long time, because it is e.g. computing a heuristic or waiting for another mutex, or
even cause deadlocks if worker B is calling
starpu_worker_lock(A)

at the same time. In such a case, worker B must call starpu_worker_relax_on() and starpu_worker_relax_off()
around the section which potentially blocks (and does not actually need protection). While a worker is in relaxed
mode, e.g. between a pair of starpu_worker_relax_on() and starpu_worker_relax_off() calls, its state can be altered
by other threads: for instance, worker A can push tasks for worker B. In consequence, worker B must re-assess its
state after
starpu_worker_relax_off(B)

, such as taking possible new tasks pushed to its queue into account. Calling starpu_worker_get_relax_state() to
query the relaxation state of a worker.
When the starpu_sched_policy::push_task method has pushed a task for another worker, one has to
call starpu_wake_worker_relax(), starpu_wake_worker_relax_light(), starpu_wake_worker_no_relax() or
starpu_wake_worker_locked() so that the worker wakes up and picks it. If the task was pushed on a shared
queue, one may want to only wake one idle worker. An example doing this is available in src/sched_←↩

policies/eager_central_policy.c. When the scheduling policy makes a scheduling decision for a
task, it shouhld call starpu_sched_task_break().
Schedulers can set the minimum or maximum task priority level supported by the scheduling policy by
calling starpu_sched_set_min_priority() or starpu_sched_set_max_priority(), and then applications can call
starpu_sched_get_min_priority() or starpu_sched_get_max_priority() to retrieve the minimum or maximum pri-
ority value. The file src/sched_policies/heteroprio.c shows how to uses these functions.
When scheduling a task, it is important to check whether the specified worker can execute the codelet
before assigning the task to that worker. This is done using the starpu_worker_can_execute_task()
function, or starpu_combined_worker_can_execute_task() which is compatible with combined workers, or
starpu_worker_can_execute_task_impl() which also returns the list of implementation numbers that can be used
by the worker to execute the task, or starpu_worker_can_execute_task_first_impl() which also returns the first
implementation number that can be used.
A pointer to one data structure specific to the scheduler can be set with starpu_sched_ctx_set_policy_data() and
fetched with starpu_sched_ctx_get_policy_data(). Per-worker data structures can then be stored in it by allocating
a STARPU_NMAXWORKERS -sized array of structures indexed by workers.
A variety of examples of advanced schedulers can be read in src/sched_policies, for instance random←↩

_policy.c, eager_central_policy.c, work_stealing_policy.c Code protected by if (_←↩

starpu_get_nsched_ctxs() > 1) can be ignored, this is for scheduling contexts, which is an experi-
mental feature.

Generated by Doxygen

252 How To Define a New Scheduling Policy

38.4 Defining A New Modular Scheduling Policy

StarPU's Modularized Schedulers are made of individual Scheduling Components Modularizedly assembled as a
Scheduling Tree. Each Scheduling Component has a unique purpose, such as prioritizing tasks or mapping tasks
over resources. A typical Scheduling Tree is shown below.

|
starpu_push_task |

|
v

Fifo_Component
| ^

Push | | Can_Push
v |

Eager_Component
| ^
| |
v |

--------><-------------------><---------
| ^ | ^

Push | | Can_Push Push | | Can_Push
v | v |

Fifo_Component Fifo_Component
| ^ | ^

Pull | | Can_Pull Pull | | Can_Pull
v | v |

Worker_Component Worker_Component
| |

starpu_pop_task | |
v v

When a task is pushed by StarPU in a Modularized Scheduler, the task moves from a Scheduling Component
to another, following the hierarchy of the Scheduling Tree, and is stored in one of the Scheduling Components
of the strategy. When a worker wants to pop a task from the Modularized Scheduler, the corresponding Worker
Component of the Scheduling Tree tries to pull a task from its parents, following the hierarchy, and gives it to the
worker if it succeeded to get one.

38.4.1 Interface

Each Scheduling Component must follow the following pre-defined Interface to be able to interact with other Schedul-
ing Components.

• push_task (child_component, Task)
The calling Scheduling Component transfers a task to its Child Component. When the Push function returns,
the task no longer belongs to the calling Component. The Modularized Schedulers' model relies on this
function to perform prefetching. See starpu_sched_component::push_task for more details

• pull_task (parent_component, caller_component) -> Task
The calling Scheduling Component requests a task from its Parent Component. When the Pull function
ends, the returned task belongs to the calling Component. See starpu_sched_component::pull_task for more
details

• can_push (caller_component, parent_component)
The calling Scheduling Component notifies its Parent Component that it is ready to accept new tasks. See
starpu_sched_component::can_push for more details

• can_pull (caller_component, child_component)
The calling Scheduling Component notifies its Child Component that it is ready to give new tasks. See
starpu_sched_component::can_pull for more details

The components also provide the following useful methods:

• starpu_sched_component::estimated_load provides an estimated load of the component

Generated by Doxygen

38.4 Defining A New Modular Scheduling Policy 253

• starpu_sched_component::estimated_end provides an estimated date of availability of workers behind the
component, after processing tasks in the component and below. This is computed only if the estimated field
of the tasks have been set before passing it to the component.

38.4.2 Building a Modularized Scheduler

38.4.2.1 Pre-implemented Components

StarPU is currently shipped with the following four Scheduling Components :

• Storage Components : Fifo, Prio
Components which store tasks. They can also prioritize them if they have a defined priority. It is possible to
define a threshold for those Components following two criteria : the number of tasks stored in the Component,
or the sum of the expected length of all tasks stored in the Component. When a push operation tries to queue
a task beyond the threshold, the push fails. When some task leaves the queue (and thus possibly more tasks
can fit), this component calls can_push from ancestors.

• Resource-Mapping Components : Mct, Heft, Eager, Random, Work-Stealing
"Core" of the Scheduling Strategy, those Components are the ones who make scheduling choices between
their children components.

• Worker Components : Worker
Each Worker Component modelizes a concrete worker, and copes with the technical tricks of interacting with
the StarPU core. Modular schedulers thus usually have them at the bottom of their component tree.

• Special-Purpose Components : Perfmodel_Select, Best_Implementation
Components dedicated to original purposes. The Perfmodel_Select Component decides which Resource-←↩

Mapping Component should be used to schedule a task: a component that assumes tasks with a calibrated
performance model; a component for non-yet-calibrated tasks, that will distribute them to get measurements
done as quickly as possible; and a component that takes the tasks without performance models.
The Best_Implementation Component chooses which implementation of a task should be used on the chosen
resource.

38.4.2.2 Progression And Validation Rules

Some rules must be followed to ensure the correctness of a Modularized Scheduler :

• At least one Storage Component without threshold is needed in a Modularized Scheduler, to store incom-
ing tasks from StarPU. It can for instance be a global component at the top of the tree, or one compo-
nent per worker at the bottom of the tree, or intermediate assemblies. The important point is that the
starpu_sched_component::push_task call at the top can not fail, so there has to be a storage component
without threshold between the top of the tree and the first storage component with threshold, or the workers
themselves.

• At least one Resource-Mapping Component is needed in a Modularized Scheduler. Resource-Mapping Com-
ponents are the only ones which can make scheduling choices, and so the only ones which can have several
children.

38.4.2.3 Locking in modularized schedulers

Most often, components do not need to take locks. This allows e.g. the push operation to be called in parallel when
tasks get released in parallel from different workers which have completed different ancestor tasks.
When a component has internal information which needs to be kept coherent, the component can define its own lock
to take it as it sees fit, e.g. to protect a task queue. This may however limit scalability of the scheduler. Conversely,
since push and pull operations will be called concurrently from different workers, the component might prefer to use
a central mutex to serialize all scheduling decisions to avoid pathological cases (all push calls decide to put their
task on the same target)

Generated by Doxygen

254 How To Define a New Scheduling Policy

38.4.2.4 Implementing a Modularized Scheduler

The following code shows how to implement a Tree-Eager-Prefetching Scheduler.
static void initialize_eager_prefetching_center_policy(unsigned sched_ctx_id)
{

/* The eager component will decide for each task which worker will run it,

* and we want fifos both above and below the component */
starpu_sched_component_initialize_simple_scheduler(
starpu_sched_component_eager_create, NULL,
STARPU_SCHED_SIMPLE_DECIDE_WORKERS |
STARPU_SCHED_SIMPLE_FIFO_ABOVE |
STARPU_SCHED_SIMPLE_FIFOS_BELOW,
sched_ctx_id);

}
/* Initializing the starpu_sched_policy struct associated to the Modularized

* Scheduler : only the init_sched and deinit_sched needs to be defined to

* implement a Modularized Scheduler */
struct starpu_sched_policy _starpu_sched_tree_eager_prefetching_policy =
{

.init_sched = initialize_eager_prefetching_center_policy,

.deinit_sched = starpu_sched_tree_deinitialize,

.add_workers = starpu_sched_tree_add_workers,

.remove_workers = starpu_sched_tree_remove_workers,

.push_task = starpu_sched_tree_push_task,

.pop_task = starpu_sched_tree_pop_task,

.pre_exec_hook = starpu_sched_component_worker_pre_exec_hook,

.post_exec_hook = starpu_sched_component_worker_post_exec_hook,

.policy_name = "tree-eager-prefetching",

.policy_description = "eager with prefetching tree policy"
};

starpu_sched_component_initialize_simple_scheduler() is a helper function which makes it very trivial to assem-
ble a modular scheduler around a scheduling decision component as seen above (here, a dumb eager decision
component). Most often, a modular scheduler can be implemented that way.
A modular scheduler can also be constructed hierarchically with starpu_sched_component_composed_recipe_create().
To retrieve the current scheduling tree of a task, starpu_sched_tree_get() can be called.
That modular scheduler can also be built by hand in the following way:
#define _STARPU_SCHED_NTASKS_THRESHOLD_DEFAULT 2
#define _STARPU_SCHED_EXP_LEN_THRESHOLD_DEFAULT 1000000000.0
static void initialize_eager_prefetching_center_policy(unsigned sched_ctx_id)
{

unsigned ntasks_threshold = _STARPU_SCHED_NTASKS_THRESHOLD_DEFAULT;
double exp_len_threshold = _STARPU_SCHED_EXP_LEN_THRESHOLD_DEFAULT;
[...]
starpu_sched_ctx_create_worker_collection
(sched_ctx_id, STARPU_WORKER_LIST);

/* Create the Scheduling Tree */
struct starpu_sched_tree * t = starpu_sched_tree_create(sched_ctx_id);
/* The Root Component is a Flow-control Fifo Component */
t->root = starpu_sched_component_fifo_create(NULL);
/* The Resource-mapping Component of the strategy is an Eager Component

*/
struct starpu_sched_component *eager_component = starpu_sched_component_eager_create(NULL);
/* Create links between Components : the Eager Component is the child

* of the Root Component */
starpu_sched_component_connect(t->root, eager_component);
/* A task threshold is set for the Flow-control Components which will

* be connected to Worker Components. By doing so, this Modularized

* Scheduler will be able to perform some prefetching on the resources

*/
struct starpu_sched_component_fifo_data fifo_data =
{
.ntasks_threshold = ntasks_threshold,
.exp_len_threshold = exp_len_threshold,

};
unsigned i;
for(i = 0; i < starpu_worker_get_count() + starpu_combined_worker_get_count(); i++)
{
/* Each Worker Component has a Flow-control Fifo Component as

* father */
struct starpu_sched_component * worker_component = starpu_sched_component_worker_new(i);
struct starpu_sched_component * fifo_component = starpu_sched_component_fifo_create(&fifo_data);
starpu_sched_component_connect(fifo_component, worker_component);
/* Each Flow-control Fifo Component associated to a Worker

* Component is linked to the Eager Component as one of its

* children */
starpu_sched_component_connect(eager_component, fifo_component);

}
starpu_sched_tree_update_workers(t);
starpu_sched_ctx_set_policy_data(sched_ctx_id, (void*)t);

}
/* Properly destroy the Scheduling Tree and all its Components */
static void deinitialize_eager_prefetching_center_policy(unsigned sched_ctx_id)
{

struct starpu_sched_tree * tree = (struct

Generated by Doxygen

38.4 Defining A New Modular Scheduling Policy 255

starpu_sched_tree*)starpu_sched_ctx_get_policy_data(sched_ctx_id);
starpu_sched_tree_destroy(tree);
starpu_sched_ctx_delete_worker_collection(sched_ctx_id);

}
/* Initializing the starpu_sched_policy struct associated to the Modularized

* Scheduler : only the init_sched and deinit_sched needs to be defined to

* implement a Modularized Scheduler */
struct starpu_sched_policy _starpu_sched_tree_eager_prefetching_policy =
{

.init_sched = initialize_eager_prefetching_center_policy,

.deinit_sched = deinitialize_eager_prefetching_center_policy,

.add_workers = starpu_sched_tree_add_workers,

.remove_workers = starpu_sched_tree_remove_workers,

.push_task = starpu_sched_tree_push_task,

.pop_task = starpu_sched_tree_pop_task,

.pre_exec_hook = starpu_sched_component_worker_pre_exec_hook,

.post_exec_hook = starpu_sched_component_worker_post_exec_hook,

.policy_name = "tree-eager-prefetching",

.policy_description = "eager with prefetching tree policy"
};

Instead of calling starpu_sched_tree_update_workers(), one can call starpu_sched_tree_update_workers_in_ctx()
to update the set of workers that are available to execute tasks in a given scheduling tree within a specific StarPU
context.
Other modular scheduler examples can be seen in src/sched_policies/modular_∗.c
For instance, modular-heft-prio needs performance models, decides memory nodes, uses prioritized fifos
above and below, and decides the best implementation.
If unsure on the result of the modular scheduler construction, you can run a simple application with FxT enabled
(see Generating Traces With FxT), and open the generated file trace.html in a web-browser.

38.4.3 Management of parallel task

At the moment, parallel tasks can be managed in modularized schedulers through combined workers: instead of
connecting a scheduling component to a worker component, one can connect it to a combined worker component
(i.e. a worker component created with a combined worker id). That component will handle creating task aliases for
parallel execution and push them to the different workers components.

38.4.4 Writing a Scheduling Component

38.4.4.1 Generic Scheduling Component

Each Scheduling Component is instantiated from a Generic Scheduling Component, which implements a generic
version of the Interface. The generic implementation of Pull, Can_Pull and Can_Push functions are recursive calls
to their parents (respectively to their children). However, as a Generic Scheduling Component do not know how
many children it will have when it will be instantiated, it does not implement the Push function.

38.4.4.2 Instantiation : Redefining the Interface

A Scheduling Component must implement all the functions of the Interface. It is so necessary to implement a
Push function to instantiate a Scheduling Component. The implemented Push function is the "fingerprint" of a
Scheduling Component. Depending on how functionalities or properties programmers want to give to the Scheduling
Component they are implementing, it is possible to reimplement all the functions of the Interface. For example, a
Flow-control Component reimplements the Pull and the Can_Push functions of the Interface, allowing to catch the
generic recursive calls of these functions. The Pull function of a Flow-control Component can, for example, pop a
task from the local storage queue of the Component, and give it to the calling Component which asks for it.

38.4.4.3 Detailed Progression and Validation Rules

• A Reservoir is a Scheduling Component which redefines a Push and a Pull function, in order to store tasks
into it. A Reservoir delimit Scheduling Areas in the Scheduling Tree.

• A Pump is the engine source of the Scheduler : it pushes/pulls tasks to/from a Scheduling Component to
another. Native Pumps of a Scheduling Tree are located at the root of the Tree (incoming Push calls from
StarPU), and at the leafs of the Tree (Pop calls coming from StarPU Workers). Pre-implemented Schedul-
ing Components currently shipped with Pumps are Flow-Control Components and the Resource-Mapping
Component Heft, within their defined Can_Push functions.

Generated by Doxygen

256 How To Define a New Scheduling Policy

• A correct Scheduling Tree requires a Pump per Scheduling Area and per Execution Flow.

The Tree-Eager-Prefetching Scheduler shown in Section Implementing a Modularized Scheduler follows the previ-
ous assumptions :

starpu_push_task
Pump

|
Area 1 |

|
v

-----------------------Fifo_Component-----------------------------
Pump
| ^

Push | | Can_Push
v |

Area 2 Eager_Component
| ^
| |
v |

--------><-------------------><---------
| ^ | ^

Push | | Can_Push Push | | Can_Push
v | v |

-----Fifo_Component-----------------------Fifo_Component----------
| ^ | ^

Pull | | Can_Pull Pull | | Can_Pull
Area 3 v | v |

Pump Pump
Worker_Component Worker_Component

38.5 Using a New Scheduling Policy

There are two ways to use a new scheduling policy.

• If the code is directly available from your application, you can set the field starpu_conf::sched_policy with a
pointer to your new defined scheduling policy.
starpu_conf_init(&conf);
conf.sched_policy = &dummy_sched_policy,
ret = starpu_init(&conf);

• You can also load the new policy dynamically using the environment variable STARPU_SCHED_LIB. An ex-
ample is given in examples/scheduler/libdummy_sched.c and examples/scheduler/libdummy←↩

_sched.sh.

The variable STARPU_SCHED_LIB needs to give the location of a .so file which needs to define a
function struct starpu_sched_policy ∗starpu_get_sched_lib_policy(const char
∗name)
struct starpu_sched_policy *get_sched_policy(const char *name)
{

if (!strcmp(name, "dummy"))
return &dummy_sched_policy;

return NULL;
}

To use it, you need to define both variables STARPU_SCHED_LIB and STARPU_SCHED
STARPU_SCHED_LIB=libdummy_sched.so STARPU_SCHED=dummy yourapplication

If the library defines a function struct starpu_sched_policy ∗∗starpu_get_sched_lib_←↩

policies(), the policies defined by the library can be displayed using the help functionality.
STARPU_SCHED_LIB=libdummy_sched.so STARPU_SCHED=help yourapplication

38.6 Graph-based Scheduling

For performance reasons, most of the schedulers shipped with StarPU use simple list-scheduling heuristics, assum-
ing that the application has already set priorities. This is why they do their scheduling between when tasks become
available for execution and when a worker becomes idle, without looking at the task graph.

Generated by Doxygen

38.7 Debugging Scheduling 257

Other heuristics can however look at the task graph. Recording the task graph is expensive, so it is not available
by default, the scheduling heuristic has to set _starpu_graph_record to 1 from the initialization function, to
make it available. Then the _starpu_graph∗ functions can be used.
src/sched_policies/graph_test_policy.c is an example of simple greedy policy which automatically
computes priorities by bottom-up rank.
The idea is that while the application submits tasks, they are only pushed to a bag of tasks. When the appli-
cation is finished with submitting tasks, it calls starpu_do_schedule() (or starpu_task_wait_for_all(), which calls
starpu_do_schedule()), and the starpu_sched_policy::do_schedule method of the scheduler is called. This method
calls _starpu_graph_compute_depths() to compute the bottom-up ranks, and then uses these ranks to
set priorities over tasks.
It then has two priority queues, one for CPUs, and one for GPUs, and uses a dumb heuristic based on the duration
of the task over CPUs and GPUs to decide between the two queues. CPU workers can then pop from the CPU
priority queue, and GPU workers from the GPU priority queue.

38.7 Debugging Scheduling

All the Online Performance Tools and Offline Performance Tools can be used to get information about how well the
execution proceeded, and thus the overall quality of the execution.
Precise debugging can also be performed by using the STARPU_TASK_BREAK_ON_PUSH, STARPU_TASK_BREAK_ON_SCHED,
STARPU_TASK_BREAK_ON_POP, and STARPU_TASK_BREAK_ON_EXEC environment variables. By setting
the job_id of a task in these environment variables, StarPU will raise SIGTRAP when the task is being scheduled,
pushed, or popped by the scheduler. This means that when one notices that a task is being scheduled in a
seemingly odd way, one can just re-execute the application in a debugger, with some of those variables set, and the
execution will stop exactly at the scheduling points of this task, thus allowing to inspect the scheduler state, etc.

Generated by Doxygen

258 How To Define a New Scheduling Policy

Generated by Doxygen

Chapter 39

CUDA Support

StarPU sets the current CUDA device by calling starpu_cuda_set_device() which takes an integer argument rep-
resenting the device number, and sets the current device to the specified device number. By setting the current
device, applications can select which CUDA device to use for their computations, enabling efficient management of
multiple CUDA devices in a system.
We can call starpu_cuda_get_nvmldev() to get identifier of the NVML device associated with a given CUDA device.
Three macros STARPU_CUDA_REPORT_ERROR(), STARPU_CUBLAS_REPORT_ERROR(), and STARPU_←↩

CUSPARSE_REPORT_ERROR() are useful for debugging and troubleshooting, as they provide detailed information
about the error that occur during CUDA or CUBLAS execution.

Generated by Doxygen

260 CUDA Support

Generated by Doxygen

Chapter 40

OpenCL Support

StarPU provides several functions for managing OpenCL programs and kernels. starpu_opencl_load_program_source()
and starpu_opencl_load_program_source_malloc() load the OpenCL program source from a file, but the
latter one also allocates buffer for the program source. starpu_opencl_compile_opencl_from_file() and
starpu_opencl_compile_opencl_from_string() are used to compile an OpenCL kernel from a source file or a
string respectively. starpu_opencl_load_binary_opencl() is used to compile the binary OpenCL kernel. An example
is available in examples/binary/binary.c.
starpu_opencl_load_opencl_from_file() and starpu_opencl_load_opencl_from_string() are used to compile an
OpenCL source code from a file or a string respectively. starpu_opencl_unload_opencl() is used to unload an
OpenCL compiled program or kernel from memory. starpu_opencl_load_opencl() is used to create an OpenCL
kernel for specified device. starpu_opencl_release_kernel() is used to release the specified OpenCL kernel. An
example illustrating the usage of OpenCL support is available in examples/basic_examples/vector_←↩

scal_opencl.c.
For managing OpenCL contexts, devices, and command queues, there are several functions: starpu_opencl_get_context(),
starpu_opencl_get_device() and starpu_opencl_get_queue() are used to retrieve the OpenCL context, device and
command queue associated with a given device number respectively. starpu_opencl_get_current_context() and
starpu_opencl_get_current_queue() are used to retrieve the OpenCL context or command queue of the current
worker that is being used by the calling thread. We can call starpu_opencl_set_kernel_args() to set the arguments
for an OpenCL kernel. Examples are available in examples/filters/custom_mf/.
Two functions are useful for debugging and error reporting in OpenCL applications. starpu_opencl_error_string()
takes an OpenCL error code as an argument and returns a string containing a description of the error.
starpu_opencl_display_error() takes an OpenCL error code as an argument and prints the corresponding er-
ror message to the standard error stream.

Generated by Doxygen

262 OpenCL Support

Generated by Doxygen

Chapter 41

Maxeler FPGA Support

41.1 Introduction

Maxeler provides hardware and software solutions for accelerating computing applications on dataflow engines
(DFEs). DFEs are in-house designed accelerators that encapsulate reconfigurable high-end FPGAs at their core
and are equipped with large amounts of DDR memory.
We extend the StarPU task programming library that initially targets heterogeneous architectures to support Field
Programmable Gate Array (FPGA).
To create StarPU/FPGA applications exploiting DFE configurations, MaxCompiler allows an application to be split
into three parts:

• Kernel, which implements the computational components of the application in hardware.

• Manager configuration, which connects Kernels to the CPU, engine RAM, other Kernels and other
DFEs via MaxRing.

• CPU application, which interacts with the DFEs to read and write data to the Kernels and engine RAM.

The Simple Live CPU interface (SLiC) is Maxeler’s application programming interface for seamless CPU-DFE inte-
gration. SLiC allows CPU applications to configure and load a number of DFEs as well as to subsequently schedule
and run actions on those DFEs using simple function calls. In StarPU/FPGA applications, we use Dynamic SLiC
Interface to exchange data streams between the CPU (Main Memory) and DFE (Local Memory).

41.2 Porting Applications to Maxeler FPGA

The way to port an application to FPGA is to set the field starpu_codelet::max_fpga_funcs, to provide StarPU with
the function for FPGA implementation, so for instance:

struct starpu_codelet cl =
{

.max_fpga_funcs = {myfunc},

.nbuffers = 1,
}

A basic example is available in the file tests/maxfpga/max_fpga_basic_static.c.

41.2.1 StarPU/Maxeler FPGA Application

To give you an idea of the interface that we used to exchange data between host (CPU) and FPGA (DFE),
here is an example, based on one of the examples of Maxeler (https://trac.version.fz-juelich.←↩

de/reconfigurable/wiki/Public).
StreamFMAKernel.maxj represents the Java kernel code; it implements a very simple kernel (c=a+b), and
Test.c starts it from the fpga_add function; it first sets streaming up from the CPU pointers, triggers execution
and waits for the result. The API to interact with DFEs is called SLiC which then also involves the MaxelerOS
runtime.

Generated by Doxygen

https://trac.version.fz-juelich.de/reconfigurable/wiki/Public
https://trac.version.fz-juelich.de/reconfigurable/wiki/Public

264 Maxeler FPGA Support

• StreamFMAKernel.maxj: the DFE part is described in the MaxJ programming language, which is a
Java-based metaprogramming approach.

package tests;
import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
class StreamFMAKernel extends Kernel
{

private static final DFEType type = dfeInt(32);
protected StreamFMAKernel(KernelParameters parameters)
{

super(parameters);
DFEVar a = io.input("a", type);
DFEVar b = io.input("b", type);
DFEVar c;
c = a+b;
io.output("output", c, type);

}
}

• StreamFMAManager.maxj: is also described in the MaxJ programming language and orchestrates data
movement between the host and the DFE.

package tests;
import com.maxeler.maxcompiler.v2.build.EngineParameters;
import com.maxeler.maxcompiler.v2.managers.custom.blocks.KernelBlock;
import com.maxeler.platform.max5.manager.Max5LimaManager;
class StreamFMAManager extends Max5LimaManager
{

private static final String kernel_name = "StreamFMAKernel";
public StreamFMAManager(EngineParameters arg0)
{

super(arg0);
KernelBlock kernel = addKernel(new StreamFMAKernel(makeKernelParameters(kernel_name)));
kernel.getInput("a") <== addStreamFromCPU("a");
kernel.getInput("b") <== addStreamFromCPU("b");
addStreamToCPU("output") <== kernel.getOutput("output");

}
public static void main(String[] args)
{

StreamFMAManager manager = new StreamFMAManager(new EngineParameters(args));
manager.build();

}
}

Once StreamFMAKernel.maxj and StreamFMAManager.maxj are written, there are other steps to do:

• Building the JAVA program: (for Kernel and Manager (.maxj))

$ maxjc -1.7 -cp $MAXCLASSPATH streamfma/

• Running the Java program to generate a DFE implementation (a .max file) that can be called from a Star←↩

PU/FPGA application and slic headers (.h) for simulation:

$ java -XX:+UseSerialGC -Xmx2048m -cp $MAXCLASSPATH:. streamfma.StreamFMAManager DFEModel=MAIA maxFileName=StreamFMA target=DFE_SIM

• Build the slic object file (simulation):

$ sliccompile StreamFMA.max

• Test.c :

to interface StarPU task-based runtime system with Maxeler's DFE devices, we use the advanced dynamic interface
of SLiC in non_blocking mode.
Test code must include MaxSLiCInterface.h and MaxFile.h. The .max file contains the bitstream.
The StarPU/FPGA application can be written in C, C++, etc. Some examples are available in the directory
tests/maxfpga.
#include "StreamFMA.h"
#include "MaxSLiCInterface.h"
void fpga_add(void *buffers[], void *cl_arg)
{

(void)cl_arg;
int *a = (int*) STARPU_VECTOR_GET_PTR(buffers[0]);
int *b = (int*) STARPU_VECTOR_GET_PTR(buffers[1]);
int *c = (int*) STARPU_VECTOR_GET_PTR(buffers[2]);
int size = STARPU_VECTOR_GET_NX(buffers[0]);
/* actions to run on an engine */

Generated by Doxygen

41.2 Porting Applications to Maxeler FPGA 265

max_actions_t *act = max_actions_init(maxfile, NULL);
/* set the number of ticks for a kernel */
max_set_ticks (act, "StreamFMAKernel", size);
/* send input streams */
max_queue_input(act, "a", a, size *sizeof(a[0]));
max_queue_input(act, "b", b, size*sizeof(b[0]));
/* store output stream */
max_queue_output(act,"output", c, size*sizeof(c[0]));
/* run actions on the engine */
printf("**** Run actions in non blocking mode **** \n");

/* run actions in non_blocking mode */
max_run_t *run0= max_run_nonblock(engine, act);
printf("*** wait for the actions on DFE to complete *** \n");
max_wait(run0);

}
static struct starpu_codelet cl =
{
.cpu_funcs = {cpu_func},
.cpu_funcs_name = {"cpu_func"},
.max_fpga_funcs = {fpga_add},
.nbuffers = 3,
.modes = {STARPU_R, STARPU_R, STARPU_W}

};
int main(int argc, char **argv)
{

...
/* Implementation of a maxfile */
max_file_t *maxfile = StreamFMA_init();
/* Implementation of an engine */
max_engine_t *engine = max_load(maxfile, "*");
starpu_init(NULL);
... Task submission etc. ...
starpu_shutdown();
/* deallocate the set of actions */
max_actions_free(act);
/* unload and deallocate an engine obtained by way of max_load */
max_unload(engine);
return 0;

}

To write the StarPU/FPGA application: first, the programmer must describe the codelet using StarPU’s C API. This
codelet provides both a CPU implementation and an FPGA one. It also specifies that the task has two inputs and
one output through the starpu_codelet::nbuffers and starpu_codelet::modes attributes.
fpga_add function is the name of the FPGA implementation and is mainly divided in four steps:

• Init actions to be run on DFE.

• Add data to an input stream for an action.

• Add data storage space for an output stream.

• Run actions on DFE in non_blocking mode; a non-blocking call returns immediately, allowing the calling
code to do more CPU work in parallel while the actions are run.

• Wait for the actions to complete.

In the main function, there are four important steps:

• Implement a maxfile.

• Load a DFE.

• Free actions.

• Unload and deallocate the DFE.

The rest of the application (data registration, task submission, etc.) is as usual with StarPU.
The design load can also be delegated to StarPU by specifying an array of load specifications in
starpu_conf::max_fpga_load, and use starpu_max_fpga_get_local_engine() to access the loaded max
engines.
Complete examples are available in tests/fpga/∗.c

Generated by Doxygen

266 Maxeler FPGA Support

41.2.2 Data Transfers in StarPU/Maxeler FPGA Applications

The communication between the host and the DFE is done through the Dynamic advance interface to exchange
data between the main memory and the local memory of the DFE.
For the moment, we use STARPU_MAIN_RAM to send and store data to/from DFE's local memory. However, we
aim to use a multiplexer to choose which memory node we will use to read/write data. So, users can tell that the
computational kernel will take data from the main memory or DFE's local memory, for example.
In StarPU applications, when starpu_codelet::specific_nodes is set to 1, this specifies the memory nodes where
each data should be sent to for task execution.

41.2.3 Maxeler FPGA Configuration

To configure StarPU with Maxeler FPGA accelerators, make sure that the slic-config is available from your
PATH environment variable.

41.2.4 Launching Programs: Simulation

Maxeler provides a simple tutorial to use MaxCompiler (https://trac.version.fz-juelich.←↩

de/reconfigurable/wiki/Public). Running the Java program to generate maxfile and slic headers
(hardware) on Maxeler's DFE device, takes a VERY long time, approx. 2 hours even for this very small example.
That's why we use the simulation.

• To start the simulation on Maxeler's DFE device:

$ maxcompilersim -c LIMA -n StreamFMA restart

• To run the binary (simulation)

$ export LD_LIBRARY_PATH=$MAXELEROSDIR/lib:$LD_LIBRARY_PATH
$ export SLIC_CONF="use_simulation=StreamFMA"

• To force tasks to be scheduled on the FPGA, one can disable the use of CPU cores by setting the
STARPU_NCPU environment variable to 0.

$ STARPU_NCPU=0 ./StreamFMA

• To stop the simulation

$ maxcompilersim -c LIMA -n StreamFMA stop

Generated by Doxygen

https://trac.version.fz-juelich.de/reconfigurable/wiki/Public
https://trac.version.fz-juelich.de/reconfigurable/wiki/Public

Chapter 42

Out Of Core

42.1 Introduction

When using StarPU, one may need to store more data than what the main memory (RAM) can store. This part
describes the method to add a new memory node on a disk and to use it.
Similarly to what happens with GPUs (it's actually exactly the same code), when available main memory becomes
scarce, StarPU will evict unused data to the disk, thus leaving room for new allocations. Whenever some evicted
data is needed again for a task, StarPU will automatically fetch it back from the disk.
The principle is that one first registers a disk memory node with a set of functions to manipulate data by calling
starpu_disk_register(), and then registers a disk location, seen by StarPU as a void∗, which can be for instance
a Unix path for the stdio, unistd or unistd_o_direct backends, or a leveldb database for the leveldb
backend, an HDF5 file path for the HDF5 backend, etc. The disk backend opens this place with the plug() method.
StarPU can then start using it to allocate room and store data there with the disk write method, without user
intervention.
Users can also use starpu_disk_open() to explicitly open an object within the disk, e.g. a file name in the stdio or
unistd cases, or a database key in the leveldb case, and then use starpu_∗_register functions to turn
it into a StarPU data handle. StarPU will then use this file as an external source of data, and automatically read and
write data as appropriate. In the end use starpu_disk_close() to close an existing object.
In any case, users also need to set STARPU_LIMIT_CPU_MEM to the amount of data that StarPU will be allowed
to afford. By default, StarPU will use the machine memory size, but part of it is taken by the kernel, the system,
daemons, and the application's own allocated data, whose size can not be predicted. That is why users need to
specify what StarPU can afford.
Some Out-of-core tests are worth giving a read, see tests/disk/∗.c

42.2 Use a new disk memory

To use a disk memory node, you have to register it with this function:
int new_dd = starpu_disk_register(&starpu_disk_unistd_ops, (void *) "/tmp/", 1024*1024*200);

Here, we use the unistd library to realize the read/write operations, i.e. fread/fwrite. This structure must
have a path where to store files, as well as the maximum size the software can afford to store on the disk.
Don't forget to check if the result is correct!
This can also be achieved by just setting environment variables STARPU_DISK_SWAP, STARPU_DISK_SWAP_BACKEND
and STARPU_DISK_SWAP_SIZE :

export STARPU_DISK_SWAP=/tmp
export STARPU_DISK_SWAP_BACKEND=unistd
export STARPU_DISK_SWAP_SIZE=200

The backend can be set to stdio (some caching is done by libc and the kernel), unistd (only caching in the
kernel), unistd_o_direct (no caching), leveldb, or hdf5.
It is important to understand that when the backend is not set to unistd_o_direct, some caching will oc-
cur at the kernel level (the page cache), which will also consume memory... STARPU_LIMIT_CPU_MEM might
need to be set to less than half of the machine memory just to leave room for the kernel's page cache, other-
wise the kernel will struggle to get memory. Using unistd_o_direct avoids this caching, thus allowing to
set STARPU_LIMIT_CPU_MEM to the machine memory size (minus some memory for normal kernel operations,
system daemons, and application data).

Generated by Doxygen

268 Out Of Core

When the register call is made, StarPU will benchmark the disk. This can take some time.
Warning: the size thus has to be at least STARPU_DISK_SIZE_MIN bytes !
StarPU will then automatically try to evict unused data to this new disk. One can also use the standard StarPU
memory node API to prefetch data etc., see the Standard Memory Library and the Data Interfaces.
The disk is unregistered during the execution of starpu_shutdown().

42.3 Data Registration

StarPU will only be able to achieve Out-Of-Core eviction if it controls memory allocation. For instance, if the appli-
cation does the following:
p = malloc(1024*1024*sizeof(float));
fill_with_data(p);
starpu_matrix_data_register(&h, STARPU_MAIN_RAM, (uintptr_t) p, 1024, 1024, 1024, sizeof(float));

StarPU will not be able to release the corresponding memory since it's the application which allocated it, and StarPU
can not know how, and thus how to release it. One thus have to use the following instead:
starpu_matrix_data_register(&h, -1, NULL, 1024, 1024, 1024, sizeof(float));
starpu_task_insert(cl_fill_with_data, STARPU_W, h, 0);

Which makes StarPU automatically do the allocation when the task running cl_fill_with_data gets executed. And
then if it needs to, it will be able to release it after having pushed the data to the disk. Since no initial buffer is
provided to starpu_matrix_data_register(), the handle does not have any initial value right after this call, and thus
the very first task using the handle needs to use the STARPU_W mode like above, STARPU_R or STARPU_RW
would not make sense.
By default, StarPU will try to push any data handle to the disk. To specify whether a given handle should be pushed
to the disk, starpu_data_set_ooc_flag() should be used. To get to know whether a given handle should be pushed
to the disk, starpu_data_get_ooc_flag() should be used.

42.4 Using Wont Use

By default, StarPU uses a Least-Recently-Used (LRU) algorithm to determine which data should be evicted to
the disk. This algorithm can be hinted by telling which data will not be used in the coming future thanks to
starpu_data_wont_use(), for instance:
starpu_task_insert(&cl_work, STARPU_RW, h, 0);
starpu_data_wont_use(h);

StarPU will mark the data as "inactive" and tend to evict to the disk that data rather than others.

42.5 Examples: disk_copy
/* Try to write into disk memory

* Use mechanism to push data from main ram to disk ram

*/
#include <starpu.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
/* size of one vector */
#define NX (30*1000000/sizeof(double))
#define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__);

}} while(0)
int main(int argc, char **argv)
{

double *A, *F;
/* limit main ram to force to push in disk */
setenv("STARPU_LIMIT_CPU_MEM", "160", 1);
/* Initialize StarPU with default configuration */
int ret = starpu_init(NULL);
if (ret == -ENODEV) goto enodev;
/* register a disk */
int new_dd = starpu_disk_register(&starpu_disk_unistd_ops, (void *) "/tmp/", 1024*1024*200);
/* can’t write on /tmp/ */
if (new_dd == -ENOENT) goto enoent;
/* allocate two memory spaces */
starpu_malloc_flags((void **)&A, NX*sizeof(double), STARPU_MALLOC_COUNT);
starpu_malloc_flags((void **)&F, NX*sizeof(double), STARPU_MALLOC_COUNT);
FPRINTF(stderr, "TEST DISK MEMORY \n");
unsigned int j;
/* initialization with bad values */
for(j = 0; j < NX; ++j)
{

A[j] = j;

Generated by Doxygen

42.6 Examples: disk_compute 269

F[j] = -j;
}
starpu_data_handle_t vector_handleA, vector_handleB, vector_handleC, vector_handleD, vector_handleE,

vector_handleF;
/* register vector in starpu */
starpu_vector_data_register(&vector_handleA, STARPU_MAIN_RAM, (uintptr_t)A, NX, sizeof(double));
starpu_vector_data_register(&vector_handleB, -1, (uintptr_t) NULL, NX, sizeof(double));
starpu_vector_data_register(&vector_handleC, -1, (uintptr_t) NULL, NX, sizeof(double));
starpu_vector_data_register(&vector_handleD, -1, (uintptr_t) NULL, NX, sizeof(double));
starpu_vector_data_register(&vector_handleE, -1, (uintptr_t) NULL, NX, sizeof(double));
starpu_vector_data_register(&vector_handleF, STARPU_MAIN_RAM, (uintptr_t)F, NX, sizeof(double));
/* copy vector A->B, B->C... */
starpu_data_cpy(vector_handleB, vector_handleA, 0, NULL, NULL);
starpu_data_cpy(vector_handleC, vector_handleB, 0, NULL, NULL);
starpu_data_cpy(vector_handleD, vector_handleC, 0, NULL, NULL);
starpu_data_cpy(vector_handleE, vector_handleD, 0, NULL, NULL);
starpu_data_cpy(vector_handleF, vector_handleE, 0, NULL, NULL);
/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */
/* free them */
starpu_data_unregister(vector_handleA);
starpu_data_unregister(vector_handleB);
starpu_data_unregister(vector_handleC);
starpu_data_unregister(vector_handleD);
starpu_data_unregister(vector_handleE);
starpu_data_unregister(vector_handleF);
/* check if computation is correct */
int try = 1;
for (j = 0; j < NX; ++j)

if (A[j] != F[j])
{

printf("Fail A %f != F %f \n", A[j], F[j]);
try = 0;

}
/* free last vectors */
starpu_free_flags(A, NX*sizeof(double), STARPU_MALLOC_COUNT);
starpu_free_flags(F, NX*sizeof(double), STARPU_MALLOC_COUNT);
/* terminate StarPU, no task can be submitted after */
starpu_shutdown();
if(try)

FPRINTF(stderr, "TEST SUCCESS\n");
else

FPRINTF(stderr, "TEST FAIL\n");
return (try ? EXIT_SUCCESS : EXIT_FAILURE);

enodev:
return 77;

enoent:
return 77;

}

The full code is provided in the file tests/disk/disk_copy.c

42.6 Examples: disk_compute
/* Try to write into disk memory

* Use mechanism to push data from main ram to disk ram

*/
#include <starpu.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <math.h>
#define NX (1024)
int main(int argc, char **argv)
{

/* Initialize StarPU with default configuration */
int ret = starpu_init(NULL);
if (ret == -ENODEV) goto enodev;
/* Initialize path and name */
char pid_str[16];
int pid = getpid();
snprintf(pid_str, sizeof(pid_str), "%d", pid);
const char *name_file_start = "STARPU_DISK_COMPUTE_DATA_";
const char *name_file_end = "STARPU_DISK_COMPUTE_DATA_RESULT_";
char * path_file_start = malloc(strlen(base) + 1 + strlen(name_file_start) + 1);
strcpy(path_file_start, base);
strcat(path_file_start, "/");
strcat(path_file_start, name_file_start);
char * path_file_end = malloc(strlen(base) + 1 + strlen(name_file_end) + 1);
strcpy(path_file_end, base);
strcat(path_file_end, "/");
strcat(path_file_end, name_file_end);
/* register a disk */
int new_dd = starpu_disk_register(&starpu_disk_unistd_ops, (void *) base, 1024*1024*1);

Generated by Doxygen

270 Out Of Core

/* can’t write on /tmp/ */
if (new_dd == -ENOENT) goto enoent;
unsigned dd = (unsigned) new_dd;
printf("TEST DISK MEMORY \n");
/* Imagine, you want to compute data */
int *A;
int *C;
starpu_malloc_flags((void **)&A, NX*sizeof(int), STARPU_MALLOC_COUNT);
starpu_malloc_flags((void **)&C, NX*sizeof(int), STARPU_MALLOC_COUNT);
unsigned int j;
/* you register them in a vector */
for(j = 0; j < NX; ++j)
{

A[j] = j;
C[j] = 0;

}
/* you create a file to store the vector ON the disk */
FILE * f = fopen(path_file_start, "wb+");
if (f == NULL)

goto enoent2;
/* store it in the file */
fwrite(A, sizeof(int), NX, f);
/* close the file */
fclose(f);
/* create a file to store result */
f = fopen(path_file_end, "wb+");
if (f == NULL)

goto enoent2;
/* replace all data by 0 */
fwrite(C, sizeof(int), NX, f);
/* close the file */
fclose(f);
/* And now, you want to use your data in StarPU */
/* Open the file ON the disk */
void * data = starpu_disk_open(dd, (void *) name_file_start, NX*sizeof(int));
void * data_result = starpu_disk_open(dd, (void *) name_file_end, NX*sizeof(int));
starpu_data_handle_t vector_handleA, vector_handleC;
/* register vector in starpu */
starpu_vector_data_register(&vector_handleA, dd, (uintptr_t) data, NX, sizeof(int));
/* and do what you want with it, here we copy it into an other vector */
starpu_vector_data_register(&vector_handleC, dd, (uintptr_t) data_result, NX, sizeof(int));
starpu_data_cpy(vector_handleC, vector_handleA, 0, NULL, NULL);
/* free them */
starpu_data_unregister(vector_handleA);
starpu_data_unregister(vector_handleC);
/* close them in StarPU */
starpu_disk_close(dd, data, NX*sizeof(int));
starpu_disk_close(dd, data_result, NX*sizeof(int));
/* check results */
f = fopen(path_file_end, "rb+");
if (f == NULL)

goto enoent;
/* take data */
fread(C, sizeof(int), NX, f);
/* close the file */
fclose(f);
int try = 1;
for (j = 0; j < NX; ++j)

if (A[j] != C[j])
{

printf("Fail A %d != C %d \n", A[j], C[j]);
try = 0;

}
starpu_free_flags(A, NX*sizeof(int), STARPU_MALLOC_COUNT);
starpu_free_flags(C, NX*sizeof(int), STARPU_MALLOC_COUNT);
unlink(path_file_start);
unlink(path_file_end);
free(path_file_start);
free(path_file_end);
/* terminate StarPU, no task can be submitted after */
starpu_shutdown();
if(try)

printf("TEST SUCCESS\n");
else

printf("TEST FAIL\n");
return (try ? EXIT_SUCCESS : EXIT_FAILURE);

enodev:
return 77;

enoent2:
starpu_free_flags(A, NX*sizeof(int), STARPU_MALLOC_COUNT);
starpu_free_flags(C, NX*sizeof(int), STARPU_MALLOC_COUNT);

enoent:
unlink(path_file_start);
unlink(path_file_end);
free(path_file_start);
free(path_file_end);
starpu_shutdown();

Generated by Doxygen

42.7 Performances 271

return 77;
}

The full code is provided in the file tests/disk/disk_compute.c

42.7 Performances

Scheduling heuristics for Out-of-core are still relatively experimental. The tricky part is that you usually have to find
a compromise between privileging locality (which avoids back and forth with the disk) and privileging the critical
path, i.e. taking into account priorities to avoid lack of parallelism at the end of the task graph.
It is notably better to avoid defining different priorities to tasks with low priority, since that will make the scheduler
want to schedule them by levels of priority, at the expense of locality.
The scheduling algorithms worth trying are thus dmdar and lws, which privilege data locality over priorities. There
will be work on this area in the coming future.

42.8 Feedback Figures

Beyond pure performance feedback, some figures are interesting to have a look at.
Using export STARPU_BUS_STATS=1 (STARPU_BUS_STATS and STARPU_BUS_STATS_FILE to define a
filename in which to display statistics, by default the standard error stream is used) gives an overview of the data
transfers which were needed. The values can also be obtained at runtime by using starpu_bus_get_profiling_info().
An example can be read in src/profiling/profiling_helpers.c.

#---------------------
Data transfer speed for /tmp/sthibault-disk-DJzhAj (node 1):
0 -> 1: 99 MB/s
1 -> 0: 99 MB/s
0 -> 1: 23858 µs
1 -> 0: 23858 µs

#---------------------
TEST DISK MEMORY

#---------------------
Data transfer stats:

Disk 0 -> NUMA 0 0.0000 GB 0.0000 MB/s (transfers : 0 - avg -nan MB)
NUMA 0 -> Disk 0 0.0625 GB 63.6816 MB/s (transfers : 2 - avg 32.0000 MB)

Total transfers: 0.0625 GB
#---------------------

Using export STARPU_ENABLE_STATS=1 gives information for each memory node on data miss/hit and
allocation miss/hit.

#---------------------
MSI cache stats :
memory node NUMA 0

hit : 32 (66.67 %)
miss : 16 (33.33 %)

memory node Disk 0
hit : 0 (0.00 %)
miss : 0 (0.00 %)

#---------------------

#---------------------
Allocation cache stats:
memory node NUMA 0

total alloc : 16
cached alloc: 0 (0.00 %)

memory node Disk 0
total alloc : 8
cached alloc: 0 (0.00 %)

#---------------------

42.9 Disk functions

There are various ways to operate a disk memory node, described by the structure starpu_disk_ops. For instance,
the variable starpu_disk_unistd_ops uses read/write functions.

Generated by Doxygen

272 Out Of Core

All structures are in Out Of Core.
Examples are provided in src/core/disk_ops/disk_∗.c

Generated by Doxygen

Chapter 43

MPI Support

The integration of MPI transfers within task parallelism is done in a very natural way by the means of asyn-
chronous interactions between the application and StarPU. This is implemented in a separate libstarpumpi
library which basically provides "StarPU" equivalents of MPI_∗ functions, where void ∗ buffers are replaced with
starpu_data_handle_t, and all GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. Users have to use
the usual mpirun command of the MPI implementation to start StarPU on the different MPI nodes.
An MPI Insert Task function provides an even more seamless transition to a distributed application, by automatically
issuing all required data transfers according to the task graph and an application-provided distribution.
Some source codes are available in the directory mpi/.

43.1 Building with MPI support

If a mpicc compiler is already in your PATH, StarPU will automatically enable MPI support in the build. If
mpicc is not in PATH, you can specify its location by passing -with-mpicc=/where/there/is/mpicc
to ./configure
It can be useful to enable MPI tests during make check by passing -enable-mpi-check to
./configure. And similarly to mpicc, if mpiexec in not in PATH, you can specify its location by pass-
ing -with-mpiexec=/where/there/is/mpiexec to ./configure, but this is not needed if it is next
to mpicc, configure will look there in addition to PATH.
Similarly, Fortran examples use mpif90, which can be specified manually with -with-mpifort if it can't be
found automatically.
If users want to run several MPI processes by machine (e.g. one per NUMA node), STARPU_WORKERS_GETBIND
needs to be left to its default value 1 to make StarPU take into account the binding set by the MPI launcher (otherwise
each StarPU instance would try to bind on all cores of the machine...)
However, depending on the architecture of your machine, one may end up with StarPU-MPI nodes not having any
CPU workers. If a node only gets 1 CPU, it will be bound to the MPI thread, and none will be left to start a CPU
worker.
One can check that with the following commands.

$ mpirun -np 2 starpu_machine_display --worker CPU --count --notopology
1 CPU worker
1 CPU worker
$ mpirun -np 4 starpu_machine_display --worker CPU --count --notopology
4 CPU workers
4 CPU workers
4 CPU workers
4 CPU workers
$ mpirun --bind-to socket -np 2 starpu_machine_display --worker CPU --count --notopology
4 CPU workers
4 CPU workers
$ STARPU_WORKERS_GETBIND=0 mpirun -np 4 starpu_machine_display --worker CPU --count --notopology
4 CPU workers
4 CPU workers
4 CPU workers
4 CPU workers
$ STARPU_WORKERS_GETBIND=0 mpirun -np 2 starpu_machine_display --worker CPU --count --notopology
4 CPU workers
4 CPU workers

Generated by Doxygen

274 MPI Support

or with hwloc

mpirun --bind-to socket -np 2 hwloc-ls --restrict binding --no-io
mpirun -np 2 hwloc-ls --restrict binding --no-io

43.2 Example Used In This Documentation

The example below will be used as the base for this documentation. It initializes a token on node 0, and the token
is passed from node to node, incremented by one on each step. The code is not using StarPU yet.
for (loop = 0; loop < nloops; loop++)
{

int tag = loop*size + rank;
if (loop == 0 && rank == 0)
{

token = 0;
fprintf(stdout, "Start with token value %d\n", token);

}
else
{

MPI_Recv(&token, 1, MPI_INT, (rank+size-1)%size, tag, MPI_COMM_WORLD);
}
token++;
if (loop == last_loop && rank == last_rank)
{

fprintf(stdout, "Finished: token value %d\n", token);
}
else
{

MPI_Send(&token, 1, MPI_INT, (rank+1)%size, tag+1, MPI_COMM_WORLD);
}

}

43.3 About Not Using The MPI Support

Although StarPU provides MPI support, the application programmer may want to keep his MPI communications as
they are for a start, and only delegate task execution to StarPU. This is possible by just using starpu_data_acquire(),
for instance:
for (loop = 0; loop < nloops; loop++)
{

int tag = loop*size + rank;
/* Acquire the data to be able to write to it */
starpu_data_acquire(token_handle, STARPU_W);
if (loop == 0 && rank == 0)
{

token = 0;
fprintf(stdout, "Start with token value %d\n", token);

}
else
{

MPI_Recv(&token, 1, MPI_INT, (rank+size-1)%size, tag, MPI_COMM_WORLD);
}
starpu_data_release(token_handle);
/* Task delegation to StarPU to increment the token. The execution might

* be performed on a CPU, a GPU, etc. */
increment_token();
/* Acquire the update data to be able to read from it */
starpu_data_acquire(token_handle, STARPU_R);
if (loop == last_loop && rank == last_rank)
{

fprintf(stdout, "Finished: token value %d\n", token);
}
else
{

MPI_Send(&token, 1, MPI_INT, (rank+1)%size, tag+1, MPI_COMM_WORLD);
}
starpu_data_release(token_handle);

}

In that case, libstarpumpi is not needed. One can also use MPI_Isend() and MPI_Irecv(), by calling
starpu_data_release() after MPI_Wait() or MPI_Test() have notified completion.
It is however better to use libstarpumpi, to save the application from having to synchronize with
starpu_data_acquire(), and instead just submit all tasks and communications asynchronously, and wait for the
overall completion.

Generated by Doxygen

43.4 Simple Example 275

43.4 Simple Example

The flags required to compile or link against the MPI layer are accessible with the following commands:

$ pkg-config --cflags starpumpi-1.4 # options for the compiler
$ pkg-config --libs starpumpi-1.4 # options for the linker

void increment_token(void)
{

struct starpu_task *task = starpu_task_create();
task->cl = &increment_cl;
task->handles[0] = token_handle;
starpu_task_submit(task);

}
int main(int argc, char **argv)
{

int rank, size;
starpu_mpi_init_conf(&argc, &argv, 1, MPI_COMM_WORLD, NULL);
starpu_mpi_comm_rank(MPI_COMM_WORLD, &rank);
starpu_mpi_comm_size(MPI_COMM_WORLD, &size);
starpu_vector_data_register(&token_handle, STARPU_MAIN_RAM, (uintptr_t)&token, 1, sizeof(unsigned));
unsigned nloops = NITER;
unsigned loop;
unsigned last_loop = nloops - 1;
unsigned last_rank = size - 1;
for (loop = 0; loop < nloops; loop++)
{

int tag = loop*size + rank;
if (loop == 0 && rank == 0)
{

starpu_data_acquire(token_handle, STARPU_W);
token = 0;
fprintf(stdout, "Start with token value %d\n", token);
starpu_data_release(token_handle);

}
else
{

starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag, MPI_COMM_WORLD, NULL, NULL);
}
increment_token();
if (loop == last_loop && rank == last_rank)
{

starpu_data_acquire(token_handle, STARPU_R);
fprintf(stdout, "Finished: token value %d\n", token);
starpu_data_release(token_handle);

}
else
{

starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1, MPI_COMM_WORLD, NULL, NULL);
}

}
starpu_task_wait_for_all();
starpu_mpi_shutdown();
if (rank == last_rank)
{

fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
STARPU_ASSERT(token == nloops*size);

}

We have here replaced MPI_Recv() and MPI_Send()with starpu_mpi_irecv_detached() and starpu_mpi_isend_detached(),
which just submit the communication to be performed. The implicit sequential consistency dependencies provide
synchronization between MPI reception and emission and the corresponding tasks. The only remaining synchro-
nization with starpu_data_acquire() is at the beginning and the end.
The full source code is available in the file mpi/tests/ring.c.

43.5 How to Initialize StarPU-MPI

As seen in the previous example, one has to call starpu_mpi_init_conf() to initialize StarPU-MPI. The third param-
eter of the function indicates if MPI should be initialized by StarPU, or if the application did it itself. If the appli-
cation initializes MPI itself, it must call MPI_Init_thread() with MPI_THREAD_SERIALIZED or MPI_←↩

THREAD_MULTIPLE, since StarPU-MPI uses a separate thread to perform the communications. MPI_THREAD←↩

_MULTIPLE is necessary if the application also performs some MPI communications.

43.6 Point To Point Communication

The standard point to point communications of MPI have been implemented. The semantic is similar to the MPI
one, but adapted to the DSM provided by StarPU. An MPI request will only be submitted when the data is available

Generated by Doxygen

276 MPI Support

in the main memory of the node submitting the request.
There are two types of asynchronous communications: the classic asynchronous communications and the detached
communications. The classic asynchronous communications (starpu_mpi_isend() and starpu_mpi_irecv()) need
to be followed by a call to starpu_mpi_wait() or to starpu_mpi_test() to wait for or to test the completion of the
communication. As shown in the example mpi/tests/async_ring.c. Waiting for or testing the completion of
detached communications is not possible, this is done internally by StarPU-MPI, on completion, the resources are
automatically released. This mechanism is similar to the pthread detach state attribute, which determines whether
a thread will be created in a joinable or a detached state.
For send communications, data is acquired with the mode STARPU_R. When using the configure option
--enable-mpi-pedantic-isend, the mode STARPU_RW is used to make sure there is no more than 1 concurrent
MPI_Isend() call accessing a data and StarPU does not read from it from tasks during the communication.
Internally, all communication are divided in 2 communications, a first message is used to exchange an envelope
describing the data (i.e. its tag and its size), the data itself is sent in a second message. All MPI communications
submitted by StarPU uses a unique tag, which has a default value. This value can be accessed with the function
starpu_mpi_get_communication_tag() and changed with the function starpu_mpi_set_communication_tag(). The
matching of tags with corresponding requests is done within StarPU-MPI.
For any userland communication, the call of the corresponding function (e.g. starpu_mpi_isend()) will result in the
creation of a StarPU-MPI request, the function starpu_data_acquire_cb() is then called to asynchronously request
StarPU to fetch the data in main memory; when the data is ready and the corresponding buffer has already been
received by MPI, it will be copied in the memory of the data, otherwise the request is stored in the early requests
list. Sending requests are stored in the ready requests list.
While requests need to be processed, the StarPU-MPI progression thread does the following:

1. it polls the ready requests list. For all the ready requests, the appropriate function is called to post the
corresponding MPI call. For example, an initial call to starpu_mpi_isend() will result in a call to MPI_←↩

Isend(). If the request is marked as detached, the request will then be added to the detached requests
list.

2. it posts an MPI_Irecv() to retrieve a data envelope.

3. it polls the detached requests list. For all the detached requests, it tests its completion of the MPI request by
calling MPI_Test(). On completion, the data handle is released, and if a callback was defined, it is called.

4. finally, it checks if a data envelope has been received. If so, if the data envelope matches a request in the
early requests list (i.e. the request has already been posted by the application), the corresponding MPI call is
posted (similarly to the first step above).

If the data envelope does not match any application request, a temporary handle is created to receive the
data, a StarPU-MPI request is created and added into the ready requests list, and thus will be processed in
the first step of the next loop.

To prevent putting too much pressure on the MPI library, only a limited number of requests are emitted concurrently.
This behavior can be tuned with the environment variable STARPU_MPI_NDETACHED_SEND. In the same fashion,
the progression thread will poll for termination of existing requests after submitting a defined number of requests.
This behavior can be tuned with the environment variable STARPU_MPI_NREADY_PROCESS.
The function starpu_mpi_issend() allows to perform a synchronous-mode, non-blocking send of a data. It can also
be specified when using starpu_mpi_task_insert() with the parameter STARPU_SSEND.
MPIPtpCommunication gives the list of all the point to point communications defined in StarPU-MPI.

43.7 Exchanging User Defined Data Interface

New data interfaces defined as explained in Defining A New Data Interface can also be used within StarPU-MPI and
exchanged between nodes. Two functions needs to be defined through the type starpu_data_interface_ops. The
function starpu_data_interface_ops::pack_data takes a handle and returns a contiguous memory buffer allocated
with
starpu_malloc_flags(ptr, size, 0)

along with its size, where data to be conveyed to another node should be copied.
static int complex_pack_data(starpu_data_handle_t handle, unsigned node, void **ptr, ssize_t *count)
{

STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)

starpu_data_get_interface_on_node(handle, node);

Generated by Doxygen

43.7 Exchanging User Defined Data Interface 277

*count = complex_get_size(handle);

*ptr = starpu_malloc_on_node_flags(node, *count, 0);
memcpy(*ptr, complex_interface->real, complex_interface->nx*sizeof(double));
memcpy(*ptr+complex_interface->nx*sizeof(double), complex_interface->imaginary,

complex_interface->nx*sizeof(double));
return 0;

}

The inverse operation is implemented in the function starpu_data_interface_ops::unpack_data which takes a con-
tiguous memory buffer and recreates the data handle.
static int complex_unpack_data(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)
{

STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)
starpu_data_get_interface_on_node(handle, node);

memcpy(complex_interface->real, ptr, complex_interface->nx*sizeof(double));
memcpy(complex_interface->imaginary, ptr+complex_interface->nx*sizeof(double),

complex_interface->nx*sizeof(double));
starpu_free_on_node_flags(node, (uintptr_t) ptr, count, 0);
return 0;

}

And the starpu_data_interface_ops::peek_data operation does the same, but without freeing the buffer. Of course,
one can implement starpu_data_interface_ops::unpack_data as merely calling starpu_data_interface_ops::peek_data
and do the free:
static int complex_peek_data(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)
{

STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
STARPU_ASSERT(count == complex_get_size(handle));
struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)

starpu_data_get_interface_on_node(handle, node);
memcpy(complex_interface->real, ptr, complex_interface->nx*sizeof(double));
memcpy(complex_interface->imaginary, ptr+complex_interface->nx*sizeof(double),

complex_interface->nx*sizeof(double));
return 0;

}
static struct starpu_data_interface_ops interface_complex_ops =
{

...

.pack_data = complex_pack_data,

.peek_data = complex_peek_data

.unpack_data = complex_unpack_data
};

Instead of defining pack and unpack operations, users may want to attach an MPI type to their user-defined data in-
terface. The function starpu_mpi_interface_datatype_register() allows doing so. This function takes 3 parameters:
the interface ID for which the MPI datatype is going to be defined, a function's pointer that will create the MPI
datatype, and a function's pointer that will free the MPI datatype. If for some data an MPI datatype can not be
built (e.g. complex data structure), the creation function can return -1, StarPU-MPI will then fallback to using
pack/unpack.
The functions to create and free the MPI datatype are defined and registered as follows.
void starpu_complex_interface_datatype_allocate(starpu_data_handle_t handle, MPI_Datatype *mpi_datatype)
{

int ret;
int blocklengths[2];
MPI_Aint displacements[2];
MPI_Datatype types[2] = {MPI_DOUBLE, MPI_DOUBLE};
struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)

starpu_data_get_interface_on_node(handle, STARPU_MAIN_RAM);
MPI_Get_address(complex_interface, displacements);
MPI_Get_address(&complex_interface->imaginary, displacements+1);
displacements[1] -= displacements[0];
displacements[0] = 0;
blocklengths[0] = complex_interface->nx;
blocklengths[1] = complex_interface->nx;
ret = MPI_Type_create_struct(2, blocklengths, displacements, types, mpi_datatype);
STARPU_ASSERT_MSG(ret == MPI_SUCCESS, "MPI_Type_contiguous failed");
ret = MPI_Type_commit(mpi_datatype);
STARPU_ASSERT_MSG(ret == MPI_SUCCESS, "MPI_Type_commit failed");

}
void starpu_complex_interface_datatype_free(MPI_Datatype *mpi_datatype)
{

MPI_Type_free(mpi_datatype);
}
static struct starpu_data_interface_ops interface_complex_ops =
{

...
};
interface_complex_ops.interfaceid = starpu_data_interface_get_next_id();
starpu_mpi_interface_datatype_register(interface_complex_ops.interfaceid,

starpu_complex_interface_datatype_allocate, starpu_complex_interface_datatype_free);
starpu_data_interface handle;
starpu_complex_data_register(&handle, STARPU_MAIN_RAM, real, imaginary, 2);
...

Generated by Doxygen

278 MPI Support

An example is provided in the file mpi/examples/user_datatype/my_interface.c.
It is also possible to use starpu_mpi_datatype_register() to register the functions through a handle rather than the
interface ID, but note that in that case it is important to make sure no communication is going to occur before the
function starpu_mpi_datatype_register() is called. This would otherwise produce an undefined result as the data
may be received before the function is called, and so the MPI datatype would not be known by the StarPU-MPI
communication engine, and the data would be processed with the pack and unpack operations. One would thus
need to synchronize all nodes:
starpu_data_interface handle;
starpu_complex_data_register(&handle, STARPU_MAIN_RAM, real, imaginary, 2);
starpu_mpi_datatype_register(handle, starpu_complex_interface_datatype_allocate,

starpu_complex_interface_datatype_free);
starpu_mpi_barrier(MPI_COMM_WORLD);

43.8 MPI Insert Task Utility

To save the programmer from having to specify all communications, StarPU provides an "MPI Insert Task Utility".
The principle is that the application decides a distribution of the data over the MPI nodes by allocating it and notifying
StarPU of this decision, i.e. tell StarPU which MPI node "owns" which data. It also decides, for each handle, an MPI
tag which will be used to exchange the content of the handle. All MPI nodes then process the whole task graph, and
StarPU automatically determines which node actually execute which task, and trigger the required MPI transfers.
The list of functions is described in MPIInsertTask.
Here is an stencil example showing how to use starpu_mpi_task_insert(). One first needs to define a distribu-
tion function which specifies the locality of the data. Note that the data needs to be registered to MPI by calling
starpu_mpi_data_register(). This function allows setting the distribution information and the MPI tag which should
be used when communicating the data. It also allows to automatically clear the MPI communication cache when
unregistering the data. A basic example is in the file mpi/tests/insert_task.c.
/* Returns the MPI node number where data is */
int my_distrib(int x, int y, int nb_nodes)
{

/* Block distrib */
return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
// /* Other examples useful for other kinds of computations */
// /* / distrib */
// return (x+y) % nb_nodes;
// /* Block cyclic distrib */
// unsigned side = sqrt(nb_nodes);
// return x % side + (y % side) * size;

}

Now the data can be registered within StarPU. Data which are not owned but will be needed for computations can
be registered through the lazy allocation mechanism, i.e. with a home_node set to -1. StarPU will automatically
allocate the memory when it is used for the first time.
One can note an optimization here (the else if test): we only register data which will be needed by the tasks
that we will execute.
unsigned matrix[X][Y];
starpu_data_handle_t data_handles[X][Y];
for(x = 0; x < X; x++)
{

for (y = 0; y < Y; y++)
{

int mpi_rank = my_distrib(x, y, size);
if (mpi_rank == my_rank)

/* Owning data */
starpu_variable_data_register(&data_handles[x][y], STARPU_MAIN_RAM, (uintptr_t)&(matrix[x][y]),

sizeof(unsigned));
else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)

|| my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))
/* I don’t own this index, but will need it for my computations */
starpu_variable_data_register(&data_handles[x][y], -1, (uintptr_t)NULL, sizeof(unsigned));

else
/* I know it’s useless to allocate anything for this */
data_handles[x][y] = NULL;

if (data_handles[x][y])
{

starpu_mpi_data_register(data_handles[x][y], x*X+y, mpi_rank);
}

}
}

Now starpu_mpi_task_insert() can be called for the different steps of the application.
for(loop=0 ; loop<niter; loop++)

for (x = 1; x < X-1; x++)
for (y = 1; y < Y-1; y++)

starpu_mpi_task_insert(MPI_COMM_WORLD, &stencil5_cl,
STARPU_RW, data_handles[x][y],

Generated by Doxygen

43.8 MPI Insert Task Utility 279

STARPU_R, data_handles[x-1][y],
STARPU_R, data_handles[x+1][y],
STARPU_R, data_handles[x][y-1],
STARPU_R, data_handles[x][y+1],
0);

starpu_task_wait_for_all();

The full source code is available in the file mpi/examples/stencil/stencil5.c.
I.e. all MPI nodes process the whole task graph, but as mentioned above, for each task, only the MPI node which
owns the data being written to (here, data_handles[x][y]) will actually run the task. The other MPI nodes
will automatically send the required data.
To tune the placement of tasks among MPI nodes, one can use STARPU_EXECUTE_ON_NODE or
STARPU_EXECUTE_ON_DATA to specify an explicit node (an example can be found in mpi/tests/insert_←↩

task_node_choice.c), or the node of a given data (e.g. one of the parameters), or use starpu_mpi_node_selection_register_policy()
and STARPU_NODE_SELECTION_POLICY to provide a dynamic policy (an example can be found in
mpi/tests/policy_register.c). The default policy is to execute the task on the node which owns a
data that require write access; if the task requires several data handles with write access, the node executing the
task is selected in order to minimize the amount of data to transfer between nodes.
A function starpu_mpi_task_build() is also provided with the aim to only construct the task structure. All MPI nodes
need to call the function, which posts the required send/recv on the various nodes as needed. Only the node which
is to execute the task will then return a valid task structure, others will return NULL. This node must submit the
task. All nodes then need to call the function starpu_mpi_task_post_build() – with the same list of arguments as
starpu_mpi_task_build() – to post all the necessary data communications meant to happen after the task execution.
struct starpu_task *task;
task = starpu_mpi_task_build(MPI_COMM_WORLD, &cl,

STARPU_RW, data_handles[0],
STARPU_R, data_handles[1],
0);

if (task) starpu_task_submit(task);
starpu_mpi_task_post_build(MPI_COMM_WORLD, &cl,

STARPU_RW, data_handles[0],
STARPU_R, data_handles[1],
0);

A full source code using these functions is available in the file mpi/tests/insert_task_compute.c.
It is also possible to create and submit the task outside of StarPU-MPI functions and call the functions
starpu_mpi_task_exchange_data_before_execution() and starpu_mpi_task_exchange_data_after_execution() to
exchange data as required by the data ownership's nodes.
struct starpu_mpi_task_exchange_params params;
struct starpu_data_descr descrs[2];
struct starpu_task *task;
task = starpu_task_create();
task->cl = &mycodelet;
task->handles[0] = data_handles[0];
task->handles[1] = data_handles[1];
starpu_mpi_task_exchange_data_before_execution(MPI_COMM_WORLD, task, descrs, ¶ms);
if (params.do_execute) starpu_task_submit(task);
starpu_mpi_task_exchange_data_after_execution(MPI_COMM_WORLD, descrs, 2, params);

A full source code using these functions is available in the file mpi/tests/mpi_task_submit.c.
If many data handles must be registered with unique tag ids, or if multiple applications are concurrently submitting
tasks to StarPU, it is then difficult to keep the uniqueness of the tags for each piece of data. StarPU provides a tag
management system to allocate/free a unique range of tags when registering the data to prevent conflict from one
application to another. The previous code then becomes:
unsigned matrix[X][Y];
starpu_data_handle_t data_handles[X][Y];
int64_t mintag = starpu_mpi_tags_allocate(X*Y);
for(x = 0; x < X; x++)
{

for (y = 0; y < Y; y++)
{

...
if (data_handles[x][y])
{

starpu_mpi_data_register(data_handles[x][y], mintag + y*Y+x, mpi_rank);
}

}
}

Then, when all these pieces of data have been unregistered, you may free the range of tags by calling:
starpu_mpi_tags_free(mintag);

where mintag was the value returned by starpu_mpi_tags_allocate().
Note that both these functions should be called by all nodes involved in the computations in the exact same order
and with the same parameters to keep the tags synchronized between all nodes.
Also note that StarPU will not check if a tag given to starpu_mpi_data_register() has been previously registered,
this functionality only aims to prevent different parts of an application to use the same data tags.

Generated by Doxygen

280 MPI Support

43.9 Other MPI Utility Functions

Similarly to the function starpu_data_cpy(), the function starpu_mpi_data_cpy() can be used to transfer a data
between 2 nodes. It behaves as starpu_data_cpy() if both data are owned by the same node, otherwise a transfer
is initiated between the nodes. A priority and a callback function can be defined.
...
starpu_mpi_data_register(src_handle, 12, 0); // Data is owned by node0
starpu_mpi_data_register(dst_handle, 42, 1); // Data is owned by node1
...
starpu_mpi_data_cpy(dst_handle, src_handle, MPI_COMM_WORLD, 0, callback, NULL);

43.10 Pruning MPI Task Insertion

Making all MPI nodes process the whole graph can be a concern with a growing number of nodes. To avoid this,
the application can prune the task for loops according to the data distribution, to only submit tasks on nodes which
have to care about them (either to execute them, or to send the required data).
A way to do some of this quite easily can be to just add an if like this:
for(loop=0 ; loop<niter; loop++)

for (x = 1; x < X-1; x++)
for (y = 1; y < Y-1; y++)

if (my_distrib(x,y,size) == my_rank
|| my_distrib(x-1,y,size) == my_rank
|| my_distrib(x+1,y,size) == my_rank
|| my_distrib(x,y-1,size) == my_rank
|| my_distrib(x,y+1,size) == my_rank)

starpu_mpi_task_insert(MPI_COMM_WORLD, &stencil5_cl,
STARPU_RW, data_handles[x][y],
STARPU_R, data_handles[x-1][y],
STARPU_R, data_handles[x+1][y],
STARPU_R, data_handles[x][y-1],
STARPU_R, data_handles[x][y+1],
0);

starpu_task_wait_for_all();

This permits to drop the cost of function call argument passing and parsing.
An example is available in the file examples/stencil/implicit-stencil-tasks.c.
If the my_distrib function can be inlined by the compiler, the latter can improve the test.
If the size can be made a compile-time constant, the compiler can considerably improve the test further.
If the distribution function is not too complex and the compiler is very good, the latter can even optimize the for
loops, thus dramatically reducing the cost of task submission.
To estimate quickly how long task submission takes, and notably how much pruning saves, a quick and easy way is
to measure the submission time of just one of the MPI nodes. This can be achieved by running the application on
just one MPI node with the following environment variables:
export STARPU_DISABLE_KERNELS=1
export STARPU_MPI_FAKE_RANK=2
export STARPU_MPI_FAKE_SIZE=1024

Here we have disabled the kernel function call to skip the actual computation time and only keep submission time,
and we have asked StarPU to fake running on MPI node 2 out of 1024 nodes.

43.11 Temporary Data

To be able to use starpu_mpi_task_insert(), one has to call starpu_mpi_data_register(), so that StarPU-MPI can
know what it needs to do for each data. Parameters of starpu_mpi_data_register() are normally the same on all
nodes for a given data, so that all nodes agree on which node owns the data, and which tag is used to transfer its
value.
It can however be useful to register e.g. some temporary data on just one node, without having to register a dumb
handle on all nodes, while only one node will actually need to know about it. In this case, nodes which will not need
the data can just pass NULL to starpu_mpi_task_insert():
starpu_data_handle_t data0 = NULL;
if (rank == 0)
{

starpu_variable_data_register(&data0, STARPU_MAIN_RAM, (uintptr_t) &val0, sizeof(val0));
starpu_mpi_data_register(data0, 0, rank);

}
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl, STARPU_W, data0, 0); /* Executes on node 0 */

Here, nodes whose rank is not 0 will simply not take care of the data, and consider it to be on another node.
This can be mixed various way, for instance here node 1 determines that it does not have to care about data0,
but knows that it should send the value of its data1 to node 0, which owns data and thus will need the value of

Generated by Doxygen

43.12 Per-node Data 281

data1 to execute the task:
starpu_data_handle_t data0 = NULL, data1, data;
if (rank == 0)
{

starpu_variable_data_register(&data0, STARPU_MAIN_RAM, (uintptr_t) &val0, sizeof(val0));
starpu_mpi_data_register(data0, -1, rank);
starpu_variable_data_register(&data1, -1, 0, sizeof(val1));
starpu_variable_data_register(&data, STARPU_MAIN_RAM, (uintptr_t) &val, sizeof(val));

}
else if (rank == 1)
{

starpu_variable_data_register(&data1, STARPU_MAIN_RAM, (uintptr_t) &val1, sizeof(val1));
starpu_variable_data_register(&data, -1, 0, sizeof(val));

}
starpu_mpi_data_register(data, 42, 0);
starpu_mpi_data_register(data1, 43, 1);
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl, STARPU_W, data, STARPU_R, data0, STARPU_R, data1, 0); /*

Executes on node 0 */

The full source code is available in the file mpi/tests/temporary.c.

43.12 Per-node Data

Further than temporary data on just one node, one may want per-node data, to e.g. replicate some computation
because that is less expensive than communicating the value over MPI:
starpu_data_handle pernode, data0, data1;
starpu_variable_data_register(&pernode, -1, 0, sizeof(val));
starpu_mpi_data_register(pernode, -1, STARPU_MPI_PER_NODE);
/* Normal data: one on node0, one on node1 */
if (rank == 0)
{

starpu_variable_data_register(&data0, STARPU_MAIN_RAM, (uintptr_t) &val0, sizeof(val0));
starpu_variable_data_register(&data1, -1, 0, sizeof(val1));

}
else if (rank == 1)
{

starpu_variable_data_register(&data0, -1, 0, sizeof(val1));
starpu_variable_data_register(&data1, STARPU_MAIN_RAM, (uintptr_t) &val1, sizeof(val1));

}
starpu_mpi_data_register(data0, 42, 0);
starpu_mpi_data_register(data1, 43, 1);
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl, STARPU_W, pernode, 0); /* Will be replicated on all nodes */
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl2, STARPU_RW, data0, STARPU_R, pernode); /* Will execute on node

0, using its own pernode*/
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl2, STARPU_RW, data1, STARPU_R, pernode); /* Will execute on node

1, using its own pernode*/

One can turn a normal data into per-node data, by first broadcasting it to all nodes:
starpu_data_handle data;
starpu_variable_data_register(&data, -1, 0, sizeof(val));
starpu_mpi_data_register(data, 42, 0);
/* Compute some value */
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl, STARPU_W, data, 0); /* Node 0 computes it */
/* Get it on all nodes */
starpu_mpi_get_data_on_all_nodes_detached(MPI_COMM_WORLD, data);
/* And turn it per-node */
starpu_mpi_data_set_rank(data, STARPU_MPI_PER_NODE);

The data can then be used just like per-node above.
The full source code is available in the file mpi/tests/temporary.c.

43.13 Inter-node reduction

One might want to leverage a reduction pattern across several nodes. Using STARPU_REDUX (see
Data Reduction), one can obtain such patterns where each core on contributing nodes spawns their own copy
to work with. In the case that the required reductions are too numerous and expensive, the access mode
STARPU_MPI_REDUX tells StarPU to spawn only one contribution per contributing node.
The setup and use of STARPU_MPI_REDUX is similar to STARPU_REDUX : the initialization and re-
duction codelets should be declared through starpu_data_set_reduction_methods() in the same fash-
ion as STARPU_REDUX. Example mpi/examples/mpi_redux/mpi_redux.c shows how to use
the STARPU_MPI_REDUX mode and compare it with the standard STARPU_REDUX. The function
starpu_mpi_redux_data() is automatically called either when a task reading the reduced handle is inserted
through the MPI layer of StarPU through starpu_mpi_insert_task() or when users wait for all communications and
tasks to be executed through starpu_mpi_wait_for_all(). The function can be called by users to fine-tune arguments
such as the priority of the reduction tasks. Tasks contributing to the inter-node reduction should be registered as

Generated by Doxygen

282 MPI Support

accessing the contribution through STARPU_RW|STARPU_COMMUTE mode, as for the STARPU_REDUX mode,
as in the following example.
static struct starpu_codelet contrib_cl =
{

.cpu_funcs = {cpu_contrib}, /* cpu implementation(s) of the routine */

.nbuffers = 1, /* number of data handles referenced by this routine */

.modes = {STARPU_RW | STARPU_COMMUTE} /* access modes for the contribution */

.name = "contribution"
};

When inserting these tasks, the access mode handed out to the StarPU-MPI layer should be STARPU_MPI_←↩

REDUX. If a task uses a data owned by node 0 and is executed on the node 1, it can be inserted as in the following
example.
starpu_mpi_task_insert(MPI_COMM_WORLD, &contrib_cl, STARPU_MPI_REDUX, data, STARPU_EXECUTE_ON_NODE, 1); /*

Node 1 computes it */

Note that if the specified node is set to -1, the option is ignored.
More examples are available at mpi/examples/mpi_redux/mpi_redux.c and mpi/examples/mpi←↩

_redux/mpi_redux_tree.c.

43.14 Priorities

All send functions have a _prio variant which takes an additional priority parameter, which allows making Star←↩

PU-MPI change the order of MPI requests before submitting them to MPI. The default priority is 0.
When using the starpu_mpi_task_insert() helper, STARPU_PRIORITY defines both the task priority and the MPI
requests priority. An example is available in the file mpi/examples/benchs/recv_wait_finalize_←↩

bench.c.
To test how much MPI priorities have a good effect on performance, you can set the environment variable
STARPU_MPI_PRIORITIES to 0 to disable the use of priorities in StarPU-MPI.

43.15 MPI Cache Support

StarPU-MPI automatically optimizes duplicate data transmissions: if an MPI node B needs a piece of data D from
MPI node A for several tasks, only one transmission of D will take place from A to B, and the value of D will be kept
on B as long as no task modifies D.
If a task modifies D, B will wait for all tasks which need the previous value of D, before invalidating the value of D.
As a consequence, it releases the memory occupied by D. Whenever a task running on B needs the new value of
D, allocation will take place again to receive it.
Since tasks can be submitted dynamically, StarPU-MPI can not know whether the current value of data D will
again be used by a newly-submitted task before being modified by another newly-submitted task, so until a
task is submitted to modify the current value, it can not decide by itself whether to flush the cache or not.
The application can however explicitly tell StarPU-MPI to flush the cache by calling starpu_mpi_cache_flush() or
starpu_mpi_cache_flush_all_data(), for instance in case the data will not be used at all anymore (see for instance
the cholesky example in mpi/examples/matrix_decomposition), or at least not in the close future. If a
newly-submitted task actually needs the value again, another transmission of D will be initiated from A to B. A mere
starpu_mpi_cache_flush_all_data() can for instance be added at the end of the whole algorithm, to express that no
data will be reused after this (or at least that it is not interesting to keep them in cache). It may however be interesting
to add fine-graph starpu_mpi_cache_flush() calls during the algorithm; the effect for the data deallocation will be the
same, but it will additionally release some pressure from the StarPU-MPI cache hash table during task submission.
One can determine whether a piece of data is cached with starpu_mpi_cached_receive() and starpu_mpi_cached_send().
An example is available in the file mpi/examples/cache/cache.c.
Functions starpu_mpi_cached_receive_set() and starpu_mpi_cached_send_set() are automatically called by
starpu_mpi_task_insert() but can also be called directly by the application. Functions starpu_mpi_cached_send_clear()
and starpu_mpi_cached_receive_clear() must be called to clear data from the cache. They are also automatically
called when using starpu_mpi_task_insert().
The whole caching behavior can be disabled thanks to the STARPU_MPI_CACHE environment variable. The
variable STARPU_MPI_CACHE_STATS can be set to 1 to enable the runtime to display messages when data are
added or removed from the cache holding the received data.

Generated by Doxygen

43.16 MPI Data Migration 283

43.16 MPI Data Migration

The application can dynamically change its mind about the data distribution, to balance the load over MPI nodes,
for instance. This can be done very simply by requesting an explicit move and then change the registered rank.
For instance, we here switch to a new distribution function my_distrib2: we first register any data which wasn't
registered already and will be needed, then migrate the data, and register the new location.
for(x = 0; x < X; x++)
{

for (y = 0; y < Y; y++)
{

int mpi_rank = my_distrib2(x, y, size);
if (!data_handles[x][y] && (mpi_rank == my_rank

|| my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
|| my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size)))

/* Register newly-needed data */
starpu_variable_data_register(&data_handles[x][y], -1, (uintptr_t)NULL, sizeof(unsigned));

if (data_handles[x][y])
{

/* Migrate the data */
starpu_mpi_data_migrate(MPI_COMM_WORLD, data_handles[x][y], mpi_rank);

}
}

}

The full example is available in the file mpi/examples/stencil/stencil5.c. From then on, further tasks
submissions will use the new data distribution, which will thus change both MPI communications and task assign-
ments.
Very importantly, since all nodes have to agree on which node owns which data to determine MPI communications
and task assignments the same way, all nodes have to perform the same data migration, and at the same point
among task submissions. It thus does not require a strict synchronization, just a clear separation of task submissions
before and after the data redistribution.
Before data unregistration, it has to be migrated back to its original home node (the value, at least), since that is
where the user-provided buffer resides. Otherwise, the unregistration will complain that it does not have the latest
value on the original home node.
for(x = 0; x < X; x++)
{

for (y = 0; y < Y; y++)
{

if (data_handles[x][y])
{

int mpi_rank = my_distrib(x, y, size);
/* Get back data to original place where the user-provided buffer is. */
starpu_mpi_data_migrate(MPI_COMM_WORLD, data_handles[x][y], mpi_rank);
/* And unregister it */
starpu_data_unregister(data_handles[x][y]);

}
}

}

43.17 MPI Collective Operations

The functions are described in MPICollectiveOperations.
if (rank == root)
{

/* Allocate the vector */
vector = malloc(nblocks * sizeof(float *));
for(x=0 ; x<nblocks ; x++)
{

starpu_malloc((void **)&vector[x], block_size*sizeof(float));
}

}
/* Allocate data handles and register data to StarPU */
data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
for(x = 0; x < nblocks ; x++)
{

int mpi_rank = my_distrib(x, nodes);
if (rank == root)
{

starpu_vector_data_register(&data_handles[x], STARPU_MAIN_RAM, (uintptr_t)vector[x], blocks_size,
sizeof(float));

}
else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1)))
{

/* I own this index, or i will need it for my computations */
starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL, block_size, sizeof(float));

}
else
{

Generated by Doxygen

284 MPI Support

/* I know it’s useless to allocate anything for this */
data_handles[x] = NULL;

}
if (data_handles[x])
{

starpu_mpi_data_register(data_handles[x], x*nblocks+y, mpi_rank);
}

}
/* Scatter the matrix among the nodes */
starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD, NULL, NULL, NULL, NULL);
/* Calculation */
for(x = 0; x < nblocks ; x++)
{

if (data_handles[x])
{

int owner = starpu_data_get_rank(data_handles[x]);
if (owner == rank)
{

starpu_task_insert(&cl, STARPU_RW, data_handles[x], 0);
}

}
}
/* Gather the matrix on main node */
starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD, NULL, NULL, NULL, NULL);

An example is available in mpi/tests/mpi_scatter_gather.c.
With NewMadeleine (see Using the NewMadeleine communication library), broadcasts can automatically be de-
tected and be optimized by using routing trees. This behavior can be controlled with the environment variable
STARPU_MPI_COOP_SENDS. See the corresponding paper for more information.
Other collective operations would be easy to define, just ask starpu-devel for them!

43.18 Make StarPU-MPI Progression Thread Execute Tasks

The default behavior of StarPU-MPI is to spawn an MPI thread to take care only of MPI communications in an active
fashion (i.e. the StarPU-MPI thread sleeps only when there are no active request submitted by the application),
with the goal of being as reactive as possible to communications. Knowing that, users usually leave one free core
for the MPI thread when starting a distributed execution with StarPU-MPI. However, this could result in a loss of
performance for applications that does not require an extreme reactivity to MPI communications.
The starpu_mpi_init_conf() routine allows users to give the starpu_conf configuration structure of StarPU (usually
given to the starpu_init() routine) to StarPU-MPI, so that StarPU-MPI reserves for its own use one of the CPU drivers
of the current computing node, or one of the CPU cores, and then calls starpu_init() internally.
This allows the MPI communication thread to call a StarPU CPU driver to run tasks when there is no active requests
to take care of, and thus recover the computational power of the "lost" core. Since there is a trade-off between
executing tasks and polling MPI requests, which is how much the application wants to lose in reactivity to MPI
communications to get back the computing power of the core dedicated to the StarPU-MPI thread, there are two
environment variables to pilot the behavior of the MPI thread so that users can tune this trade-off depending on the
behavior of the application.
The STARPU_MPI_DRIVER_CALL_FREQUENCY environment variable sets how many times the MPI progression
thread goes through the MPI_Test() loop on each active communication request (and thus try to make communica-
tions progress by going into the MPI layer) before executing tasks. The default value for this environment variable
is 0, which means that the support for interleaving task execution and communication polling is deactivated, thus
returning the MPI progression thread to its original behavior.
The STARPU_MPI_DRIVER_TASK_FREQUENCY environment variable sets how many tasks are executed by the
MPI communication thread before checking all active requests again. While this environment variable allows a better
use of the core dedicated to StarPU-MPI for computations, it also decreases the reactivity of the MPI communication
thread as much.

43.19 Debugging MPI

Communication trace will be enabled when the environment variable STARPU_MPI_COMM is set to 1, and StarPU
has been configured with the option --enable-verbose.
Statistics will be enabled for the communication cache when the environment variable STARPU_MPI_CACHE_STATS
is set to 1. It prints messages on the standard output when data are added or removed from the received commu-
nication cache.
When the environment variable STARPU_MPI_STATS is set to 1, StarPU will display at the end of the execu-
tion for each node the volume and the bandwidth of data sent to all the other nodes. Communication statistics

Generated by Doxygen

https://hal.inria.fr/hal-02872765

43.19 Debugging MPI 285

can also be enabled and disabled from the application by calling the functions starpu_mpi_comm_stats_enable()
and starpu_mpi_comm_stats_disable(). If communication statistics have been enabled, calling the function
starpu_mpi_comm_stats_retrieve() will give the amount of communications between the calling node and all the
other nodes. Communication statistics will also be automatically displayed at the end of the execution, as exampli-
fied below.

[starpu_comm_stats][3] TOTAL: 476.000000 B 0.000454 MB 0.000098 B/s 0.000000 MB/s
[starpu_comm_stats][3:0] 248.000000 B 0.000237 MB 0.000051 B/s 0.000000 MB/s
[starpu_comm_stats][3:2] 50.000000 B 0.000217 MB 0.000047 B/s 0.000000 MB/s

[starpu_comm_stats][2] TOTAL: 288.000000 B 0.000275 MB 0.000059 B/s 0.000000 MB/s
[starpu_comm_stats][2:1] 70.000000 B 0.000103 MB 0.000022 B/s 0.000000 MB/s
[starpu_comm_stats][2:3] 288.000000 B 0.000172 MB 0.000037 B/s 0.000000 MB/s

[starpu_comm_stats][1] TOTAL: 188.000000 B 0.000179 MB 0.000038 B/s 0.000000 MB/s
[starpu_comm_stats][1:0] 80.000000 B 0.000114 MB 0.000025 B/s 0.000000 MB/s
[starpu_comm_stats][1:2] 188.000000 B 0.000065 MB 0.000014 B/s 0.000000 MB/s

[starpu_comm_stats][0] TOTAL: 376.000000 B 0.000359 MB 0.000077 B/s 0.000000 MB/s
[starpu_comm_stats][0:1] 376.000000 B 0.000141 MB 0.000030 B/s 0.000000 MB/s
[starpu_comm_stats][0:3] 10.000000 B 0.000217 MB 0.000047 B/s 0.000000 MB/s

These statistics can be plotted as heatmaps using the StarPU tool starpu_mpi_comm_matrix.py, this will
produce 2 PDF files, one plot for the bandwidth, and one plot for the data volume.

Figure 43.1 Bandwidth Heatmap

Figure 43.2 Data Volume Heatmap

Generated by Doxygen

286 MPI Support

43.20 More MPI examples

MPI examples are available in the StarPU source code in mpi/examples:

• comm shows how to use communicators with StarPU-MPI

• complex is a simple example using a user-define data interface over MPI (complex numbers),

• stencil5 is a simple stencil example using starpu_mpi_task_insert(),

• matrix_decomposition is a cholesky decomposition example using starpu_mpi_task_insert(). The
non-distributed version can check for <algorithm correctness in 1-node configuration, the distributed version
uses exactly the same source code, to be used over MPI,

• mpi_lu is an LU decomposition example, provided in three versions: plu_example uses explicit MPI data
transfers, plu_implicit_example uses implicit MPI data transfers, plu_outofcore_example
uses implicit MPI data transfers and supports data matrices which do not fit in memory (out-of-core).

43.21 Using the NewMadeleine communication library

NewMadeleine (see https://pm2.gitlabpages.inria.fr/newmadeleine/, part of the PM2
project) is an optimizing communication library for high-performance networks. NewMadeleine provides its own
interface, but also an MPI interface (called MadMPI). Thus, there are two possibilities to use NewMadeleine with
StarPU:

• using the NewMadeleine's native interface. StarPU supports this interface from its release 1.3.0, by enabling
the configure option --enable-nmad. In this case, StarPU relies directly on NewMadeleine to make com-
munications progress and NewMadeleine has to be built with the profile pukabi+madmpi.conf.

• using the NewMadeleine's MPI interface (MadMPI). StarPU will use the standard MPI API and New←↩

Madeleine will handle the calls to the MPI API. In this case, StarPU makes communications progress
and thus communication progress has to be disabled in NewMadeleine by compiling it with the profile
pukabi+madmpi-mini.conf.

To build NewMadeleine, download the latest version from the website (or, better, use the Git version to use the most
recent version), then:
cd pm2/scripts
./pm2-build-packages ./<the profile you chose> --prefix=<installation prefix>

With Guix, the NewMadeleine's native interface can be used by setting the parameter --with-input=openmpi=nmad
and MadMPI can be used with --with-input=openmpi=nmad-mini.
Whatever implementation (NewMadeleine or MadMPI) is used by StarPU, the public MPI interface of StarPU (de-
scribed in MPI Support) is the same.

43.22 MPI Master Slave Support

StarPU provides another way to execute applications across many nodes. The Master Slave support permits to use
remote cores without thinking about data distribution. This support can be activated with the configure option
--enable-mpi-master-slave. However, you should not activate both MPI support and MPI Master-Slave support.
The existing kernels for CPU devices can be used as such. They only have to be exposed through the name of
the function in the starpu_codelet::cpu_funcs_name field. Functions have to be globally-visible (i.e. not static) for
StarPU to be able to look them up, and -rdynamic must be passed to gcc (or -export-dynamic to ld) so
that symbols of the main program are visible.
By default, one core is dedicated on the master node to manage the entire set of slaves. If the implementation of
MPI you are using has a good multiple threads support, you can set the STARPU_MPI_MS_MULTIPLE_THREAD
environment variable to 1 to dedicate one core per slave.
Choosing the number of cores on each slave device is done by setting the environment variable STARPU_NMPIMSTHREADS=<number>
with <number> being the requested number of cores. By default, all the slave's cores are used.
Setting the number of slaves nodes is done by changing the -np parameter when executing the application with
mpirun or mpiexec.
The master node is by default the node with the MPI rank equal to 0. To select another node, use the environment
variable STARPU_MPI_MASTER_NODE=<number> with <number> being the requested MPI rank node.
A simple example tests/main/insert_task.c can be used to test the MPI master slave support.

Generated by Doxygen

https://pm2.gitlabpages.inria.fr/newmadeleine/

43.23 MPI Checkpoint Support 287

43.23 MPI Checkpoint Support

StarPU provides an experimental checkpoint mechanism. It is for now only a proof of concept to see what the
checkpointing cost is, since the restart part has not been integrated yet.
To enable checkpointing, you should use the configure option --enable-mpi-ft. The application in the directory
mpi/examples/matrix_decomposition shows how to enable checkpoints. The API documentation is
available in MPI Fault Tolerance Support
Statistics can also be enabled with the configure option --enable-mpi-ft-stats.

Generated by Doxygen

288 MPI Support

Generated by Doxygen

Chapter 44

TCP/IP Support

44.1 TCP/IP Master Slave Support

StarPU provides a transparent way to execute applications across many nodes. The Master Slave support permits
to use remote cores without thinking about data distribution. This support can be activated with the configure
option --enable-tcpip-master-slave.
The existing kernels for CPU devices can be used as such. They only have to be exposed through the name of
the function in the starpu_codelet::cpu_funcs_name field. Functions have to be globally-visible (i.e. not static) for
StarPU to be able to look them up, and -rdynamic must be passed to gcc (or -export-dynamic to ld) so
that symbols of the main program are visible.
By default, one core is dedicated on the master node to manage the entire set of slaves.
Choosing the number of cores on each slave device is done by setting the environment variable STARPU_NTCPIPMSTHREADS=<number>
with <number> being the requested number of cores. By default, all the slave's cores are used.
The master should be given the number of slaves that are expected to be run with the STARPU_TCPIP_MS_SLAVES
environment variable.
The slaves should then be started, and their number also should be given with the STARPU_TCPIP_MS_SLAVES
environment variable. They should additionally be given the IP address of the master with the STARPU_TCPIP_MS_MASTER
environment variable.
For simple local checks, one can use the starpu_tcpipexec tool, which just starts the application several
times. Setting the number of slaves nodes is done by changing the -np parameter.

Generated by Doxygen

290 TCP/IP Support

Generated by Doxygen

Chapter 45

Transactions

45.1 General Ideas

StarPU's transactions enable the cancellation of a sequence of already submitted tasks based on a just-in-time
decision. The purpose of this mechanism is typically for iterative applications to submit tasks for the next iteration
ahead of time while leaving some iteration loop criterion (e.g. convergence) to be evaluated just before the first
task of the next iteration is about to be scheduled. Such a sequence of collectively cancelable tasks is called a
transaction epoch.

45.2 Usage

Some examples illustrating the usage of StarPU's transactions are available in the directory examples/transactions.

45.2.1 Epoch Cancellation

If the start criterion of an epoch evaluates to False, all the tasks for that next epoch are canceled. Thus, StarPU's
transactions let applications avoid the use of synchronization barriers commonly found between the task submission
sequences of subsequent iterations, and avoid breaking the flow of dependencies in the process. Moreover, while
the kernel functions of canceled transaction tasks are not executed, their dependencies are still honored in the
proper order.

45.2.2 Transactions Enabled Codelets

Codelets for tasks being part of a transaction should set their nbuffers field to STARPU_VARIABLE_NBUFFERS.

45.2.3 Transaction Creation

A struct starpu_transaction opaque object is created using the starpu_transaction_open() function,
specifying a transaction start criterion callback and some user argument to be passed to that callback upon the first
call. The start criterion callback should return True (e.g. !0) if the next transaction epoch should proceed, or
False (e.g. 0) if the tasks belonging to that next epoch should be canceled. starpu_transaction_open()
submits an internal task to mark the beginning of the transaction. If submitting that internal task fails with ENODEV,
starpu_transaction_open() will return NULL.

45.2.4 Transaction Tasks

Tasks governed by the same transaction object should be passed that transaction object either through the .trans-
action field of starpu_task structures, using the STARPU_TRANSACTION argument of starpu_task_insert().

45.2.5 Epoch Transition

The transition from one transaction epoch to the next is expressed using the starpu_transaction_next_epoch func-
tion to which the starpu_transaction object and a user argument are passed. Upon a call to that function,

Generated by Doxygen

292 Transactions

the start criterion callback is evaluated on users argument to decide whether the next epoch should proceed or be
canceled.

45.2.6 Transaction Closing

The last epoch should be ended through a call to starpu_transaction_close().

45.3 Known limitations

Support for transactions is experimental.
StarPU's transactions are currently not compatible with StarPU-MPI distributed sessions.

Generated by Doxygen

Chapter 46

Fault Tolerance

46.1 Introduction

Due to e.g. hardware error, some tasks may fail, or even complete nodes may fail. For now, StarPU provides some
support for failure of tasks.

46.2 Retrying tasks

In case a task implementation notices that it fail to compute properly, it can call starpu_task_failed() to notify StarPU
of the failure.
tests/fault-tolerance/retry.c is an example of coping with such failure: the principle is that when
submitting the task, one sets its prologue callback to starpu_task_ft_prologue(). That prologue will turn the task into
a meta task, which will manage the repeated submission of try-tasks to perform the computation until one of the
computations succeeds. One can create a try-task for the meta task by using starpu_task_ft_create_retry().
By default, try-tasks will be just retried until one of them succeeds (i.e. the task implementation does
not call starpu_task_failed()). One can change the behavior by passing a check_failsafe func-
tion as prologue parameter, which will be called at the end of the try-task attempt. It can look at
starpu_task_get_current()->failed to determine whether the try-task succeeded, in which case
it can call starpu_task_ft_success() on the meta-task to notify success, or if it failed, in which case it can call
starpu_task_failsafe_create_retry() to create another try-task, and submit it with starpu_task_submit_nodeps().
This can however only work if the task input is not modified, and is thus not supported for tasks with data access
mode STARPU_RW.

Generated by Doxygen

294 Fault Tolerance

Generated by Doxygen

Chapter 47

FFT Support

StarPU provides libstarpufft, a library whose design is very similar to both fftw and cufft, the difference
being that it takes benefit from both CPUs and GPUs. It should however be noted that GPUs do not have the same
precision as CPUs, so the results may be different by a negligible amount.
Different precisions are available, namely float, double and long double precisions, with the following
fftw naming conventions:

• double precision structures and functions are named e.g. starpufft_execute()

• float precision structures and functions are named e.g. starpufftf_execute()

• long double precision structures and functions are named e.g. starpufftl_execute()

The documentation below is given with names for double precision, replace starpufft_ with starpufftf_
or starpufftl_ as appropriate.
Only complex numbers are supported at the moment.
The application has to call starpu_init() before calling starpufft functions.
Either main memory pointers or data handles can be provided.

• To provide main memory pointers, use starpufft_start() or starpufft_execute(). Only one FFT can be per-
formed at a time, because StarPU will have to register the data on the fly. In the starpufft_start() case,
starpufft_cleanup() needs to be called to unregister the data.

• To provide data handles (which is preferable), use starpufft_start_handle() (preferred) or starpufft_execute_handle().
Several FFTs tasks can be submitted for a given plan, which permits e.g. to start a series of FFT with just one
plan. starpufft_start_handle() is preferable since it does not wait for the task completion, and thus permits to
enqueue a series of tasks.

All functions are defined in FFT Support.
Some examples illustrating the usage of FFT API are available in the directory starpufft/tests.

47.1 Compilation

The flags required to compile or link against the FFT library are accessible with the following commands:

$ pkg-config --cflags starpufft-1.4 # options for the compiler
$ pkg-config --libs starpufft-1.4 # options for the linker

Also pass the option -static if the application is to be linked statically.

Generated by Doxygen

296 FFT Support

Generated by Doxygen

Chapter 48

SOCL OpenCL Extensions

SOCL is an OpenCL implementation based on StarPU. It gives unified access to every available OpenCL device←↩

: applications can now share entities such as Events, Contexts or Command Queues between several OpenCL
implementations.
In addition, command queues that are created without specifying a device provide automatic scheduling of the
submitted commands on OpenCL devices contained in the context to which the command queue is attached.
Setting the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE flag on a command queue also allows StarPU
to reorder kernels queued on the queue, otherwise they would be serialized, and several command queues would
be necessary to see kernels dispatched to the various OpenCL devices.
Note: this is still an area under development and subject to change.
When compiling StarPU, SOCL will be enabled if a valid OpenCL implementation is found on your system. To be
able to run the SOCL test suite, the environment variable SOCL_OCL_LIB_OPENCL needs to be defined to the
location of the file libOpenCL.so of the OCL ICD implementation. You should for example add the following line
in your file .bashrc

export SOCL_OCL_LIB_OPENCL=/usr/lib/x86_64-linux-gnu/libOpenCL.so

You can then run the test suite in the directory socl/examples.

$ make check
...
PASS: basic/basic
PASS: testmap/testmap
PASS: clinfo/clinfo
PASS: matmul/matmul
PASS: mansched/mansched
==================
All 5 tests passed
==================

The environment variable OCL_ICD_VENDORS has to point to the directory where the socl.icd ICD file is installed.
When compiling StarPU, the files are in the directory socl/vendors. With an installed version of StarPU, the
files are installed in the directory $prefix/share/starpu/opencl/vendors.
To run the tests by hand, you have to call, for example,

$ LD_PRELOAD=$SOCL_OCL_LIB_OPENCL OCL_ICD_VENDORS=socl/vendors/ socl/examples/clinfo/clinfo
Number of platforms: 2

Platform Profile: FULL_PROFILE
Platform Version: OpenCL 1.1 CUDA 4.2.1
Platform Name: NVIDIA CUDA
Platform Vendor: NVIDIA Corporation
Platform Extensions: cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll

Platform Profile: FULL_PROFILE
Platform Version: OpenCL 1.0 SOCL Edition (0.1.0)
Platform Name: SOCL Platform
Platform Vendor: Inria
Platform Extensions: cl_khr_icd

....
$

To enable the use of CPU cores via OpenCL, one can set the STARPU_OPENCL_ON_CPUS environment variable
to 1 and STARPU_NCPUS to 0 (to avoid using CPUs both via the OpenCL driver and the normal CPU driver).

Generated by Doxygen

298 SOCL OpenCL Extensions

Generated by Doxygen

Chapter 49

Hierarchical DAGS

The STF model has the intrinsic limitation of supporting static task graphs only, which leads to potential submission
overhead and to a static task graph which is not necessarily adapted for execution on heterogeneous systems.
To address these problems, we have extended the STF model to enable tasks subgraphs at runtime. We refer to
these tasks as hierarchical tasks. This approach allows for a more dynamic task graph. This allows to dynamically
adapt the granularity to meet the optimal size of the targeted computing resource.
Hierarchical tasks are tasks that can transform themselves into a new task-graph dynamically at runtime. Pro-
grammers submit a coarse version of the DAG, called the bubbles graph, which represents the general shape of
the application tasks graph. The execution of this bubble graph will generate and submit the computing tasks of
the application. It is up to application programmers to decide how to build the bubble graph (i.e. how to structure
the computation tasks graph to create some groups of tasks). Dependencies between bubbles are automatically
deduced from dependencies between their computing tasks.

49.1 An Example

In order to understand the hierarchical tasks model, an example of "bubblification" is showed here. We start from a
simple example, multiplying the elements of a vector.

49.1.1 Initial Version

A computation is done several times on a vector split in smaller vectors. For each step and each sub-vector, a task
is generated to perform the computation.
void func_cpu(void *descr[], void *_args)
{

(void) _args;
int x;
int nx = STARPU_VECTOR_GET_NX(descr[0]);
TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
for(x=0 ; x<nx ; x++)

v[x] += 1;
}
struct starpu_codelet vector_cl =
{

.cpu_funcs = {func_cpu},

.nbuffers = 1,

.modes = {STARPU_RW}
};
int vector_no_bubble()
{

TYPE *vector;
starpu_data_handle_t vhandle;
/* ... */
starpu_vector_data_register(&vhandle, 0, (uintptr_t)vector, X, sizeof(vector[0]));
starpu_data_map_filters(vhandle, 1, &f);
for(loop=0 ; loop<NITER; loop++)

for (x = 0; x < SLICES; x++)
{

starpu_task_insert(&vector_cl,
STARPU_RW, starpu_data_get_sub_data(vhandle, 1, x),
0);

}
starpu_data_unpartition(vhandle, STARPU_MAIN_RAM);
starpu_data_unregister(vhandle);
/* ... */

}

Generated by Doxygen

300 Hierarchical DAGS

49.1.2 Bubble Version

The bubble version of the code replaces the inner loop that realizes the tasks insertion by a call to a bubble creation.
At its execution, the bubble will insert the computing tasks. The bubble graph is built accordingly to the dependencies
of the subdata.
void no_func(void *buffers[], void *arg)
{

assert(0);
return;

}
int is_bubble(struct starpu_task *t, void *arg)
{

(void)arg;
(void)t;
return 1;

}
void bubble_gen_dag(struct starpu_task *t, void *arg)
{

int i;
starpu_data_handle_t *subdata = (starpu_data_handle_t *)arg;
for(i=0 ; i<SLICES ; i++)
{

starpu_task_insert(&vector_cl,
STARPU_RW, subdata[i],
0);

STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
}

}
struct starpu_codelet bubble_codelet =
{

.cpu_funcs = {no_func},

.bubble_func = is_bubble,

.bubble_gen_dag_func = bubble_gen_dag,

.nbuffers = 1
};
int vector_bubble()
{

TYPE *vector;
starpu_data_handle_t vhandle;
starpu_data_handle_t sub_handles[SLICES];
/* ... */
starpu_vector_data_register(&vhandle, 0, (uintptr_t)vector, X, sizeof(vector[0]));
starpu_data_partition_plan(vhandle, &f, sub_handles);
for(loop=0 ; loop<NITER; loop++)
{

starpu_task_insert(&bubble_codelet,
STARPU_RW, vhandle,
STARPU_NAME, "B1",
STARPU_BUBBLE_GEN_DAG_FUNC_ARG, sub_handles,
0);

}
starpu_data_partition_clean(vhandle, SLICES, sub_handles);
starpu_data_unregister(vhandle);
/* ... */

}

The full example is available in the file bubble/tests/vector/vector.c.
To define a hierarchical task, one needs to define the fields starpu_codelet::bubble_func and starpu_codelet::bubble_gen_dag_func.
The field starpu_codelet::bubble_func is a pointer function which will be executed by StarPU to decide at run-
time if the task must be transformed into a bubble. If the function returns a non-zero value, the function
starpu_codelet::bubble_gen_dag_func will be executed to create the new graph of tasks.
The pointer functions can also be defined when calling starpu_task_insert() by using the arguments
STARPU_BUBBLE_FUNC and STARPU_BUBBLE_GEN_DAG_FUNC. Both these functions can be passed param-
eters through the arguments STARPU_BUBBLE_FUNC_ARG and STARPU_BUBBLE_GEN_DAG_FUNC_ARG
When executed, the function starpu_codelet::bubble_func will be given as parameter the task being checked, and
the value specified with STARPU_BUBBLE_FUNC_ARG.
When executed, the function starpu_codelet::bubble_gen_dag_func will be given as parameter the task being turned
into a hierarchical task and the value specified with STARPU_BUBBLE_GEN_DAG_FUNC_ARG.
An example involving these functions is in bubble/tests/basic/brec.c. And more examples are available
in bubble/tests/basic/∗.c.

Generated by Doxygen

Chapter 50

Parallel Workers

50.1 General Ideas

Parallel workers are a concept introduced in this paper where they are called clusters.
The granularity problem is tackled by using resource aggregation: instead of dynamically splitting tasks, resources
are aggregated to process coarse grain tasks in a parallel fashion. This is built on top of scheduling contexts to be
able to handle any type of parallel tasks.
This comes from a basic idea, making use of two levels of parallelism in a DAG. We keep the DAG parallelism,
but consider on top of it that a task can contain internal parallelism. A good example is if each task in the DAG is
OpenMP enabled.
The particularity of such tasks is that we will combine the power of two runtime systems: StarPU will manage
the DAG parallelism and another runtime (e.g. OpenMP) will manage the internal parallelism. The challenge is in
creating an interface between the two runtime systems so that StarPU can regroup cores inside a machine (creating
what we call a parallel worker) on top of which the parallel tasks (e.g. OpenMP tasks) will be run in a contained
fashion.
The aim of the parallel worker API is to facilitate this process automatically. For this purpose, we depend on the
hwloc tool to detect the machine configuration and then partition it into usable parallel workers.
An example of code running on parallel workers is available in examples/sched_ctx/parallel_←↩

workers.c.
Let's first look at how to create a parallel worker.
To enable parallel workers in StarPU, one needs to set the configure option --enable-parallel-worker.

50.2 Workers Creating Parallel Workers

Partitioning a machine into parallel workers with the parallel worker API is fairly straightforward. The simplest way is
to state under which machine topology level we wish to regroup all resources. This level is a hwloc object, of the
type hwloc_obj_type_t. More information can be found in the hwloc documentation.
Once a parallel worker is created, the full machine is represented with an opaque structure starpu_parallel_worker←↩

_config. This can be printed to show the current machine state.
struct starpu_parallel_worker_config *parallel_workers;
parallel_workers = starpu_parallel_worker_init(HWLOC_OBJ_SOCKET, 0);
starpu_parallel_worker_print(parallel_workers);
/* submit some tasks with OpenMP computations */
starpu_parallel_worker_shutdown(parallel_workers);
/* we are back to the default StarPU state */

The following graphic is an example of what a particular machine can look like once parallel workers are created.
The main difference is that we have less worker queues and tasks which will be executed on several resources at
once. The execution of these tasks will be left to the internal runtime system, represented with a dashed box around
the resources.

Generated by Doxygen

https://hal.inria.fr/view/index/docid/1181135
https://www.open-mpi.org/projects/hwloc/doc/v2.0.3/

302 Parallel Workers

Figure 50.1 StarPU using parallel tasks

Creating parallel workers as shown in the example above will create workers able to execute OpenMP code by de-
fault. The parallel worker creation function starpu_parallel_worker_init() takes optional parameters after the hwloc
object (always terminated by the value 0) which allow parametrizing the parallel workers creation. These parame-
ters can help to create parallel workers of a type different from OpenMP, or create a more precise partition of the
machine.
This is explained in Section Creating Custom Parallel Workers.
Before starpu_shutdown(), we call starpu_parallel_worker_shutdown() to delete the parallel worker configuration.

50.3 Example Of Constraining OpenMP

Parallel workers require being able to constrain the runtime managing the internal task parallelism (internal runtime)
to the resources set by StarPU. The purpose of this is to express how StarPU must communicate with the internal
runtime to achieve the required cooperation. In the case of OpenMP, StarPU will provide an awake thread from
the parallel worker to execute this liaison. It will then provide on demand the process ids of the other resources
supposed to be in the region. Finally, thanks to an OpenMP region, we can create the required number of threads
and bind each of them on the correct region. These will then be reused each time we encounter a #pragma omp
parallel in the following computations of our program.
The following graphic is an example of what an OpenMP-type parallel worker looks like and how it is represented
in StarPU. We can see that one StarPU (black) thread is awake, and we need to create on the other resources the
OpenMP threads (in pink).

Figure 50.2 StarPU with an OpenMP parallel worker

Finally, the following code shows how to force OpenMP to cooperate with StarPU and create the aforementioned
OpenMP threads constrained in the parallel worker's resources set:
void starpu_parallel_worker_openmp_prologue(void * sched_ctx_id)
{

int sched_ctx = *(int*)sched_ctx_id;
int *cpuids = NULL;
int ncpuids = 0;
int workerid = starpu_worker_get_id();

Generated by Doxygen

50.4 Creating Custom Parallel Workers 303

//we can target only CPU workers
if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
{
//grab all the ids inside the parallel worker
starpu_sched_ctx_get_available_cpuids(sched_ctx, &cpuids, &ncpuids);
//set the number of threads
omp_set_num_threads(ncpuids);

#pragma omp parallel
{

//bind each threads to its respective resource
starpu_sched_ctx_bind_current_thread_to_cpuid(cpuids[omp_get_thread_num()]);

}
free(cpuids);

}
return;

}

This function is the default function used when calling starpu_parallel_worker_init() without extra parameter.
Parallel workers are based on several tools and models already available within StarPU contexts, and merely extend
contexts. More on contexts can be read in Section Scheduling Contexts.
A similar example is available in the file examples/sched_ctx/parallel_code.c.

50.4 Creating Custom Parallel Workers

Parallel workers can be created either with the predefined types provided within StarPU, or with user-defined func-
tions to bind another runtime inside StarPU.
The predefined parallel worker types provided by StarPU are STARPU_PARALLEL_WORKER_OPENMP,
STARPU_PARALLEL_WORKER_INTEL_OPENMP_MKL and STARPU_PARALLEL_WORKER_GNU_OPENMP_MKL.
If StarPU is compiled with the MKL library, STARPU_PARALLEL_WORKER_GNU_OPENMP_MKL uses MKL func-
tions to set the number of threads, which is more reliable when using an OpenMP implementation different from the
Intel one. Otherwise, it will behave as STARPU_PARALLEL_WORKER_INTEL_OPENMP_MKL.
The parallel worker type is set when calling the function starpu_parallel_worker_init() with the parameter
STARPU_PARALLEL_WORKER_TYPE as in the example below, which is creating a MKL parallel worker.
struct starpu_parallel_worker_config *parallel_workers;
parallel_workers = starpu_parallel_worker_init(HWLOC_OBJ_SOCKET,

STARPU_PARALLEL_WORKER_TYPE, STARPU_PARALLEL_WORKER_GNU_OPENMP_MKL,
0);

Using the default type STARPU_PARALLEL_WORKER_OPENMP is similar to calling starpu_parallel_worker_init()
without any extra parameter.
An example is available in examples/parallel_workers/parallel_workers.c.
Users can also define their own function.
void foo_func(void* foo_arg);
int foo_arg = 0;
struct starpu_parallel_worker_config *parallel_workers;
parallel_workers = starpu_parallel_worker_init(HWLOC_OBJ_SOCKET,

STARPU_PARALLEL_WORKER_CREATE_FUNC, &foo_func,
STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG, &foo_arg,
0);

An example is available in examples/parallel_workers/parallel_workers_func.c.
Parameters that can be given to starpu_parallel_worker_init() are STARPU_PARALLEL_WORKER_MIN_NB,
STARPU_PARALLEL_WORKER_MAX_NB, STARPU_PARALLEL_WORKER_NB, STARPU_PARALLEL_WORKER_POLICY_NAME,
STARPU_PARALLEL_WORKER_POLICY_STRUCT, STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS,
STARPU_PARALLEL_WORKER_PREFERE_MIN, STARPU_PARALLEL_WORKER_CREATE_FUNC, STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG,
STARPU_PARALLEL_WORKER_TYPE, STARPU_PARALLEL_WORKER_AWAKE_WORKERS, STARPU_PARALLEL_WORKER_PARTITION_ONE,
STARPU_PARALLEL_WORKER_NEW and STARPU_PARALLEL_WORKER_NCORES.

50.5 Parallel Workers With Scheduling

As previously mentioned, the parallel worker API is implemented on top of Scheduling Contexts. Its main addition is
to ease the creation of a machine CPU partition with no overlapping by using hwloc, whereas scheduling contexts
can use any number of any type of resources.
It is therefore possible, but not recommended, to create parallel workers using the scheduling contexts API. This
can be useful mostly in the most complex machine configurations, where users have to dimension precisely parallel
workers by hand using their own algorithm.
/* the list of resources the context will manage */
int workerids[3] = {1, 3, 10};
/* indicate the list of workers assigned to it, the number of workers,
the name of the context and the scheduling policy to be used within

Generated by Doxygen

304 Parallel Workers

the context */
int id_ctx = starpu_sched_ctx_create(workerids, 3, "my_ctx", 0);
/* let StarPU know that the following tasks will be submitted to this context */
starpu_sched_ctx_set_task_context(id);
task->prologue_callback_pop_func=&runtime_interface_function_here;
/* submit the task to StarPU */
starpu_task_submit(task);

As this example illustrates, creating a context without scheduling policy will create a parallel worker. The interface
function between StarPU and the other runtime must be specified through the field starpu_task::prologue_callback_pop_func.
Such a function can be similar to the OpenMP thread team creation one (see above). An example is available in
examples/sched_ctx/parallel_tasks_reuse_handle.c.
Note that the OpenMP mode is the default mode both for parallel workers and contexts. The result of a parallel
worker creation is a woken-up master worker and sleeping "slaves" which allow the master to run tasks on their
resources.
To create a parallel worker with woken-up workers, the flag STARPU_SCHED_CTX_AWAKE_WORKERS
must be set when using the scheduling context API function starpu_sched_ctx_create(), or the flag
STARPU_PARALLEL_WORKER_AWAKE_WORKERS must be set when using the parallel worker API function
starpu_parallel worker_init().

Generated by Doxygen

Chapter 51

Interoperability Support

In situations where multiple parallel software elements have to coexist within the same application, uncoordinated
accesses to computing units may lead such parallel software elements to collide and interfere. The purpose of
the Interoperability routines of StarPU, implemented along the definition of the Resource Management APIs of
Project H2020 INTERTWinE, is to enable StarPU to coexist with other parallel software elements without resulting in
computing core oversubscription or undersubscription. These routines allow the programmer to dynamically control
the computing resources allocated to StarPU, to add or remove processor cores and/or accelerator devices from
the pool of resources used by StarPU's workers to execute tasks. They also allow multiple libraries and applicative
codes using StarPU simultaneously to select distinct sets of resources independently. Internally, the Interoperability
Support is built on top of Scheduling Contexts (see Scheduling Contexts).

51.1 StarPU Resource Management

The starpurm module is a library built on top of the starpu library. It exposes a series of routines prefixed with
starpurm_ defining the resource management API.
All functions are defined in Interoperability Support.

51.1.1 Linking a program with the starpurm module

The starpurm module must be linked explicitly with the applicative executable using it. Example Makefiles in the
starpurm/dev/ subdirectories show how to do so. If the pkg-config command is available and the PKG_←↩

CONFIG_PATH environment variable is properly positioned, the proper settings may be obtained with the following
Makefile snippet:
CFLAGS += $(shell pkg-config --cflags starpurm-1.4)
LDFLAGS+= $(shell pkg-config --libs-only-L starpurm-1.4)
LDLIBS += $(shell pkg-config --libs-only-l starpurm-1.4)

51.1.2 Initialization and Shutdown

The starpurm module is initialized with a call to starpurm_initialize() and must be finalized with a call
to starpurm_shutdown(). The basic example is available in starpurm/tests/01_init_exit.c. The
starpurm module supports CPU cores as well as devices. An integer ID is assigned to each supported de-
vice type. The ID assigned to a given device type can be queried with the starpurm_get_device_type_id() routine,
which currently expects one of the following strings as argument and returns the corresponding ID:

• "cpu"

• "opencl"

• "cuda"

The cpu pseudo device type is defined for convenience and designates CPU cores. The number of units of each
type available for computation can be obtained with a call to starpurm_get_nb_devices_by_type().
Each CPU core unit available for computation is designated by its rank among the StarPU CPU worker threads
and by its own CPUSET bit. Each non-CPU device unit can be designated both by its rank number in the type,
and by the CPUSET bit corresponding to its StarPU device worker thread. The CPUSET of a computing unit or

Generated by Doxygen

306 Interoperability Support

its associated worker can be obtained from its type ID and rank with starpurm_get_device_worker_cpuset(), which
returns the corresponding HWLOC CPUSET.
An example is available in starpurm/tests/02_list_units.c.

51.1.3 Default Context

The starpurm module assumes a default, global context, manipulated through a series of routines allowing
to assign and withdraw computing units from the main StarPU context. Assigning CPU cores can be done with
starpurm_assign_cpu_to_starpu() and starpurm_assign_cpu_mask_to_starpu(), and assigning device units can be
done with starpurm_assign_device_to_starpu() and starpurm_assign_device_mask_to_starpu(). Conversely, with-
drawing CPU cores can be done with starpurm_withdraw_cpu_from_starpu() and starpurm_withdraw_cpu_mask_from_starpu(),
and withdrawing device units can be done with starpurm_withdraw_device_from_starpu() and starpurm_withdraw_device_mask_from_starpu().
These routine should typically be used to control resource usage for the main applicative code. An example is
available in starpurm/examples/block_test/block_test.c.

51.1.4 Temporary Contexts

Besides the default, global context, starpurm can create temporary contexts and launch the computation of
kernels confined to these temporary contexts. The routine starpurm_spawn_kernel_on_cpus() can be used to do
so: it allocates a temporary context and spawns a kernel within this context. The temporary context is subse-
quently freed upon completion of the kernel. The temporary context is set as the default context for the kernel
throughout its lifespan. This routine should typically be used to control resource usage for a parallel kernel, han-
dled by an external library built on StarPU. Internally, it relies on the use of starpu_sched_ctx_set_context() to set
the temporary context as the default context for the parallel kernel, and then restore the main context upon com-
pletion. Note: the maximum number of temporary contexts allocated concurrently at any time should not exceed
STARPU_NMAX_SCHED_CTXS-2, otherwise, the call to starpurm_spawn_kernel_on_cpus() may block until a tem-
porary context becomes available. The routine starpurm_spawn_kernel_on_cpus() returns upon the completion of
the parallel kernel. An example is available in starpurm/examples/spawn.c. An asynchronous variant is
available with the routine starpurm_spawn_kernel_on_cpus_callback(). This variant returns immediately, however
it accepts a callback function, which is subsequently called to notify the calling code about the completion of the
parallel kernel. An example is available in starpurm/examples/async_spawn.c.

Generated by Doxygen

Chapter 52

SimGrid Support

StarPU can use SimGrid in order to simulate execution on an arbitrary platform.
The principle is to first run the application natively on the platform that one wants to laterlater simulate, and let
StarPU record performance models. One then recompiles StarPU and the application in simgrid mode, where
everything is executed the same, except the execution of the codelet function, and the data transfers, which are
replaced by virtual sleeps based on the performance models. This thus allows to use the performance model for
tasks and data transfers, while executing natively all the rest (the task scheduler and the application, notably).
This was tested with SimGrid from 3.11 to 3.16, and 3.18 to 3.35. SimGrid version 3.25 needs to be configured
with -Denable_msg=ON . Other versions may have compatibility issues. 3.17 notably does not build at all. MPI
simulation does not work with version 3.22.
If you have installed SimGrid by hand, make sure to set PKG_CONFIG_PATH to the path where simgrid.pc
was installed:

$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/where/simgrid/installed/lib/ppkgconfig/simgrid.pc

52.1 Preparing Your Application For Simulation

There are a few technical details which need to be handled for an application to be simulated through SimGrid.
If the application uses gettimeofday() to make its performance measurements, the real time will be used,
which will be bogus. To get the simulated time, it has to use starpu_timing_now() which returns the virtual timestamp
in us. A basic example is available in tests/main/empty_task.c.
For some technical reason, the application's .c file which contains main() has to be recompiled with
starpu_simgrid_wrap.h, which in the SimGrid case will # define main() into starpu_main(),
and it is libstarpu which will provide the real main() and will call the application's main(). Includ-
ing starpu.h will already include starpu_simgrid_wrap.h, so usually you would not need to include
starpu_simgrid_wrap.h explicitly, but if for some reason including the whole starpu.h header is not
possible, you can include starpu_simgrid_wrap.h explicitly.
To be able to test with crazy data sizes, one may want to only allocate application data if the macro STARPU_←↩

SIMGRID is not defined. Passing a NULL pointer to starpu_data_register functions is fine, data will never
be read/written to by StarPU in SimGrid mode anyway.
To be able to run the application with e.g. CUDA simulation on a system which does not have CUDA installed,
one can fill the starpu_codelet::cuda_funcs with (void∗)1, to express that there is a CUDA implementation, even
if one does not actually provide it. StarPU will not actually run it in SimGrid mode anyway by default (un-
less the STARPU_CODELET_SIMGRID_EXECUTE or STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT
flags are set in the codelet)
static struct starpu_codelet cl_potrf =
{

.cpu_funcs = {chol_cpu_codelet_update_potrf},

.cpu_funcs_name = {"chol_cpu_codelet_update_potrf"},
#ifdef STARPU_USE_CUDA

.cuda_funcs = {chol_cublas_codelet_update_potrf},
#elif defined(STARPU_SIMGRID)

.cuda_funcs = {(void*)1},
#endif

.nbuffers = 1,

.modes = {STARPU_RW},

.model = &chol_model_potrf
};

The full example is available in examples/cholesky/cholesky_kernels.c.

Generated by Doxygen

308 SimGrid Support

52.2 Calibration

The idea is to first compile StarPU normally, and run the application, to automatically benchmark the bus and the
codelets.

$./configure && make
$ STARPU_SCHED=dmda ./examples/matvecmult/matvecmult
[starpu][_starpu_load_history_based_model] Warning: model matvecmult

is not calibrated, forcing calibration for this run. Use the
STARPU_CALIBRATE environment variable to control this.

$...
$ STARPU_SCHED=dmda ./examples/matvecmult/matvecmult
TEST PASSED

Note that we force to use the scheduler dmda to generate performance models for the application. The application
may need to be run several times before the model is calibrated.

52.3 Simulation

Then, recompile StarPU, passing --enable-simgrid to configure. Make sure to keep all the other configure
options the same, and notably options such as -enable-maxcudadev.

$./configure --enable-simgrid

To specify the location of SimGrid, you can either set the environment variables SIMGRID_CFLAGS
and SIMGRID_LIBS, or use the configure options --with-simgrid-dir, --with-simgrid-include-dir and
--with-simgrid-lib-dir, for example

$./configure --with-simgrid-dir=/opt/local/simgrid

You can then re-run the application.

$ make
$ STARPU_SCHED=dmda ./examples/matvecmult/matvecmult
TEST FAILED !!!

It is normal that the test fails: since the computation is not actually done (that is the whole point of SimGrid), the
result is wrong, of course.
If the performance model is not calibrated enough, the following error message will be displayed

$ STARPU_SCHED=dmda ./examples/matvecmult/matvecmult
[starpu][_starpu_load_history_based_model] Warning: model matvecmult

is not calibrated, forcing calibration for this run. Use the
STARPU_CALIBRATE environment variable to control this.

[starpu][_starpu_simgrid_execute_job][assert failure] Codelet
matvecmult does not have a perfmodel, or is not calibrated enough

The number of devices can be chosen as usual with STARPU_NCPU, STARPU_NCUDA, and STARPU_NOPENCL,
and the amount of GPU memory with STARPU_LIMIT_CUDA_MEM, STARPU_LIMIT_CUDA_devid_MEM,
STARPU_LIMIT_OPENCL_MEM, and STARPU_LIMIT_OPENCL_devid_MEM.

52.4 Simulation On Another Machine

The SimGrid support even permits to perform simulations on another machine, your desktop, typically. To achieve
this, one still needs to perform the Calibration step on the actual machine to be simulated, then copy them to your
desktop machine (the $STARPU_HOME/.starpu directory). One can then perform the Simulation step on the
desktop machine, by setting the environment variable STARPU_HOSTNAME to the name of the actual machine, to
make StarPU use the performance models of the simulated machine even on the desktop machine. To use multiple
performance models in different ranks, in case of smpi executions in a heterogeneous platform, it is possible to use
the option -hostfile-platform in starpu_smpirun, that will define STARPU_MPI_HOSTNAMES with
the hostnames of your hostfile.
If the desktop machine does not have CUDA or OpenCL, StarPU is still able to use SimGrid to simulate execution
with CUDA/OpenCL devices, but the application source code will probably disable the CUDA and OpenCL codelets
in that case. Since during SimGrid execution, the functions of the codelet are actually not called by default, one can
use dummy functions such as the following to still permit CUDA or OpenCL execution.

Generated by Doxygen

52.5 Simulation Examples 309

52.5 Simulation Examples

StarPU ships a few performance models for a couple of systems: attila, mirage, idgraf, and sirocco.
See Section Simulated Benchmarks for the details.

52.6 Simulations On Fake Machines

It is possible to build fake machines which do not exist, by modifying the platform file in $STARPU_←↩

HOME/.starpu/sampling/bus/machine.platform.xml by hand: one can add more CPUs, add
GPUs (but the performance model file has to be extended as well), change the available GPU memory size, PCI
memory bandwidth, etc.

52.7 Tweaking Simulation

The simulation can be tweaked, to be able to tune it between a very accurate simulation and a very sim-
ple simulation (which is thus close to scheduling theory results), see the STARPU_SIMGRID_TRANSFER_COST,
STARPU_SIMGRID_CUDA_MALLOC_COST, STARPU_SIMGRID_CUDA_QUEUE_COST, STARPU_SIMGRID_TASK_SUBMIT_COST,
STARPU_SIMGRID_TASK_PUSH_COST, STARPU_SIMGRID_FETCHING_INPUT_COST and STARPU_SIMGRID_SCHED_COST
environment variables.

52.8 MPI Applications

StarPU-MPI applications can also be run in SimGrid mode. smpi currently requires that StarPU be build statically
only, so -disable-shared needs to be passed to ./configure.
The application needs to be compiled with smpicc, and run using the starpu_smpirun script, for instance:

$ STARPU_SCHED=dmda starpu_smpirun -platform cluster.xml -hostfile hostfile ./mpi/tests/pingpong

Where cluster.xml is a SimGrid-MPI platform description, and hostfile the list of MPI nodes to be used.
Examples of such files are available in tools/perfmodels. In homogeneous MPI clusters: for each MPI node,
it will just replicate the architecture referred by STARPU_HOSTNAME. To use multiple performance models in
different ranks, in case of a heterogeneous platform, it is possible to use the option -hostfile-platform in
starpu_smpirun, that will define STARPU_MPI_HOSTNAMES with the hostnames of your hostfile.
To use FxT traces, libfxt itself also needs to be built statically, and with dynamic linking flags, i.e. with

CFLAGS=-fPIC ./configure --enable-static

52.9 Debugging Applications

By default, SimGrid uses its own implementation of threads, which prevents gdb from being able to in-
spect stacks of all threads. To be able to fully debug an application running with SimGrid, pass the
-cfg=contexts/factory:thread option to the application, to make SimGrid use system threads, which
gdb will be able to manipulate as usual.
It is also worth noting SimGrid 3.21's new parameter -cfg=simix/breakpoint which allows putting a break-
point at a precise (deterministic!) timing of the execution. If for instance in an execution trace we see that something
odd is happening at time 19000ms, we can use -cfg=simix/breakpoint:19.000 and SIGTRAP will be
raised at that point, which will thus interrupt execution within gdb, allowing to inspect e.g. scheduler state, etc.

52.10 Memory Usage

Since kernels are not actually run and data transfers are not actually performed, the data memory does not actually
need to be allocated. This allows for instance to simulate the execution of applications processing very big data on
a small laptop.
The application can for instance pass 1 (or whatever bogus pointer) to StarPU data registration functions, instead
of allocating data. This will however require the application to take care of not trying to access the data, and will not
work in MPI mode, which performs transfers.

Generated by Doxygen

310 SimGrid Support

Another way is to pass the STARPU_MALLOC_SIMULATION_FOLDED flag to the starpu_malloc_flags() function.
An example is available in examples/mult/xgemm.c This will make it allocate a memory area which one can
read/write, but optimized so that this does not actually consume memory. Of course, the values read from such area
will be bogus, but this allows the application to keep e.g. data load, store, initialization as it is, and also work in MPI
mode. A more aggressive alternative is to pass also the STARPU_MALLOC_SIMULATION_UNIQUE flag (alongside
with STARPU_MALLOC_SIMULATION_FOLDED) to the starpu_malloc_flags() function. An example is available in
examples/cholesky/cholesky_tag.c . This will make StarPU reuse the pointers for allocations of the
same size without calling the folded allocation again, thus decreasing some pressure on memory management.
Note however that notably Linux kernels refuse obvious memory overcommitting by default, so a single allocation
can typically not be bigger than the amount of physical memory, see https://www.kernel.org/doc/←↩

Documentation/vm/overcommit-accounting This prevents for instance from allocating a single huge
matrix. Allocating a huge matrix in several tiles is not a problem, however. sysctl vm.overcommit_←↩

memory=1 can also be used to allow such overcommit.
Note however that this folding is done by remapping the same file several times, and Linux kernels will also refuse
to create too many memory areas. sysctl vm.max_map_count can be used to check and change the default
(65535). By default, StarPU uses a 1MiB file, so it hopefully fits in the CPU cache. However, this limits the amount
of such folded memory to a bit below 64GiB. The STARPU_MALLOC_SIMULATION_FOLD environment variable
can be used to increase the size of the file.

Generated by Doxygen

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Chapter 53

Helpers

StarPU provides several utilities functions to help programmers:

• starpu_conf_noworker() sets configuration fields so that no worker is enabled, i.e. it sets starpu_conf::ncpus
to 0, starpu_conf::ncuda to 0, etc.

• starpu_is_initialized() returns a value indicating whether StarPU is already initialized, starpu_wait_initialized()
only returns when the initialization is finished.

• starpu_topology_print() prints the current topology of the system, and is therefore useful for debugging pur-
poses or for understanding the underlying architecture of the system.

• starpu_get_version() returns the version of StarPU used when running the application.

• starpu_sleep() and starpu_usleep() allow the application to pause the execution of the current thread for
a specified amount of time. starpu_sleep() pauses the thread for a specified number of seconds and
starpu_usleep() for a specified number of microseconds.

Generated by Doxygen

312 Helpers

Generated by Doxygen

Chapter 54

Debugging Tools

StarPU provides several tools to help debugging applications. Execution traces can be generated and displayed
graphically, see Generating Traces With FxT.

54.1 TroubleShooting In General

Generally-speaking, if you have troubles, pass --enable-debug to configure to enable some checks which
impact performance, but will catch common issues, possibly earlier than the actual problem you are observing,
which may just be a consequence of a bug that happened earlier. Also, make sure not to have the --enable-fast
configure option, which drops very useful catchup assertions. If your program is valgrind-safe, you can use it,
see Using Other Debugging Tools.
Depending on your toolchain, it might happen that you get undefined reference to ‘__stack_chk←↩

_guard’ errors. In that case, use the -disable-fstack-protector-all option to avoid the issue.
Then, if your program crashes with an assertion error, a segfault, etc. you can send us the result of

thread apply all bt

run in gdb at the point of the crash.
In case your program just hangs, but it may also be useful in case of a crash too, it helps to source gdbinit as
described in the next section to be able to run and send us the output of the following commands:

starpu-workers
starpu-tasks
starpu-print-requests
starpu-print-prequests
starpu-print-frrequests
starpu-print-irrequests

To give us an idea of what is happening within StarPU. If the outputs are not too long, you can even run

starpu-all-tasks
starpu-print-all-tasks
starpu-print-datas-summary
starpu-print-datas

54.2 Using The Gdb Debugger

Some gdb helpers are provided to show the whole StarPU state:

(gdb) source tools/gdbinit
(gdb) help starpu

For instance,

• one can print all tasks with starpu-print-all-tasks,

• print all data with starpu-print-datas,

Generated by Doxygen

314 Debugging Tools

• print all pending data transfers with starpu-print-prequests, starpu-print-requests,
starpu-print-frequests, starpu-print-irequests,

• print pending MPI requests with starpu-mpi-print-detached-requests

Some functions can only work if --enable-debug was passed to configure (because they impact performance)

54.3 Using Other Debugging Tools

Valgrind can be used on StarPU: valgrind.h just needs to be found at configure time, to tell valgrind about some
known false positives and disable host memory pinning. Other known false positives can be suppressed by giving
the suppression files in tools/valgrind/∗.suppr to valgrind's -suppressions option.
The environment variable STARPU_DISABLE_KERNELS can also be set to 1 to make StarPU does everything
(schedule tasks, transfer memory, etc.) except actually calling the application-provided kernel functions, i.e. the
computation will not happen. This permits to quickly check that the task scheme is working properly.

54.4 Watchdog Support

starpu_task_watchdog_set_hook() is used to set a callback function "watchdog hook" that will be called when there
is no task completed during an expected time. The purpose of the watchdog hook is to allow the application to get
the state for debugging.

54.5 Using The Temanejo Task Debugger

StarPU can connect to Temanejo >= 1.0rc2 (see http://www.hlrs.de/temanejo), to permit
nice visual task debugging. To do so, build Temanejo's libayudame.so, install Ayudame.h to e.g.
/usr/local/include, apply the tools/patch-ayudame to it to fix C build, re-configure, make
sure that it found it, rebuild StarPU. Run the Temanejo GUI, give it the path to your application, any options you
want to pass it, the path to libayudame.so.
It permits to visualize the task graph, add breakpoints, continue execution task-by-task, and run gdb on a given
task, etc.

Generated by Doxygen

http://www.hlrs.de/temanejo

54.5 Using The Temanejo Task Debugger 315

Make sure to specify at least the same number of CPUs in the dialog box as your machine has, otherwise an error
will happen during execution. Future versions of Temanejo should be able to tell StarPU the number of CPUs to
use.
Tag numbers have to be below 4000000000000000000ULL to be usable for Temanejo (to distinguish them
from tasks).

Generated by Doxygen

316 Debugging Tools

Generated by Doxygen

Part VIII

Appendix

Generated by Doxygen

Chapter 55

The GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright

2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document free in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of `‘copyleft’', which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
`‘Document’', below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as `‘you’'. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A `‘Modified Version’' of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A `‘Secondary Section’' is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The `‘Invariant Sections’' are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

Generated by Doxygen

http://fsf.org/

320 The GNU Free Documentation License

The `‘Cover Texts’' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A `‘Transparent’' copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not Transparent'' is calledOpaque''.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The `‘Title Page’' means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, `‘Title Page’' means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

The `‘publisher’' means any person or entity that distributes copies of the Document to the public.

A section `‘Entitled XYZ’' means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as Acknowledgements'', Dedications'',
Endorsements'', orHistory''.) To `‘Preserve the Title’' of such a section when you modify the Docu-
ment means that it remains a section `‘Entitled XYZ’' according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, num-
bering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a

Generated by Doxygen

321

computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

(a) Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

(b) List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

(c) State on the Title page the name of the publisher of the Modified Version, as the publisher.

(d) Preserve all the copyright notices of the Document.

(e) Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

(f) Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

(g) Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

(h) Include an unaltered copy of this License.

(i) Preserve the section Entitled `‘History’', Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled `‘History’' in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

(j) Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the `‘History’' section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

(k) For any section Entitled Acknowledgements'' orDedications'', Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

(l) Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

(m) Delete any section Entitled `‘Endorsements’'. Such a section may not be included in the Modified Ver-
sion.

(n) Do not retitle any existing section to be Entitled `‘Endorsements’' or to conflict in title with any Invariant
Section.

(o) Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

Generated by Doxygen

322 The GNU Free Documentation License

You may add a section Entitled `‘Endorsements’', provided it contains nothing but endorsements of your Mod-
ified Version by various parties—for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-←↩

Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled `‘History’' in the various original doc-
uments, forming one section Entitled History''; likewise combine any sections
EntitledAcknowledgements'', and any sections Entitled Dedications''. You must delete
all sections EntitledEndorsements.''

7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an `‘aggregate’' if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled Acknowledgements'', Dedications'', or `‘History’', the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

Generated by Doxygen

55.1 ADDENDUM: How to use this License for your documents 323

10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior
to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently rein-
stated, receipt of a copy of some or all of the same material does not give you any rights to use it.

11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a partic-
ular numbered version of this License `‘or any later version’' applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the Document.

12. RELICENSING

Massive Multiauthor Collaboration Site'' (orMMC Site'') means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A Massive Multiauthor
Collaboration'' (orMMC'') contained in the site means any set of copyrightable works thus pub-
lished on the MMC site.

`‘CC-BY-SA’' means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Com-
mons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same organization.

`‘Incorporate’' means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is `‘eligible for relicensing’' if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1,
2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site
at any time before August 1, 2009, provided the MMC is eligible for relicensing.

55.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled `‘GNU Free Documentation License’'.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the `‘with...Texts.’' line with this:

Generated by Doxygen

http://www.gnu.org/copyleft/

324 The GNU Free Documentation License

with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the
Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alter-
natives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

Generated by Doxygen

Chapter 56

Module Index

56.1 Modules

Here is a list of all modules:
Initialization and Termination . 469
Versioning . 704
Codelet And Tasks . 333
Transactions . 702
Data Management . 414
Data Interfaces . 366
Data Partition . 428
Explicit Dependencies . 453
Task Lists . 683
Task Insert Utility . 480
CUDA Extensions . 361
OpenCL Extensions . 551
HIP Extensions . 466
Maxeler FPGA Extensions . 502
Workers . 705
Parallel Tasks . 588
Performance Model . 602
OpenMP Runtime Support . 558
Modularized Scheduler Interface . 508
Scheduling Contexts . 636
Scheduling Policy . 644
Heteroprio Scheduler . 463
Scheduler Toolbox . 631
MPI Support . 528
MPI Fault Tolerance Support . 526
Hierarchical Dags . 331
Bitmap . 328
Theoretical Lower Bound on Execution Time . 686
Out Of Core . 584
Running Drivers . 629
Expert Mode . 452
FxT Support . 460
Toolbox . 698
Miscellaneous Helpers . 503
Parallel Workers . 590
Performance Monitoring Counters . 596
Performance Steering Knobs . 613
Profiling . 620
Profiling Tool . 626
Random Functions . 628

Generated by Doxygen

326 Module Index

Sink . 674
Standard Memory Library . 675
Task Bundles . 681
Threads . 688
Tree . 703
Fortran Support . 459
Scheduling Context Hypervisor - Building a new resizing policy . 659
Scheduling Context Hypervisor - Linear Programming . 655
Scheduling Context Hypervisor - Regular usage . 669
Interoperability Support . 491
FFT Support . 457

Generated by Doxygen

Chapter 57

Module Documentation a.k.a StarPU’s API

Generated by Doxygen

328 Module Documentation a.k.a StarPU’s API

57.1 Bitmap

This is the interface for the bitmap utilities provided by StarPU.

Macros

• #define _STARPU_LONG_BIT
• #define _STARPU_BITMAP_SIZE

Functions

• static struct starpu_bitmap ∗ starpu_bitmap_create (void) STARPU_ATTRIBUTE_MALLOC
• static void starpu_bitmap_init (struct starpu_bitmap ∗b)
• static void starpu_bitmap_destroy (struct starpu_bitmap ∗b)
• static void starpu_bitmap_set (struct starpu_bitmap ∗b, int e)
• static void starpu_bitmap_unset (struct starpu_bitmap ∗b, int e)
• static void starpu_bitmap_unset_all (struct starpu_bitmap ∗b)
• static int starpu_bitmap_get (struct starpu_bitmap ∗b, int e)
• static void starpu_bitmap_unset_and (struct starpu_bitmap ∗a, struct starpu_bitmap ∗b, struct starpu_bitmap
∗c)

• static void starpu_bitmap_or (struct starpu_bitmap ∗a, struct starpu_bitmap ∗b)
• static int starpu_bitmap_and_get (struct starpu_bitmap ∗b1, struct starpu_bitmap ∗b2, int e)
• static int starpu_bitmap_cardinal (struct starpu_bitmap ∗b)
• static int starpu_bitmap_first (struct starpu_bitmap ∗b)
• static int starpu_bitmap_last (struct starpu_bitmap ∗b)
• static int starpu_bitmap_next (struct starpu_bitmap ∗b, int e)
• static int starpu_bitmap_has_next (struct starpu_bitmap ∗b, int e)

57.1.1 Detailed Description

This is the interface for the bitmap utilities provided by StarPU.

57.1.2 Function Documentation

57.1.2.1 starpu_bitmap_create()

static struct starpu_bitmap ∗ starpu_bitmap_create (

void) [inline], [static]

create a empty starpu_bitmap

57.1.2.2 starpu_bitmap_init()

static void starpu_bitmap_init (

struct starpu_bitmap ∗ b) [inline], [static]

zero a starpu_bitmap

57.1.2.3 starpu_bitmap_destroy()

static void starpu_bitmap_destroy (

struct starpu_bitmap ∗ b) [inline], [static]

free b

Generated by Doxygen

57.1 Bitmap 329

57.1.2.4 starpu_bitmap_set()

static void starpu_bitmap_set (

struct starpu_bitmap ∗ b,

int e) [inline], [static]

set bit e in b

57.1.2.5 starpu_bitmap_unset()

static void starpu_bitmap_unset (

struct starpu_bitmap ∗ b,

int e) [inline], [static]

unset bit e in b

57.1.2.6 starpu_bitmap_unset_all()

static void starpu_bitmap_unset_all (

struct starpu_bitmap ∗ b) [inline], [static]

unset all bits in b

57.1.2.7 starpu_bitmap_get()

static int starpu_bitmap_get (

struct starpu_bitmap ∗ b,

int e) [inline], [static]

return true iff bit e is set in b

57.1.2.8 starpu_bitmap_unset_and()

static void starpu_bitmap_unset_and (

struct starpu_bitmap ∗ a,

struct starpu_bitmap ∗ b,

struct starpu_bitmap ∗ c) [inline], [static]

Basically compute starpu_bitmap_unset_all(a) ; a = b & c;

57.1.2.9 starpu_bitmap_or()

static void starpu_bitmap_or (

struct starpu_bitmap ∗ a,

struct starpu_bitmap ∗ b) [inline], [static]

Basically compute a |= b

57.1.2.10 starpu_bitmap_and_get()

static int starpu_bitmap_and_get (

struct starpu_bitmap ∗ b1,

struct starpu_bitmap ∗ b2,

int e) [inline], [static]

return 1 iff e is set in b1 AND e is set in b2

57.1.2.11 starpu_bitmap_cardinal()

static int starpu_bitmap_cardinal (

struct starpu_bitmap ∗ b) [inline], [static]

return the number of set bits in b

57.1.2.12 starpu_bitmap_first()

static int starpu_bitmap_first (

struct starpu_bitmap ∗ b) [inline], [static]

Generated by Doxygen

330 Module Documentation a.k.a StarPU’s API

return the index of the first set bit of b, -1 if none

57.1.2.13 starpu_bitmap_last()

static int starpu_bitmap_last (

struct starpu_bitmap ∗ b) [inline], [static]

return the position of the last set bit of b, -1 if none

57.1.2.14 starpu_bitmap_next()

static int starpu_bitmap_next (

struct starpu_bitmap ∗ b,

int e) [inline], [static]

return the position of set bit right after e in b, -1 if none

57.1.2.15 starpu_bitmap_has_next()

static int starpu_bitmap_has_next (

struct starpu_bitmap ∗ b,

int e) [inline], [static]

todo

Generated by Doxygen

57.2 Hierarchical Dags 331

57.2 Hierarchical Dags

API for Hierarchical DAGS.

Macros

• #define STARPU_BUBBLE_FUNC
• #define STARPU_BUBBLE_FUNC_ARG
• #define STARPU_BUBBLE_GEN_DAG_FUNC
• #define STARPU_BUBBLE_GEN_DAG_FUNC_ARG
• #define STARPU_BUBBLE_PARENT

Typedefs

• typedef int(∗ starpu_bubble_func_t) (struct starpu_task ∗t, void ∗arg)
• typedef void(∗ starpu_bubble_gen_dag_func_t) (struct starpu_task ∗t, void ∗arg)

57.2.1 Detailed Description

API for Hierarchical DAGS.

57.2.2 Macro Definition Documentation

57.2.2.1 STARPU_BUBBLE_FUNC

#define STARPU_BUBBLE_FUNC

Used when calling starpu_task_insert(), must be followed by a pointer to a bubble decision function
starpu_bubble_func_t

57.2.2.2 STARPU_BUBBLE_FUNC_ARG

#define STARPU_BUBBLE_FUNC_ARG

Used when calling starpu_task_insert(), must be followed by a pointer which will be passed to the function defined
in starpu_codelet::bubble_func

57.2.2.3 STARPU_BUBBLE_GEN_DAG_FUNC

#define STARPU_BUBBLE_GEN_DAG_FUNC

Used when calling starpu_task_insert(), must be followed by a pointer to a bubble DAG generation function
starpu_bubble_gen_dag_func_t

57.2.2.4 STARPU_BUBBLE_GEN_DAG_FUNC_ARG

#define STARPU_BUBBLE_GEN_DAG_FUNC_ARG

Used when calling starpu_task_insert(), must be followed by a pointer which will be passed to the function defined
in starpu_codelet::bubble_gen_dag_func

57.2.2.5 STARPU_BUBBLE_PARENT

#define STARPU_BUBBLE_PARENT

Used when calling starpu_task_insert(), must be followed by a pointer to a task. The task will be set as the bubble
parent task when using the offline tracing tool.

57.2.3 Typedef Documentation

Generated by Doxygen

332 Module Documentation a.k.a StarPU’s API

57.2.3.1 starpu_bubble_func_t

typedef int(∗ starpu_bubble_func_t) (struct starpu_task ∗t, void ∗arg)
Bubble decision function

57.2.3.2 starpu_bubble_gen_dag_func_t

typedef void(∗ starpu_bubble_gen_dag_func_t) (struct starpu_task ∗t, void ∗arg)
Bubble DAG generation function

Generated by Doxygen

57.3 Codelet And Tasks 333

57.3 Codelet And Tasks

API to manipulate codelets and tasks.

Data Structures

• struct starpu_codelet
• struct starpu_data_descr
• struct starpu_task

Macros

• #define STARPU_NMAXBUFS
• #define STARPU_NOWHERE
• #define STARPU_WORKER_TO_MASK(worker_archtype)
• #define STARPU_CPU
• #define STARPU_CUDA
• #define STARPU_HIP
• #define STARPU_OPENCL
• #define STARPU_MAX_FPGA
• #define STARPU_MPI_MS
• #define STARPU_TCPIP_MS
• #define STARPU_CODELET_SIMGRID_EXECUTE
• #define STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT
• #define STARPU_CODELET_NOPLANS
• #define STARPU_CUDA_ASYNC
• #define STARPU_HIP_ASYNC
• #define STARPU_OPENCL_ASYNC
• #define STARPU_MAIN_RAM
• #define STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_HIP_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
• #define STARPU_VARIABLE_NBUFFERS
• #define STARPU_SPECIFIC_NODE_LOCAL
• #define STARPU_SPECIFIC_NODE_CPU
• #define STARPU_SPECIFIC_NODE_SLOW
• #define STARPU_SPECIFIC_NODE_FAST
• #define STARPU_SPECIFIC_NODE_LOCAL_OR_CPU
• #define STARPU_SPECIFIC_NODE_NONE
• #define STARPU_TASK_TYPE_NORMAL
• #define STARPU_TASK_TYPE_INTERNAL
• #define STARPU_TASK_TYPE_DATA_ACQUIRE
• #define STARPU_TASK_INITIALIZER
• #define STARPU_TASK_GET_NBUFFERS(task)
• #define STARPU_TASK_GET_HANDLE(task, i)
• #define STARPU_TASK_GET_HANDLES(task)
• #define STARPU_TASK_SET_HANDLE(task, handle, i)
• #define STARPU_CODELET_GET_MODE(codelet, i)
• #define STARPU_CODELET_SET_MODE(codelet, mode, i)
• #define STARPU_TASK_GET_MODE(task, i)
• #define STARPU_TASK_SET_MODE(task, mode, i)
• #define STARPU_CODELET_GET_NODE(codelet, i)
• #define STARPU_CODELET_SET_NODE(codelet, __node, i)

Generated by Doxygen

334 Module Documentation a.k.a StarPU’s API

Typedefs

• typedef void(∗ starpu_cpu_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_cuda_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_hip_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_opencl_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_max_fpga_func_t) (void ∗∗, void ∗)
• typedef struct _starpu_trs_epoch ∗ starpu_trs_epoch_t

Enumerations

• enum starpu_codelet_type { STARPU_SEQ , STARPU_SPMD , STARPU_FORKJOIN }
• enum starpu_task_status {

STARPU_TASK_INIT , STARPU_TASK_INIT , STARPU_TASK_BLOCKED , STARPU_TASK_READY ,
STARPU_TASK_RUNNING , STARPU_TASK_FINISHED , STARPU_TASK_BLOCKED_ON_TAG ,
STARPU_TASK_BLOCKED_ON_TASK ,
STARPU_TASK_BLOCKED_ON_DATA , STARPU_TASK_STOPPED }

Functions

• void starpu_task_init (struct starpu_task ∗task)
• void starpu_task_clean (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_create (void) STARPU_ATTRIBUTE_MALLOC
• struct starpu_task ∗ starpu_task_create_sync (starpu_data_handle_t handle, enum starpu_data_access_mode

mode) STARPU_ATTRIBUTE_MALLOC
• void starpu_task_destroy (struct starpu_task ∗task)
• void starpu_task_set_destroy (struct starpu_task ∗task)
• int starpu_task_submit (struct starpu_task ∗task)
• int starpu_task_submit_nodeps (struct starpu_task ∗task)
• int starpu_task_submit_to_ctx (struct starpu_task ∗task, unsigned sched_ctx_id)
• int starpu_task_finished (struct starpu_task ∗task)
• int starpu_task_wait (struct starpu_task ∗task)
• int starpu_task_wait_array (struct starpu_task ∗∗tasks, unsigned nb_tasks)
• int starpu_task_wait_for_all (void)
• int starpu_task_wait_for_n_submitted (unsigned n)
• int starpu_task_wait_for_all_in_ctx (unsigned sched_ctx_id)
• int starpu_task_wait_for_n_submitted_in_ctx (unsigned sched_ctx_id, unsigned n)
• int starpu_task_wait_for_no_ready (void)
• int starpu_task_nready (void)
• int starpu_task_nsubmitted (void)
• void starpu_iteration_push (unsigned long iteration)
• void starpu_iteration_pop (void)
• void starpu_do_schedule (void)
• void starpu_codelet_init (struct starpu_codelet ∗cl)
• void starpu_codelet_display_stats (struct starpu_codelet ∗cl)
• struct starpu_task ∗ starpu_task_get_current (void)
• int starpu_task_get_current_data_node (unsigned i)
• const char ∗ starpu_task_get_model_name (struct starpu_task ∗task)
• const char ∗ starpu_task_get_name (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_dup (struct starpu_task ∗task)
• void starpu_task_set_implementation (struct starpu_task ∗task, unsigned impl)
• unsigned starpu_task_get_implementation (struct starpu_task ∗task)
• void starpu_create_sync_task (starpu_tag_t sync_tag, unsigned ndeps, starpu_tag_t ∗deps, void(∗callback)(void
∗), void ∗callback_arg)

• void starpu_create_callback_task (void(∗callback)(void ∗), void ∗callback_arg)
• void starpu_task_ft_prologue (void ∗check_ft)

Generated by Doxygen

57.3 Codelet And Tasks 335

• struct starpu_task ∗ starpu_task_ft_create_retry (const struct starpu_task ∗meta_task, const struct
starpu_task ∗template_task, void(∗check_ft)(void ∗))

• void starpu_task_ft_failed (struct starpu_task ∗task)
• void starpu_task_ft_success (struct starpu_task ∗meta_task)
• void starpu_task_watchdog_set_hook (void(∗hook)(void ∗), void ∗hook_arg)
• char ∗ starpu_task_status_get_as_string (enum starpu_task_status status)
• void starpu_set_limit_min_submitted_tasks (int limit_min)
• void starpu_set_limit_max_submitted_tasks (int limit_min)

Variables

• struct starpu_codelet starpu_codelet_nop

57.3.1 Detailed Description

API to manipulate codelets and tasks.

57.3.2 Data Structure Documentation

57.3.2.1 struct starpu_codelet

The codelet structure describes a kernel that is possibly implemented on various targets. For compatibility, make
sure to initialize the whole structure to zero, either by using explicit memset, or the function starpu_codelet_init(), or
by letting the compiler implicitly do it in e.g. static storage case.
Note that the codelet structure needs to exist until the task is terminated. If dynamic codelet allocation is desired,
release should be done no sooner than the starpu_task::callback_func callback time.
If the application wants to make the structure constant, it needs to be filled exactly as StarPU expects:

• starpu_codelet::cpu_funcs, starpu_codelet::cuda_funcs, etc. must be used instead of the deprecated
starpu_codelet::cpu_func, starpu_codelet::cuda_func, etc.

• the starpu_codelet::where field must be set.

and additionally, starpu_codelet::checked must be set to 1 to tell StarPU that the conditions above are properly
met. Also, the STARPU_CODELET_PROFILING environment variable must be set to 0. An example is provided in
tests/main/const_codelet.c

Data Fields

• uint32_t where
• int(∗ can_execute)(unsigned workerid, struct starpu_task ∗task, unsigned nimpl)
• enum starpu_codelet_type type
• int max_parallelism
• starpu_cpu_func_t cpu_func
• starpu_cuda_func_t cuda_func
• starpu_opencl_func_t opencl_func
• starpu_cpu_func_t cpu_funcs [STARPU_MAXIMPLEMENTATIONS]
• starpu_cuda_func_t cuda_funcs [STARPU_MAXIMPLEMENTATIONS]
• char cuda_flags [STARPU_MAXIMPLEMENTATIONS]
• starpu_hip_func_t hip_funcs [STARPU_MAXIMPLEMENTATIONS]
• char hip_flags [STARPU_MAXIMPLEMENTATIONS]
• starpu_opencl_func_t opencl_funcs [STARPU_MAXIMPLEMENTATIONS]
• char opencl_flags [STARPU_MAXIMPLEMENTATIONS]
• starpu_max_fpga_func_t max_fpga_funcs [STARPU_MAXIMPLEMENTATIONS]
• const char ∗ cpu_funcs_name [STARPU_MAXIMPLEMENTATIONS]
• starpu_bubble_func_t bubble_func
• starpu_bubble_gen_dag_func_t bubble_gen_dag_func
• int nbuffers

Generated by Doxygen

336 Module Documentation a.k.a StarPU’s API

• enum starpu_data_access_mode modes [STARPU_NMAXBUFS]
• enum starpu_data_access_mode ∗ dyn_modes
• unsigned specific_nodes
• int nodes [STARPU_NMAXBUFS]
• int ∗ dyn_nodes
• struct starpu_perfmodel ∗ model
• struct starpu_perfmodel ∗ energy_model
• unsigned long per_worker_stats [STARPU_NMAXWORKERS]
• const char ∗ name
• unsigned color
• void(∗ callback_func)(void ∗)
• int flags
• struct starpu_perf_counter_sample ∗ perf_counter_sample
• struct starpu_perf_counter_sample_cl_values ∗ perf_counter_values
• int checked

57.3.2.1.1 Field Documentation

57.3.2.1.1.1 where uint32_t starpu_codelet::where

Optional field to indicate which types of processing units are able to execute the codelet. The different values
STARPU_CPU, STARPU_CUDA, STARPU_HIP, STARPU_OPENCL can be combined to specify on which types
of processing units the codelet can be executed. STARPU_CPU|STARPU_CUDA for instance indicates that the
codelet is implemented for both CPU cores and CUDA devices while STARPU_OPENCL indicates that it is only
available on OpenCL devices. If the field is unset, its value will be automatically set based on the availability of the
XXX_funcs fields defined below. It can also be set to STARPU_NOWHERE to specify that no computation has to
be actually done.

57.3.2.1.1.2 can_execute int(∗ starpu_codelet::can_execute) (unsigned workerid, struct starpu_task

∗task, unsigned nimpl)

Define a function which should return 1 if the worker designated by workerid can execute the nimpl -th imple-
mentation of task, 0 otherwise.

57.3.2.1.1.3 type enum starpu_codelet_type starpu_codelet::type

Optional field to specify the type of the codelet. The default is STARPU_SEQ, i.e. usual sequential implementation.
Other values (STARPU_SPMD or STARPU_FORKJOIN) declare that a parallel implementation is also available.
See Parallel Tasks for details.

57.3.2.1.1.4 max_parallelism int starpu_codelet::max_parallelism

Optional field. If a parallel implementation is available, this denotes the maximum combined worker size that StarPU
will use to execute parallel tasks for this codelet.

57.3.2.1.1.5 cpu_func starpu_cpu_func_t starpu_codelet::cpu_func

Deprecated Optional field which has been made deprecated. One should use instead the field starpu_codelet::cpu_funcs.

57.3.2.1.1.6 cuda_func starpu_cuda_func_t starpu_codelet::cuda_func

Deprecated Optional field which has been made deprecated. One should use instead the starpu_codelet::cuda_funcs
field.

Generated by Doxygen

57.3 Codelet And Tasks 337

57.3.2.1.1.7 opencl_func starpu_opencl_func_t starpu_codelet::opencl_func

Deprecated Optional field which has been made deprecated. One should use instead the starpu_codelet::opencl_funcs
field.

57.3.2.1.1.8 cpu_funcs starpu_cpu_func_t starpu_codelet::cpu_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to the CPU implementations of the codelet. The functions prototype must be:
void cpu_func(void *buffers[], void *cl_arg)

The first argument being the array of data managed by the data management library, and the second argument is
a pointer to the argument passed from the field starpu_task::cl_arg. If the field starpu_codelet::where is set, then
the field tarpu_codelet::cpu_funcs is ignored if STARPU_CPU does not appear in the field starpu_codelet::where, it
must be non-NULL otherwise.

57.3.2.1.1.9 cuda_funcs starpu_cuda_func_t starpu_codelet::cuda_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to the CUDA implementations of the codelet. The functions must be host-
functions written in the CUDA runtime API. Their prototype must be:
void cuda_func(void *buffers[], void *cl_arg)

If the field starpu_codelet::where is set, then the field starpu_codelet::cuda_funcs is ignored if STARPU_CUDA
does not appear in the field starpu_codelet::where, it must be non-NULL otherwise.

57.3.2.1.1.10 cuda_flags char starpu_codelet::cuda_flags[STARPU_MAXIMPLEMENTATIONS]

Optional array of flags for CUDA execution. They specify some semantic details about CUDA kernel execution, such
as asynchronous execution.

57.3.2.1.1.11 hip_funcs starpu_hip_func_t starpu_codelet::hip_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to the HIP implementations of the codelet. The functions must be host-functions
written in the HIP runtime API. Their prototype must be:
void hip_func(void *buffers[], void *cl_arg)

If the field starpu_codelet::where is set, then the field starpu_codelet::hip_funcs is ignored if STARPU_HIP does not
appear in the field starpu_codelet::where, it must be non-NULL otherwise.

57.3.2.1.1.12 hip_flags char starpu_codelet::hip_flags[STARPU_MAXIMPLEMENTATIONS]

Optional array of flags for HIP execution. They specify some semantic details about HIP kernel execution, such as
asynchronous execution.

57.3.2.1.1.13 opencl_funcs starpu_opencl_func_t starpu_codelet::opencl_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to the OpenCL implementations of the codelet. The functions prototype must be:
void opencl_func(void *buffers[], void *cl_arg)

If the field starpu_codelet::where field is set, then the field starpu_codelet::opencl_funcs is ignored if
STARPU_OPENCL does not appear in the field starpu_codelet::where, it must be non-NULL otherwise.

57.3.2.1.1.14 opencl_flags char starpu_codelet::opencl_flags[STARPU_MAXIMPLEMENTATIONS]

Optional array of flags for OpenCL execution. They specify some semantic details about OpenCL kernel execution,
such as asynchronous execution.

57.3.2.1.1.15 max_fpga_funcs starpu_max_fpga_func_t starpu_codelet::max_fpga_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to the Maxeler FPGA implementations of the codelet. The functions prototype
must be:
void fpga_func(void *buffers[], void *cl_arg)

The first argument being the array of data managed by the data management library, and the second argument
is a pointer to the argument passed from the field starpu_task::cl_arg. If the field starpu_codelet::where is set,
then the field starpu_codelet::max_fpga_funcs is ignored if STARPU_MAX_FPGA does not appear in the field
starpu_codelet::where, it must be non-NULL otherwise.

Generated by Doxygen

338 Module Documentation a.k.a StarPU’s API

57.3.2.1.1.16 cpu_funcs_name const char∗ starpu_codelet::cpu_funcs_name[STARPU_MAXIMPLEMENTATIONS]

Optional array of strings which provide the name of the CPU functions referenced in the array starpu_codelet::cpu_funcs.
This can be used when running on MPI MS devices for StarPU to simply look up the MPI MS function implementation
through its name.

57.3.2.1.1.17 bubble_func starpu_bubble_func_t starpu_codelet::bubble_func

Optional function to decide if the task is to be transformed into a bubble

57.3.2.1.1.18 bubble_gen_dag_func starpu_bubble_gen_dag_func_t starpu_codelet::bubble_gen_←↩

dag_func

Optional function to transform the task into a new graph

57.3.2.1.1.19 nbuffers int starpu_codelet::nbuffers

Specify the number of arguments taken by the codelet. These arguments are managed by the DSM and are ac-
cessed from the void ∗buffers[] array. The constant argument passed with the field starpu_task::cl_arg
is not counted in this number. This value should not be above STARPU_NMAXBUFS. It may be set to
STARPU_VARIABLE_NBUFFERS to specify that the number of buffers and their access modes will be set in
starpu_task::nbuffers and starpu_task::modes or starpu_task::dyn_modes, which thus permits to define codelets
with a varying number of data.

57.3.2.1.1.20 modes enum starpu_data_access_mode starpu_codelet::modes[STARPU_NMAXBUFS]

Is an array of starpu_data_access_mode. It describes the required access modes to the data needed by the codelet
(e.g. STARPU_RW). The number of entries in this array must be specified in the field starpu_codelet::nbuffers,
and should not exceed STARPU_NMAXBUFS. If insufficient, this value can be set with the configure option
--enable-maxbuffers.

57.3.2.1.1.21 dyn_modes enum starpu_data_access_mode∗ starpu_codelet::dyn_modes

Is an array of starpu_data_access_mode. It describes the required access modes to the data needed by the codelet
(e.g. STARPU_RW). The number of entries in this array must be specified in the field starpu_codelet::nbuffers.
This field should be used for codelets having a number of data greater than STARPU_NMAXBUFS (see
Setting Many Data Handles For a Task). When defining a codelet, one should either define this field or the field
starpu_codelet::modes defined above.

57.3.2.1.1.22 specific_nodes unsigned starpu_codelet::specific_nodes

Default value is 0. If this flag is set, StarPU will not systematically send all data to the memory node where the task
will be executing, it will read the starpu_codelet::nodes or starpu_codelet::dyn_nodes array to determine, for each
data, on which memory node to send it.

57.3.2.1.1.23 nodes int starpu_codelet::nodes[STARPU_NMAXBUFS]

Optional field. When starpu_codelet::specific_nodes is 1, this specifies the memory nodes where each
data should be sent to for task execution. This can be a specific memory node (>= 0), or any of
STARPU_SPECIFIC_NODE_LOCAL, STARPU_SPECIFIC_NODE_CPU, STARPU_SPECIFIC_NODE_SLOW, ←↩

:STARPU_SPECIFIC_NODE_FASTSTARPU_SPECIFIC_NODE_FAST, STARPU_SPECIFIC_NODE_LOCAL_OR_CPU,
STARPU_SPECIFIC_NODE_NONE.
The number of entries in this array is starpu_codelet::nbuffers, and should not exceed STARPU_NMAXBUFS.

57.3.2.1.1.24 dyn_nodes int∗ starpu_codelet::dyn_nodes

Optional field. When starpu_codelet::specific_nodes is 1, this specifies the memory nodes where each
data should be sent to for task execution. The number of entries in this array is starpu_codelet::nbuffers.
This field should be used for codelets having a number of data greater than STARPU_NMAXBUFS (see
Setting Many Data Handles For a Task). When defining a codelet, one should either define this field or the
field starpu_codelet::nodes defined above.

57.3.2.1.1.25 model struct starpu_perfmodel∗ starpu_codelet::model

Optional pointer to the task duration performance model associated to this codelet. This optional field is ignored
when set to NULL or when its field starpu_perfmodel::symbol is not set.

Generated by Doxygen

57.3 Codelet And Tasks 339

57.3.2.1.1.26 energy_model struct starpu_perfmodel∗ starpu_codelet::energy_model

Optional pointer to the task energy consumption performance model associated to this codelet (in J). This optional
field is ignored when set to NULL or when its field starpu_perfmodel::symbol is not set. In the case of parallel
codelets, this has to account for all processing units involved in the parallel execution.

57.3.2.1.1.27 per_worker_stats unsigned long starpu_codelet::per_worker_stats[STARPU_NMAXWORKERS]

Optional array for statistics collected at runtime: this is filled by StarPU and should not be accessed directly, but for
example by calling the function starpu_codelet_display_stats() (See starpu_codelet_display_stats() for details).

57.3.2.1.1.28 name const char∗ starpu_codelet::name

Optional name of the codelet. This can be useful for debugging purposes.

57.3.2.1.1.29 color unsigned starpu_codelet::color

Optional color of the codelet. This can be useful for debugging purposes. Value 0 acts like if this field wasn't
specified. Color representation is hex triplet (for example: 0xff0000 is red, 0x0000ff is blue, 0xffa500 is orange, ...).

57.3.2.1.1.30 callback_func void(∗ starpu_codelet::callback_func) (void ∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (∗f)(void ∗) which
specifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host after the
execution of the task. If the task defines a callback, the codelet callback is not called, unless called within the task
callback function. The callback is passed the value contained in the starpu_task::callback_arg field. No callback is
executed if the field is set to NULL.

57.3.2.1.1.31 flags int starpu_codelet::flags

Various flags for the codelet.

57.3.2.1.1.32 checked int starpu_codelet::checked

Whether _starpu_codelet_check_deprecated_fields was already done or not.

57.3.2.2 struct starpu_data_descr

Describe a data handle along with an access mode.

Data Fields

starpu_data_handle_t handle data

enum starpu_data_access_mode mode access mode

57.3.2.3 struct starpu_task

Describe a task that can be offloaded on the various processing units managed by StarPU. It instantiates a codelet.
It can either be allocated dynamically with the function starpu_task_create(), or declared statically. In the latter case,
the programmer has to zero the structure starpu_task and to fill the different fields properly. The indicated default
values correspond to the configuration of a task allocated with starpu_task_create().

Data Fields

• const char ∗ name
• const char ∗ file
• int line
• struct starpu_codelet ∗ cl
• int32_t where
• int nbuffers
• starpu_data_handle_t ∗ dyn_handles

Generated by Doxygen

340 Module Documentation a.k.a StarPU’s API

• void ∗∗ dyn_interfaces
• enum starpu_data_access_mode ∗ dyn_modes
• starpu_data_handle_t handles [STARPU_NMAXBUFS]
• void ∗ interfaces [STARPU_NMAXBUFS]
• enum starpu_data_access_mode modes [STARPU_NMAXBUFS]
• unsigned char ∗ handles_sequential_consistency
• void ∗ cl_arg
• size_t cl_arg_size
• void ∗ cl_ret
• size_t cl_ret_size
• void(∗ epilogue_callback_func)(void ∗)
• void ∗ epilogue_callback_arg
• void(∗ callback_func)(void ∗)
• void ∗ callback_arg
• void(∗ prologue_callback_func)(void ∗)
• void ∗ prologue_callback_arg
• void(∗ prologue_callback_pop_func)(void ∗)
• void ∗ prologue_callback_pop_arg
• struct starpu_transaction ∗ transaction
• starpu_trs_epoch_t trs_epoch
• starpu_tag_t tag_id
• unsigned cl_arg_free: 1
• unsigned cl_ret_free: 1
• unsigned callback_arg_free: 1
• unsigned epilogue_callback_arg_free: 1
• unsigned prologue_callback_arg_free: 1
• unsigned prologue_callback_pop_arg_free: 1
• unsigned use_tag: 1
• unsigned sequential_consistency: 1
• unsigned synchronous: 1
• unsigned execute_on_a_specific_worker: 1
• unsigned detach: 1
• unsigned destroy: 1
• unsigned regenerate: 1
• unsigned no_submitorder: 1
• unsigned char failed
• unsigned char scheduled
• unsigned char prefetched
• unsigned workerid
• unsigned workerorder
• uint32_t ∗ workerids
• unsigned workerids_len
• int priority
• enum starpu_task_status status
• unsigned type
• unsigned color
• unsigned sched_ctx
• int hypervisor_tag
• unsigned possibly_parallel
• starpu_task_bundle_t bundle
• struct starpu_profiling_task_info ∗ profiling_info
• double flops
• double predicted
• double predicted_transfer
• double predicted_start

Generated by Doxygen

57.3 Codelet And Tasks 341

• unsigned long bubble_parent
• starpu_bubble_func_t bubble_func
• void ∗ bubble_func_arg
• starpu_bubble_gen_dag_func_t bubble_gen_dag_func
• void ∗ bubble_gen_dag_func_arg
• void ∗ sched_data

Private Attributes

• unsigned char mf_skip
• int magic
• struct starpu_task ∗ prev
• struct starpu_task ∗ next
• void ∗ starpu_private
• struct starpu_omp_task ∗ omp_task
• unsigned nb_termination_call_required

57.3.2.3.1 Field Documentation

57.3.2.3.1.1 name const char∗ starpu_task::name

Optional name of the task. This can be useful for debugging purposes.
With starpu_task_insert() and alike this can be specified thanks to STARPU_NAME followed by the const char ∗.

57.3.2.3.1.2 file const char∗ starpu_task::file

Optional file name where the task was submitted. This can be useful for debugging purposes.

57.3.2.3.1.3 line int starpu_task::line

Optional line number where the task was submitted. This can be useful for debugging purposes.

57.3.2.3.1.4 cl struct starpu_codelet∗ starpu_task::cl

Pointer to the corresponding structure starpu_codelet. This describes where the kernel should be executed, and
supplies the appropriate implementations. When set to NULL, no code is executed during the tasks, such empty
tasks can be useful for synchronization purposes.

57.3.2.3.1.5 where int32_t starpu_task::where

When set, specify where the task is allowed to be executed. When unset, take the value of starpu_codelet::where.
With starpu_task_insert() and alike this can be specified thanks to STARPU_EXECUTE_WHERE followed by an
unsigned long long.

57.3.2.3.1.6 nbuffers int starpu_task::nbuffers

Specify the number of buffers. This is only used when starpu_codelet::nbuffers is STARPU_VARIABLE_NBUFFERS.
With starpu_task_insert() and alike this is automatically computed when using STARPU_DATA_ARRAY and alike.

57.3.2.3.1.7 dyn_handles starpu_data_handle_t∗ starpu_task::dyn_handles

Keep dyn_handles, dyn_interfaces and dyn_modes before the equivalent static arrays, so we can detect dyn_←↩

handles being NULL while nbuffers being bigger that STARPU_NMAXBUFS (otherwise the overflow would put a
non-NULL) Array of starpu_data_handle_t. Specify the handles to the different pieces of data accessed by the task.
The number of entries in this array must be specified in the field starpu_codelet::nbuffers. This field should be used
for tasks having a number of data greater than STARPU_NMAXBUFS (see Setting Many Data Handles For a Task).
When defining a task, one should either define this field or the field starpu_task::handles defined below.
With starpu_task_insert() and alike this is automatically filled when using STARPU_DATA_ARRAY and alike.

57.3.2.3.1.8 dyn_interfaces void∗∗ starpu_task::dyn_interfaces

Array of data pointers to the memory node where execution will happen, managed by the DSM. Is used when the
field starpu_task::dyn_handles is defined.
This is filled by StarPU.

Generated by Doxygen

342 Module Documentation a.k.a StarPU’s API

57.3.2.3.1.9 dyn_modes enum starpu_data_access_mode∗ starpu_task::dyn_modes

Used only when starpu_codelet::nbuffers is STARPU_VARIABLE_NBUFFERS. Array of starpu_data_access_mode
which describes the required access modes to the data needed by the codelet (e.g. STARPU_RW). The number
of entries in this array must be specified in the field starpu_codelet::nbuffers. This field should be used for codelets
having a number of data greater than STARPU_NMAXBUFS (see Setting Many Data Handles For a Task). When
defining a codelet, one should either define this field or the field starpu_task::modes defined below.
With starpu_task_insert() and alike this is automatically filled when using STARPU_DATA_MODE_ARRAY and alike.

57.3.2.3.1.10 handles starpu_data_handle_t starpu_task::handles[STARPU_NMAXBUFS]

Array of starpu_data_handle_t. Specify the handles to the different pieces of data accessed by the task. The
number of entries in this array must be specified in the field starpu_codelet::nbuffers, and should not exceed
STARPU_NMAXBUFS. If insufficient, this value can be set with the configure option --enable-maxbuffers.
With starpu_task_insert() and alike this is automatically filled when using STARPU_R and alike.

57.3.2.3.1.11 interfaces void∗ starpu_task::interfaces[STARPU_NMAXBUFS]

Array of Data pointers to the memory node where execution will happen, managed by the DSM.
This is filled by StarPU.

57.3.2.3.1.12 modes enum starpu_data_access_mode starpu_task::modes[STARPU_NMAXBUFS]

Used only when starpu_codelet::nbuffers is STARPU_VARIABLE_NBUFFERS. Array of starpu_data_access_mode
which describes the required access modes to the data needed by the codelet (e.g. STARPU_RW). The
number of entries in this array must be specified in the field starpu_task::nbuffers, and should not exceed
STARPU_NMAXBUFS. If insufficient, this value can be set with the configure option --enable-maxbuffers.
With starpu_task_insert() and alike this is automatically filled when using STARPU_DATA_MODE_ARRAY and alike.

57.3.2.3.1.13 handles_sequential_consistency unsigned char∗ starpu_task::handles_sequential_←↩

consistency

Optional pointer to an array of characters which allows to define the sequential consistency for each handle for the
current task.
With starpu_task_insert() and alike this can be specified thanks to STARPU_HANDLES_SEQUENTIAL_CONSISTENCY
followed by an unsigned char ∗

57.3.2.3.1.14 cl_arg void∗ starpu_task::cl_arg

Optional pointer which is passed to the codelet through the second argument of the codelet implementation (e.g.
starpu_codelet::cpu_func or starpu_codelet::cuda_func). The default value is NULL.
Note that the pointer is passed unchanged to most drivers, so the application has to ensure the liveness of the
pointed data, by using static memory or dynamic allocation (starpu_task::cl_arg_free can be used for convenience
in that case).
For the master/slave drivers however, the content pointed by cl_arg is copied to the slave, so the size of the data
must be set in starpu_task::cl_arg_size.
starpu_codelet_pack_args() and starpu_codelet_unpack_args() are helpers that can can be used to respectively
pack and unpack data into and from it and update starpu_task::cl_arg_size accordingly.
With starpu_task_insert() and alike this can be specified thanks to STARPU_CL_ARGS followed by a void∗ and a
size_t.

57.3.2.3.1.15 cl_arg_size size_t starpu_task::cl_arg_size

Optional field. For some specific drivers, the pointer starpu_task::cl_arg cannot not be directly given to the driver
function. A buffer of size starpu_task::cl_arg_size needs to be allocated on the driver. This buffer is then filled with
the starpu_task::cl_arg_size bytes starting at address starpu_task::cl_arg. In this case, the argument given to the
codelet is therefore not the starpu_task::cl_arg pointer, but the address of the buffer in local store (LS) instead. This
field is ignored for CPU, CUDA and OpenCL codelets, where the starpu_task::cl_arg pointer is given as such.
With starpu_task_insert() and alike this can be specified thanks to STARPU_CL_ARGS followed by a void∗ and a
size_t.

Generated by Doxygen

57.3 Codelet And Tasks 343

57.3.2.3.1.16 cl_ret void∗ starpu_task::cl_ret

Optional pointer which points to the return value of submitted task. The default value is NULL. starpu_codelet_pack_arg()
and starpu_codelet_unpack_arg() can be used to respectively pack and unpack the return value into and form it.
starpu_task::cl_ret can be used for MPI support. The only requirement is that the size of the return value must be
set in starpu_task::cl_ret_size .

57.3.2.3.1.17 cl_ret_size size_t starpu_task::cl_ret_size

Optional field. The buffer of starpu_codelet_pack_arg() and starpu_codelet_unpack_arg() can be allocated with the
starpu_task::cl_ret_size bytes starting at address starpu_task::cl_ret. starpu_task::cl_ret_size can be used for MPI
support.

57.3.2.3.1.18 epilogue_callback_func void(∗ starpu_task::epilogue_callback_func) (void ∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (∗f)(void ∗) which
specifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host after
the execution of the task. Contrary to starpu_task::callback_func, it is called before releasing tasks which de-
pend on this task, so those cannot be already executing. The callback is passed the value contained in the
starpu_task::epilogue_callback_arg field. No callback is executed if the field is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_EPILOGUE_CALLBACK followed by
the function pointer.

57.3.2.3.1.19 epilogue_callback_arg void∗ starpu_task::epilogue_callback_arg

Optional field, the default value is NULL. This is the pointer passed to the epilogue callback function. This field is
ignored if the field starpu_task::epilogue_callback_func is set to NULL.

57.3.2.3.1.20 callback_func void(∗ starpu_task::callback_func) (void ∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (∗f)(void ∗) which spec-
ifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host after the execution
of the task. Contrary to starpu_task::epilogue_callback, it is called after releasing tasks which depend on this task,
so those might already be executing. The callback is passed the value contained in the starpu_task::callback_arg
field. No callback is executed if the field is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_CALLBACK followed by the function
pointer, or thanks to STARPU_CALLBACK_WITH_ARG (or STARPU_CALLBACK_WITH_ARG_NFREE) followed
by the function pointer and the argument.

57.3.2.3.1.21 callback_arg void∗ starpu_task::callback_arg

Optional field, the default value is NULL. This is the pointer passed to the callback function. This field is ignored if
the field starpu_task::callback_func is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_CALLBACK_ARG followed by the
argument pointer, or thanks to STARPU_CALLBACK_WITH_ARG or STARPU_CALLBACK_WITH_ARG_NFREE
followed by the function pointer and the argument.

57.3.2.3.1.22 prologue_callback_func void(∗ starpu_task::prologue_callback_func) (void ∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (∗f)(void ∗) which
specifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host when the
task becomes ready for execution, before getting scheduled. The callback is passed the value contained in the
starpu_task::prologue_callback_arg field. No callback is executed if the field is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PROLOGUE_CALLBACK followed by
the function pointer.

57.3.2.3.1.23 prologue_callback_arg void∗ starpu_task::prologue_callback_arg

Optional field, the default value is NULL. This is the pointer passed to the prologue callback function. This field is
ignored if the field starpu_task::prologue_callback_func is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PROLOGUE_CALLBACK_ARG fol-
lowed by the argument

Generated by Doxygen

344 Module Documentation a.k.a StarPU’s API

57.3.2.3.1.24 prologue_callback_pop_func void(∗ starpu_task::prologue_callback_pop_func) (void

∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (f)(void) which spec-
ifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host when the task
is pop-ed from the scheduler, just before getting executed. The callback is passed the value contained in the
starpu_task::prologue_callback_pop_arg field. No callback is executed if the field is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PROLOGUE_CALLBACK_POP fol-
lowed by the function pointer.

57.3.2.3.1.25 prologue_callback_pop_arg void∗ starpu_task::prologue_callback_pop_arg

Optional field, the default value is NULL. This is the pointer passed to the prologue_callback_pop function. This
field is ignored if the field starpu_task::prologue_callback_pop_func is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PROLOGUE_CALLBACK_POP_ARG
followed by the argument.

57.3.2.3.1.26 transaction struct starpu_transaction∗ starpu_task::transaction

Transaction to which the task belongs, if any

57.3.2.3.1.27 trs_epoch starpu_trs_epoch_t starpu_task::trs_epoch

Transaction epoch to which the task belongs, if any

57.3.2.3.1.28 tag_id starpu_tag_t starpu_task::tag_id

Optional field. Contain the tag associated to the task if the field starpu_task::use_tag is set, ignored otherwise.
With starpu_task_insert() and alike this can be specified thanks to STARPU_TAG followed by a starpu_tag_t.

57.3.2.3.1.29 cl_arg_free unsigned starpu_task::cl_arg_free

Optional field. In case starpu_task::cl_arg was allocated by the application through malloc(), setting
starpu_task::cl_arg_free to 1 makes StarPU automatically call free(cl_arg) when destroying the task. This
saves the user from defining a callback just for that.
With starpu_task_insert() and alike this is set to 1 when using STARPU_CL_ARGS.

57.3.2.3.1.30 cl_ret_free unsigned starpu_task::cl_ret_free

Optional field. In case starpu_task::cl_ret was allocated by the application through malloc(), setting
starpu_task::cl_ret_free to 1 makes StarPU automatically call free(cl_ret) when destroying the task.

57.3.2.3.1.31 callback_arg_free unsigned starpu_task::callback_arg_free

Optional field. In case starpu_task::callback_arg was allocated by the application through malloc(), setting
starpu_task::callback_arg_free to 1 makes StarPU automatically call free(callback_arg) when destroying
the task.
With starpu_task_insert() and alike, this is set to 1 when using STARPU_CALLBACK_ARG or STARPU_CALLBACK_WITH_ARG,
or set to 0 when using STARPU_CALLBACK_ARG_NFREE

57.3.2.3.1.32 epilogue_callback_arg_free unsigned starpu_task::epilogue_callback_arg_free

Optional field. In case starpu_task::epilogue_callback_arg was allocated by the application through malloc(),
setting starpu_task::epilogue_callback_arg_free to 1 makes StarPU automatically call free(epilogue_←↩

callback_arg) when destroying the task.

57.3.2.3.1.33 prologue_callback_arg_free unsigned starpu_task::prologue_callback_arg_free

Optional field. In case starpu_task::prologue_callback_arg was allocated by the application through malloc(),
setting starpu_task::prologue_callback_arg_free to 1 makes StarPU automatically call free(prologue_←↩

callback_arg) when destroying the task.
With starpu_task_insert() and alike this is set to 1 when using STARPU_PROLOGUE_CALLBACK_ARG, or set to
0 when using STARPU_PROLOGUE_CALLBACK_ARG_NFREE

Generated by Doxygen

57.3 Codelet And Tasks 345

57.3.2.3.1.34 prologue_callback_pop_arg_free unsigned starpu_task::prologue_callback_pop_arg_←↩

free

Optional field. In case starpu_task::prologue_callback_pop_arg was allocated by the application through
malloc(), setting starpu_task::prologue_callback_pop_arg_free to 1 makes StarPU automatically call
free(prologue_callback_pop_arg) when destroying the task.
With starpu_task_insert() and alike this is set to 1 when using STARPU_PROLOGUE_CALLBACK_POP_ARG, or
set to 0 when using STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE

57.3.2.3.1.35 use_tag unsigned starpu_task::use_tag

Optional field, the default value is 0. If set, this flag indicates that the task should be associated with the tag
contained in the starpu_task::tag_id field. Tag allow the application to synchronize with the task and to express task
dependencies easily.
With starpu_task_insert() and alike this is set to 1 when using STARPU_TAG.

57.3.2.3.1.36 sequential_consistency unsigned starpu_task::sequential_consistency

If this flag is set (which is the default), sequential consistency is enforced for the data parameters of this task for
which sequential consistency is enabled. Clearing this flag permits to disable sequential consistency for this task,
even if data have it enabled.
With starpu_task_insert() and alike this can be specified thanks to STARPU_SEQUENTIAL_CONSISTENCY fol-
lowed by an unsigned.

57.3.2.3.1.37 synchronous unsigned starpu_task::synchronous

If this flag is set, the function starpu_task_submit() is blocking and returns only when the task has been executed
(or if no worker is able to process the task). Otherwise, starpu_task_submit() returns immediately.
With starpu_task_insert() and alike this can be specified thanks to STARPU_TASK_SYNCHRONOUS followed an
int.

57.3.2.3.1.38 execute_on_a_specific_worker unsigned starpu_task::execute_on_a_specific_worker

Default value is 0. If this flag is set, StarPU will bypass the scheduler and directly affect this task to the worker
specified by the field starpu_task::workerid.
With starpu_task_insert() and alike this is set to 1 when using STARPU_EXECUTE_ON_WORKER.

57.3.2.3.1.39 detach unsigned starpu_task::detach

Optional field, default value is 1. If this flag is set, it is not possible to synchronize with the task by the means of
starpu_task_wait() later on. Internal data structures are only guaranteed to be freed once starpu_task_wait() is
called if the flag is not set.
With starpu_task_insert() and alike this is set to 1.

57.3.2.3.1.40 destroy unsigned starpu_task::destroy

Optional value. Default value is 0 for starpu_task_init(), and 1 for starpu_task_create(). If this flag is set, the
task structure will automatically be freed, either after the execution of the callback if the task is detached, or dur-
ing starpu_task_wait() otherwise. If this flag is not set, dynamically allocated data structures will not be freed
until starpu_task_destroy() is called explicitly. Setting this flag for a statically allocated task structure will result
in undefined behaviour. The flag is set to 1 when the task is created by calling starpu_task_create(). Note that
starpu_task_wait_for_all() will not free any task.
With starpu_task_insert() and alike this is set to 1.
Calling starpu_task_set_destroy() can be used to set this field to 1 after submission. Indeed this function will
manage concurrency against the termination of the task.

57.3.2.3.1.41 regenerate unsigned starpu_task::regenerate

Optional field. If this flag is set, the task will be re-submitted to StarPU once it has been executed. This flag must
not be set if the flag starpu_task::destroy is set. This flag must be set before making another task depend on this
one.
With starpu_task_insert() and alike this is set to 0.

Generated by Doxygen

346 Module Documentation a.k.a StarPU’s API

57.3.2.3.1.42 no_submitorder unsigned starpu_task::no_submitorder

do not allocate a submitorder id for this task
With starpu_task_insert() and alike this can be specified thanks to STARPU_TASK_NO_SUBMITORDER followed
by an unsigned.

57.3.2.3.1.43 mf_skip unsigned char starpu_task::mf_skip [private]

This is only used for tasks that use multiformat handle. This should only be used by StarPU.

57.3.2.3.1.44 failed unsigned char starpu_task::failed

Whether this task has failed and will thus have to be retried
Set by StarPU.

57.3.2.3.1.45 scheduled unsigned char starpu_task::scheduled

Whether the scheduler has pushed the task on some queue
Set by StarPU.

57.3.2.3.1.46 prefetched unsigned char starpu_task::prefetched

Whether the scheduler has prefetched the task's data
Set by StarPU.

57.3.2.3.1.47 workerid unsigned starpu_task::workerid

Optional field. If the field starpu_task::execute_on_a_specific_worker is set, this field indicates the identifier of
the worker that should process this task (as returned by starpu_worker_get_id()). This field is ignored if the field
starpu_task::execute_on_a_specific_worker is set to 0.
With starpu_task_insert() and alike this can be specified thanks to STARPU_EXECUTE_ON_WORKER followed by
an int.

57.3.2.3.1.48 workerorder unsigned starpu_task::workerorder

Optional field. If the field starpu_task::execute_on_a_specific_worker is set, this field indicates the per-worker
consecutive order in which tasks should be executed on the worker. Tasks will be executed in consecutive
starpu_task::workerorder values, thus ignoring the availability order or task priority. See Static Scheduling for more
details. This field is ignored if the field starpu_task::execute_on_a_specific_worker is set to 0.
With starpu_task_insert() and alike this can be specified thanks to STARPU_WORKER_ORDER followed by an
unsigned.

57.3.2.3.1.49 workerids uint32_t∗ starpu_task::workerids

Optional field. If the field starpu_task::workerids_len is different from 0, this field indicates an array of bits (stored
as uint32_t values) which indicate the set of workers which are allowed to execute the task. starpu_task::workerid
takes precedence over this.
With starpu_task_insert() and alike, this can be specified along the field workerids_len thanks to STARPU_TASK_WORKERIDS
followed by a number of workers and an array of bits which size is the number of workers.

57.3.2.3.1.50 workerids_len unsigned starpu_task::workerids_len

Optional field. This provides the number of uint32_t values in the starpu_task::workerids array.
With starpu_task_insert() and alike, this can be specified along the field workerids thanks to STARPU_TASK_WORKERIDS
followed by a number of workers and an array of bits which size is the number of workers.

57.3.2.3.1.51 priority int starpu_task::priority

Optional field, the default value is STARPU_DEFAULT_PRIO. This field indicates a level of priority for the task. This
is an integer value that must be set between the return values of the function starpu_sched_get_min_priority() for
the least important tasks, and that of the function starpu_sched_get_max_priority() for the most important tasks
(included). The STARPU_MIN_PRIO and STARPU_MAX_PRIO macros are provided for convenience and respec-
tively return the value of starpu_sched_get_min_priority() and starpu_sched_get_max_priority(). Default priority is
STARPU_DEFAULT_PRIO, which is always defined as 0 in order to allow static task initialization. Scheduling strate-
gies that take priorities into account can use this parameter to take better scheduling decisions, but the scheduling
policy may also ignore it.

Generated by Doxygen

57.3 Codelet And Tasks 347

With starpu_task_insert() and alike this can be specified thanks to STARPU_PRIORITY followed by an unsigned
long long.

57.3.2.3.1.52 status enum starpu_task_status starpu_task::status

Current state of the task.
Call starpu_task_status_get_as_string() to get the status as a string.
Set by StarPU.

57.3.2.3.1.53 magic int starpu_task::magic [private]

This field is set when initializing a task. The function starpu_task_submit() will fail if the field does not have the
correct value. This will hence avoid submitting tasks which have not been properly initialised.

57.3.2.3.1.54 type unsigned starpu_task::type

Allow to get the type of task, for filtering out tasks in profiling outputs, whether it is really internal to StarPU
(STARPU_TASK_TYPE_INTERNAL), a data acquisition synchronization task (STARPU_TASK_TYPE_DATA_ACQUIRE),
or a normal task (STARPU_TASK_TYPE_NORMAL)
Set by StarPU.

57.3.2.3.1.55 color unsigned starpu_task::color

color of the task to be used in dag.dot.
With starpu_task_insert() and alike this can be specified thanks to STARPU_TASK_COLOR followed by an int.

57.3.2.3.1.56 sched_ctx unsigned starpu_task::sched_ctx

Scheduling context.
With starpu_task_insert() and alike this can be specified thanks to STARPU_SCHED_CTX followed by an unsigned.

57.3.2.3.1.57 hypervisor_tag int starpu_task::hypervisor_tag

Help the hypervisor monitor the execution of this task.
With starpu_task_insert() and alike this can be specified thanks to STARPU_HYPERVISOR_TAG followed by an int.

57.3.2.3.1.58 possibly_parallel unsigned starpu_task::possibly_parallel

TODO: related with sched contexts and parallel tasks
With starpu_task_insert() and alike this can be specified thanks to STARPU_POSSIBLY_PARALLEL followed by an
unsigned.

57.3.2.3.1.59 bundle starpu_task_bundle_t starpu_task::bundle

Optional field. The bundle that includes this task. If no bundle is used, this should be NULL.

57.3.2.3.1.60 profiling_info struct starpu_profiling_task_info∗ starpu_task::profiling_info

Optional field. Profiling information for the task.
With starpu_task_insert() and alike this can be specified thanks to STARPU_TASK_PROFILING_INFO followed by
a pointer to the appropriate struct.

57.3.2.3.1.61 flops double starpu_task::flops

The application can set this to the number of floating points operations that the task will have to achieve. StarPU
will measure the time that the task takes, and divide the two to get the GFlop/s achieved by the task. This will
allow getting GFlops/s curves from the tool starpu_perfmodel_plot, and is useful for the hypervisor load
balancing.
With starpu_task_insert() and alike this can be specified thanks to STARPU_FLOPS followed by a double.

57.3.2.3.1.62 predicted double starpu_task::predicted

Output field. Predicted duration of the task in microseconds. This field is only set if the scheduling strategy uses
performance models.
Set by StarPU.

Generated by Doxygen

348 Module Documentation a.k.a StarPU’s API

57.3.2.3.1.63 predicted_transfer double starpu_task::predicted_transfer

Output field. Predicted data transfer duration for the task in microseconds. This field is only valid if the scheduling
strategy uses performance models.
Set by StarPU.

57.3.2.3.1.64 prev struct starpu_task∗ starpu_task::prev [private]

A pointer to the previous task. This should only be used by StarPU schedulers.

57.3.2.3.1.65 next struct starpu_task∗ starpu_task::next [private]

A pointer to the next task. This should only be used by StarPU schedulers.

57.3.2.3.1.66 starpu_private void∗ starpu_task::starpu_private [private]

This is private to StarPU, do not modify.

57.3.2.3.1.67 omp_task struct starpu_omp_task∗ starpu_task::omp_task [private]

This is private to StarPU, do not modify.

57.3.2.3.1.68 bubble_parent unsigned long starpu_task::bubble_parent

When using hierarchical dags, the job identifier of the bubble task which created the current task

57.3.2.3.1.69 bubble_func starpu_bubble_func_t starpu_task::bubble_func

When using hierarchical dags, a pointer to the bubble decision function

57.3.2.3.1.70 bubble_func_arg void∗ starpu_task::bubble_func_arg

When using hierarchical dags, a pointer to an argument to be given when calling the bubble decision function

57.3.2.3.1.71 bubble_gen_dag_func starpu_bubble_gen_dag_func_t starpu_task::bubble_gen_dag_←↩

func

When using hierarchical dags, a pointer to the bubble DAG generation function

57.3.2.3.1.72 bubble_gen_dag_func_arg void∗ starpu_task::bubble_gen_dag_func_arg

When using hierarchical dags, a pointer to an argument to be given when calling the bubble DAG generation function

57.3.2.3.1.73 nb_termination_call_required unsigned starpu_task::nb_termination_call_required

[private]

This is private to StarPU, do not modify.

57.3.2.3.1.74 sched_data void∗ starpu_task::sched_data

This field is managed by the scheduler, is it allowed to do whatever with it. Typically, some area would be allocated
on push, and released on pop.
With starpu_task_insert() and alike this is set when using STARPU_TASK_SCHED_DATA.

57.3.3 Macro Definition Documentation

57.3.3.1 STARPU_NMAXBUFS

#define STARPU_NMAXBUFS

Define the maximum number of buffers that tasks will be able to take as parameters. The default value is 8, it can
be changed by using the configure option --enable-maxbuffers.

Generated by Doxygen

57.3 Codelet And Tasks 349

57.3.3.2 STARPU_NOWHERE

#define STARPU_NOWHERE

To be used when setting the field starpu_codelet::where to specify that the codelet has no computation part, and
thus does not need to be scheduled, and data does not need to be actually loaded. This is thus essentially used for
synchronization tasks.

57.3.3.3 STARPU_WORKER_TO_MASK

#define STARPU_WORKER_TO_MASK(

worker_archtype)

Convert from enum starpu_worker_archtype to worker type mask for use in "where" fields

57.3.3.4 STARPU_CPU

#define STARPU_CPU

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a CPU processing unit.

57.3.3.5 STARPU_CUDA

#define STARPU_CUDA

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a CUDA processing unit.

57.3.3.6 STARPU_HIP

#define STARPU_HIP

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a HIP processing unit.

57.3.3.7 STARPU_OPENCL

#define STARPU_OPENCL

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a OpenCL processing unit.

57.3.3.8 STARPU_MAX_FPGA

#define STARPU_MAX_FPGA

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a MAX FPGA.

57.3.3.9 STARPU_MPI_MS

#define STARPU_MPI_MS

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a MPI Slave processing unit.

57.3.3.10 STARPU_TCPIP_MS

#define STARPU_TCPIP_MS

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a TCP/IP Slave processing unit.

57.3.3.11 STARPU_CODELET_SIMGRID_EXECUTE

#define STARPU_CODELET_SIMGRID_EXECUTE

Value to be set in starpu_codelet::flags to execute the codelet functions even in simgrid mode.

Generated by Doxygen

350 Module Documentation a.k.a StarPU’s API

57.3.3.12 STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT

#define STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT

Value to be set in starpu_codelet::flags to execute the codelet functions even in simgrid mode, and later inject the
measured timing inside the simulation.

57.3.3.13 STARPU_CODELET_NOPLANS

#define STARPU_CODELET_NOPLANS

Value to be set in starpu_codelet::flags to make starpu_task_submit() not submit automatic asynchronous partition-
ing/unpartitioning.

57.3.3.14 STARPU_CUDA_ASYNC

#define STARPU_CUDA_ASYNC

Value to be set in starpu_codelet::cuda_flags to allow asynchronous CUDA kernel execution. This requires to use
the proper CUDA stream, see CUDA-specific Optimizations

57.3.3.15 STARPU_HIP_ASYNC

#define STARPU_HIP_ASYNC

Value to be set in starpu_codelet::hip_flags to allow asynchronous HIP kernel execution. This requires to use the
proper HIP stream

57.3.3.16 STARPU_OPENCL_ASYNC

#define STARPU_OPENCL_ASYNC

Value to be set in starpu_codelet::opencl_flags to allow asynchronous OpenCL kernel execution. This requires to
use proper queueing, see OpenCL-specific Optimizations

57.3.3.17 STARPU_MAIN_RAM

#define STARPU_MAIN_RAM

To be used as memory node number for the main CPU memory node.

57.3.3.18 STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

#define STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

Deprecated Setting the field starpu_codelet::cpu_func with this macro indicates the codelet will have several
implementations. The use of this macro is deprecated. One should always only define the field
starpu_codelet::cpu_funcs.

57.3.3.19 STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

#define STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

Deprecated Setting the field starpu_codelet::cuda_func with this macro indicates the codelet will have several
implementations. The use of this macro is deprecated. One should always only define the field
starpu_codelet::cuda_funcs.

57.3.3.20 STARPU_MULTIPLE_HIP_IMPLEMENTATIONS

#define STARPU_MULTIPLE_HIP_IMPLEMENTATIONS

Deprecated Setting the field starpu_codelet::hip_func with this macro indicates the codelet will have several
implementations. The use of this macro is deprecated. One should always only define the field
starpu_codelet::hip_funcs.

Generated by Doxygen

57.3 Codelet And Tasks 351

57.3.3.21 STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

#define STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

Deprecated Setting the field starpu_codelet::opencl_func with this macro indicates the codelet will have several
implementations. The use of this macro is deprecated. One should always only define the field
starpu_codelet::opencl_funcs.

57.3.3.22 STARPU_VARIABLE_NBUFFERS

#define STARPU_VARIABLE_NBUFFERS

Value to set in starpu_codelet::nbuffers to specify that the codelet can accept a variable number of buffers, specified
in starpu_task::nbuffers.

57.3.3.23 STARPU_SPECIFIC_NODE_LOCAL

#define STARPU_SPECIFIC_NODE_LOCAL

Value to be set in the starpu_codelet::nodes field to request StarPU to put the data in local memory of the worker
running the task (this is the default behavior).

57.3.3.24 STARPU_SPECIFIC_NODE_CPU

#define STARPU_SPECIFIC_NODE_CPU

Value to be set in the starpu_codelet::nodes field to request StarPU to put the data in CPU-accessible memory (and
let StarPU choose the NUMA node).

57.3.3.25 STARPU_SPECIFIC_NODE_SLOW

#define STARPU_SPECIFIC_NODE_SLOW

Value to be set in the starpu_codelet::nodes field to request StarPU to put the data in some slow memory.

57.3.3.26 STARPU_SPECIFIC_NODE_FAST

#define STARPU_SPECIFIC_NODE_FAST

Value to be set in the starpu_codelet::nodes field to request StarPU to put the data in some fast memory.

57.3.3.27 STARPU_SPECIFIC_NODE_LOCAL_OR_CPU

#define STARPU_SPECIFIC_NODE_LOCAL_OR_CPU

Value to be set in the starpu_codelet::nodes field to let StarPU decide whether to put the data in the local memory
of the worker running the task, or in CPU-accessible memory (and let StarPU choose the NUMA node).

57.3.3.28 STARPU_SPECIFIC_NODE_NONE

#define STARPU_SPECIFIC_NODE_NONE

Value to be set in the starpu_codelet::nodes field to make StarPU not actually put the data in any particular memory,
i.e. the task will only get the sequential consistency dependencies, but not actually trigger any data transfer.

57.3.3.29 STARPU_TASK_TYPE_NORMAL

#define STARPU_TASK_TYPE_NORMAL

To be used in the starpu_task::type field, for normal application tasks.

57.3.3.30 STARPU_TASK_TYPE_INTERNAL

#define STARPU_TASK_TYPE_INTERNAL

To be used in the starpu_task::type field, for StarPU-internal tasks.

Generated by Doxygen

352 Module Documentation a.k.a StarPU’s API

57.3.3.31 STARPU_TASK_TYPE_DATA_ACQUIRE

#define STARPU_TASK_TYPE_DATA_ACQUIRE

To be used in the starpu_task::type field, for StarPU-internal data acquisition tasks.

57.3.3.32 STARPU_TASK_INITIALIZER

#define STARPU_TASK_INITIALIZER

Value to be used to initialize statically allocated tasks. This is equivalent to initializing a structure starpu_task with
the function starpu_task_init().

57.3.3.33 STARPU_TASK_GET_NBUFFERS

#define STARPU_TASK_GET_NBUFFERS(

task)

Return the number of buffers for task, i.e. starpu_codelet::nbuffers, or starpu_task::nbuffers if the former is
STARPU_VARIABLE_NBUFFERS.

57.3.3.34 STARPU_TASK_GET_HANDLE

#define STARPU_TASK_GET_HANDLE(

task,

i)

Return the i -th data handle of task. If task is defined with a static or dynamic number of handles, will either
return the i -th element of the field starpu_task::handles or the i -th element of the field starpu_task::dyn_handles
(see Setting Many Data Handles For a Task)

57.3.3.35 STARPU_TASK_GET_HANDLES

#define STARPU_TASK_GET_HANDLES(

task)

Return all the data handles of task. If task is defined with a static or dynamic number of handles, will either
return all the element of the field starpu_task::handles or all the elements of the field starpu_task::dyn_handles (see
Setting Many Data Handles For a Task)

57.3.3.36 STARPU_TASK_SET_HANDLE

#define STARPU_TASK_SET_HANDLE(

task,

handle,

i)

Set the i -th data handle of task with handle. If task is defined with a static or dynamic number of
handles, will either set the i -th element of the field starpu_task::handles or the i -th element of the field
starpu_task::dyn_handles (see Setting Many Data Handles For a Task)

57.3.3.37 STARPU_CODELET_GET_MODE

#define STARPU_CODELET_GET_MODE(

codelet,

i)

Return the access mode of the i -th data handle of codelet. If codelet is defined with a static or dynamic
number of handles, will either return the i -th element of the field starpu_codelet::modes or the i -th element of the
field starpu_codelet::dyn_modes (see Setting Many Data Handles For a Task)

57.3.3.38 STARPU_CODELET_SET_MODE

#define STARPU_CODELET_SET_MODE(

codelet,

mode,

i)

Generated by Doxygen

57.3 Codelet And Tasks 353

Set the access mode of the i -th data handle of codelet. If codelet is defined with a static or dynamic number
of handles, will either set the i -th element of the field starpu_codelet::modes or the i -th element of the field
starpu_codelet::dyn_modes (see Setting Many Data Handles For a Task)

57.3.3.39 STARPU_TASK_GET_MODE

#define STARPU_TASK_GET_MODE(

task,

i)

Return the access mode of the i -th data handle of task. If task is defined with a static or dynamic number
of handles, will either return the i -th element of the field starpu_task::modes or the i -th element of the field
starpu_task::dyn_modes (see Setting Many Data Handles For a Task)

57.3.3.40 STARPU_TASK_SET_MODE

#define STARPU_TASK_SET_MODE(

task,

mode,

i)

Set the access mode of the i -th data handle of task. If task is defined with a static or dynamic number
of handles, will either set the i -th element of the field starpu_task::modes or the i -th element of the field
starpu_task::dyn_modes (see Setting Many Data Handles For a Task)

57.3.3.41 STARPU_CODELET_GET_NODE

#define STARPU_CODELET_GET_NODE(

codelet,

i)

Return the target node of the i -th data handle of codelet. If node is defined with a static or dynamic number
of handles, will either return the i -th element of the field starpu_codelet::nodes or the i -th element of the field
starpu_codelet::dyn_nodes (see Setting Many Data Handles For a Task)

57.3.3.42 STARPU_CODELET_SET_NODE

#define STARPU_CODELET_SET_NODE(

codelet,

__node,

i)

Set the target node of the i -th data handle of codelet. If codelet is defined with a static or dynamic number
of handles, will either set the i -th element of the field starpu_codelet::nodes or the i -th element of the field
starpu_codelet::dyn_nodes (see Setting Many Data Handles For a Task)

57.3.4 Typedef Documentation

57.3.4.1 starpu_cpu_func_t

typedef void(∗ starpu_cpu_func_t) (void ∗∗, void ∗)
CPU implementation of a codelet.

57.3.4.2 starpu_cuda_func_t

typedef void(∗ starpu_cuda_func_t) (void ∗∗, void ∗)
CUDA implementation of a codelet.

57.3.4.3 starpu_hip_func_t

typedef void(∗ starpu_hip_func_t) (void ∗∗, void ∗)
HIP implementation of a codelet.

Generated by Doxygen

354 Module Documentation a.k.a StarPU’s API

57.3.4.4 starpu_opencl_func_t

typedef void(∗ starpu_opencl_func_t) (void ∗∗, void ∗)
OpenCL implementation of a codelet.

57.3.4.5 starpu_max_fpga_func_t

typedef void(∗ starpu_max_fpga_func_t) (void ∗∗, void ∗)
Maxeler FPGA implementation of a codelet.

57.3.5 Enumeration Type Documentation

57.3.5.1 starpu_codelet_type

enum starpu_codelet_type

Describe the type of parallel task. See Parallel Tasks for details.

Enumerator

STARPU_SEQ (default) for classical sequential tasks.

STARPU_SPMD for a parallel task whose threads are handled by StarPU, the code has to use
starpu_combined_worker_get_size() and starpu_combined_worker_get_rank() to
distribute the work.

STARPU_FORKJOIN for a parallel task whose threads are started by the codelet function, which has to use
starpu_combined_worker_get_size() to determine how many threads should be
started.

57.3.5.2 starpu_task_status

enum starpu_task_status

todo

Enumerator

STARPU_TASK_INIT The task has just been initialized.

STARPU_TASK_INIT The task has just been initialized.

STARPU_TASK_BLOCKED The task has just been submitted, and its dependencies has not
been checked yet.

STARPU_TASK_READY The task is ready for execution.

STARPU_TASK_RUNNING The task is running on some worker.

STARPU_TASK_FINISHED The task is finished executing.

STARPU_TASK_BLOCKED_ON_TAG The task is waiting for a tag.

STARPU_TASK_BLOCKED_ON_TASK The task is waiting for a task.

STARPU_TASK_BLOCKED_ON_DATA The task is waiting for some data.

STARPU_TASK_STOPPED The task is stopped.

57.3.6 Function Documentation

Generated by Doxygen

57.3 Codelet And Tasks 355

57.3.6.1 starpu_task_init()

void starpu_task_init (

struct starpu_task ∗ task)

Initialize task with default values. This function is implicitly called by starpu_task_create(). By default, tasks ini-
tialized with starpu_task_init() must be deinitialized explicitly with starpu_task_clean(). Tasks can also be initialized
statically, using STARPU_TASK_INITIALIZER. See Performance Model Calibration for more details.

57.3.6.2 starpu_task_clean()

void starpu_task_clean (

struct starpu_task ∗ task)

Release all the structures automatically allocated to execute task, but not the task structure itself and values set by
the user remain unchanged. It is thus useful for statically allocated tasks for instance. It is also useful when users
want to execute the same operation several times with as least overhead as possible. It is called automatically
by starpu_task_destroy(). It has to be called only after explicitly waiting for the task or after starpu_shutdown()
(waiting for the callback is not enough, since StarPU still manipulates the task after calling the callback). See
Performance Model Calibration for more details.

57.3.6.3 starpu_task_create()

struct starpu_task ∗ starpu_task_create (

void)

Allocate a task structure and initialize it with default values. Tasks allocated dynamically with starpu_task_create()
are automatically freed when the task is terminated. This means that the task pointer can not be used any more
once the task is submitted, since it can be executed at any time (unless dependencies make it wait) and thus freed
at any time. If the field starpu_task::destroy is explicitly unset, the resources used by the task have to be freed by
calling starpu_task_destroy(). See Submitting A Task for more details.

57.3.6.4 starpu_task_create_sync()

struct starpu_task ∗ starpu_task_create_sync (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode)

Allocate a task structure that does nothing but accesses data handle with mode mode. This al-
lows to synchronize with the task graph, according to the sequential consistency, against tasks sub-
mitted before or after submitting this task. One can then use starpu_task_declare_deps_array() or
starpu_task_end_dep_add() / starpu_task_end_dep_release() to add dependencies against this task before
submitting it. See Synchronization Tasks for more details.

57.3.6.5 starpu_task_destroy()

void starpu_task_destroy (

struct starpu_task ∗ task)

Free the resource allocated during starpu_task_create() and associated with task. This function is called automat-
ically after the execution of a task when the field starpu_task::destroy is set, which is the default for tasks created
by starpu_task_create(). Calling this function on a statically allocated task results in an undefined behaviour. See
Per-task Feedback and Performance Model Example for more details.

57.3.6.6 starpu_task_set_destroy()

void starpu_task_set_destroy (

struct starpu_task ∗ task)

Tell StarPU to free the resources associated with task when the task is over. This is equivalent to having set
task->destroy = 1 before submission, the difference is that this can be called after submission and properly deals
with concurrency with the task execution. See Waiting For Tasks for more details.

Generated by Doxygen

356 Module Documentation a.k.a StarPU’s API

57.3.6.7 starpu_task_submit()

int starpu_task_submit (

struct starpu_task ∗ task)

Submit task to StarPU. Calling this function does not mean that the task will be executed immediately as there can
be data or task (tag) dependencies that are not fulfilled yet: StarPU will take care of scheduling this task with respect
to such dependencies. This function returns immediately if the field starpu_task::synchronous is set to 0, and block
until the termination of the task otherwise. It is also possible to synchronize the application with asynchronous
tasks by the means of tags, using the function starpu_tag_wait() function for instance. In case of success, this
function returns 0, a return value of -ENODEV means that there is no worker able to process this task (e.g. there
is no GPU available and this task is only implemented for CUDA devices). starpu_task_submit() can be called from
anywhere, including codelet functions and callbacks, provided that the field starpu_task::synchronous is set to 0.
See Submitting A Task for more details.

57.3.6.8 starpu_task_submit_nodeps()

int starpu_task_submit_nodeps (

struct starpu_task ∗ task)

Submit task to StarPU with dependency bypass.
This can only be called on behalf of another task which has already taken the proper dependencies, e.g. this task
is just an attempt of doing the actual computation of that task. See Retrying tasks for more details.

57.3.6.9 starpu_task_submit_to_ctx()

int starpu_task_submit_to_ctx (

struct starpu_task ∗ task,

unsigned sched_ctx_id)

Submit task to the context sched_ctx_id. By default, starpu_task_submit() submits the task to a global context
that is created automatically by StarPU. See Submitting Tasks To A Context for more details.

57.3.6.10 starpu_task_finished()

int starpu_task_finished (

struct starpu_task ∗ task)

Return 1 if task is terminated. See Waiting For Tasks for more details.

57.3.6.11 starpu_task_wait()

int starpu_task_wait (

struct starpu_task ∗ task)

Block until task has been executed. It is not possible to synchronize with a task more than once. It is not possible to
wait for synchronous or detached tasks. Upon successful completion, this function returns 0. Otherwise, -EINVAL
indicates that the specified task was either synchronous or detached. See Submitting A Task for more details.

57.3.6.12 starpu_task_wait_array()

int starpu_task_wait_array (

struct starpu_task ∗∗ tasks,

unsigned nb_tasks)

Allow to wait for an array of tasks. Upon successful completion, this function returns 0. Otherwise, -EINVAL
indicates that one of the tasks was either synchronous or detached. See Waiting For Tasks for more details.

57.3.6.13 starpu_task_wait_for_all()

int starpu_task_wait_for_all (

void)

Block until all the tasks that were submitted (to the current context or the global one if there is no current context)
are terminated. It does not destroy these tasks. See Submitting A Task for more details.

Generated by Doxygen

57.3 Codelet And Tasks 357

57.3.6.14 starpu_task_wait_for_n_submitted()

int starpu_task_wait_for_n_submitted (

unsigned n)

Block until there are n submitted tasks left (to the current context or the global one if there is no current context) to
be executed. It does not destroy these tasks. See How To Reuse Memory for more details.

57.3.6.15 starpu_task_wait_for_all_in_ctx()

int starpu_task_wait_for_all_in_ctx (

unsigned sched_ctx_id)

Wait until all the tasks that were already submitted to the context sched_ctx_id have been terminated. See
Waiting For Tasks for more details.

57.3.6.16 starpu_task_wait_for_n_submitted_in_ctx()

int starpu_task_wait_for_n_submitted_in_ctx (

unsigned sched_ctx_id,

unsigned n)

Wait until there are n tasks submitted left to be executed that were already submitted to the context sched_ctx←↩

_id. See Waiting For Tasks for more details.

57.3.6.17 starpu_task_wait_for_no_ready()

int starpu_task_wait_for_no_ready (

void)

Wait until there is no more ready task. See Waiting For Tasks for more details.

57.3.6.18 starpu_task_nready()

int starpu_task_nready (

void)

Return the number of submitted tasks which are ready for execution are already executing. It thus does not include
tasks waiting for dependencies. See Waiting For Tasks for more details.

57.3.6.19 starpu_task_nsubmitted()

int starpu_task_nsubmitted (

void)

Return the number of submitted tasks which have not completed yet. See Waiting For Tasks for more details.

57.3.6.20 starpu_iteration_push()

void starpu_iteration_push (

unsigned long iteration)

Set the iteration number for all the tasks to be submitted after this call. This is typically called at the beginning of a
task submission loop. This number will then show up in tracing tools. A corresponding starpu_iteration_pop() call
must be made to match the call to starpu_iteration_push(), at the end of the same task submission loop, typically.
Nested calls to starpu_iteration_push() and starpu_iteration_pop() are allowed, to describe a loop nest for instance,
provided that they match properly.
See Creating a Gantt Diagram for more details.

57.3.6.21 starpu_iteration_pop()

void starpu_iteration_pop (

void)

Drop the iteration number for submitted tasks. This must match a previous call to starpu_iteration_push(), and is
typically called at the end of a task submission loop. See Creating a Gantt Diagram for more details.

Generated by Doxygen

358 Module Documentation a.k.a StarPU’s API

57.3.6.22 starpu_do_schedule()

void starpu_do_schedule (

void)

See Graph-based Scheduling for more details.

57.3.6.23 starpu_codelet_init()

void starpu_codelet_init (

struct starpu_codelet ∗ cl)

Initialize cl with default values. Codelets should preferably be initialized statically as shown in Defining A Codelet.
However such a initialisation is not always possible, e.g. when using C++. See Defining A Codelet for more details.

57.3.6.24 starpu_codelet_display_stats()

void starpu_codelet_display_stats (

struct starpu_codelet ∗ cl)

Output on stderr some statistics on the codelet cl. See Per-codelet Feedback for more details.

57.3.6.25 starpu_task_get_current()

struct starpu_task ∗ starpu_task_get_current (

void)

Return the task currently executed by the worker, or NULL if it is called either from a thread that is not a task or
simply because there is no task being executed at the moment. See Per-task Feedback for more details.

57.3.6.26 starpu_task_get_current_data_node()

int starpu_task_get_current_data_node (

unsigned i)

Return the memory node number of parameter i of the task currently executed, or -1 if it is called either from a
thread that is not a task or simply because there is no task being executed at the moment.
Usually, the returned memory node number is simply the memory node for the current worker. That may however
be different when using e.g. starpu_codelet::specific_nodes.
See Specifying A Target Node For Task Data for more details.

57.3.6.27 starpu_task_get_model_name()

const char ∗ starpu_task_get_model_name (

struct starpu_task ∗ task)

Return the name of the performance model of task. See Performance Model Example for more details.

57.3.6.28 starpu_task_get_name()

const char ∗ starpu_task_get_name (

struct starpu_task ∗ task)

Return the name of task, i.e. either its starpu_task::name field, or the name of the corresponding performance
model. See Getting Task Details for more details.

57.3.6.29 starpu_task_dup()

struct starpu_task ∗ starpu_task_dup (

struct starpu_task ∗ task)

Allocate a task structure which is the exact duplicate of task. See Other Task Utility Functions for more details.

Generated by Doxygen

57.3 Codelet And Tasks 359

57.3.6.30 starpu_task_set_implementation()

void starpu_task_set_implementation (

struct starpu_task ∗ task,

unsigned impl)

This function should be called by schedulers to specify the codelet implementation to be executed when executing
task. See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.3.6.31 starpu_task_get_implementation()

unsigned starpu_task_get_implementation (

struct starpu_task ∗ task)

Return the codelet implementation to be executed when executing task. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.3.6.32 starpu_create_sync_task()

void starpu_create_sync_task (

starpu_tag_t sync_tag,

unsigned ndeps,

starpu_tag_t ∗ deps,

void(∗)(void ∗) callback,

void ∗ callback_arg)

Create and submit an empty task that unlocks a tag once all its dependencies are fulfilled. See
Synchronization Tasks for more details.

57.3.6.33 starpu_create_callback_task()

void starpu_create_callback_task (

void(∗)(void ∗) callback,

void ∗ callback_arg)

Create and submit an empty task with the given callback. See Synchronization Tasks for more details.

57.3.6.34 starpu_task_ft_prologue()

void starpu_task_ft_prologue (

void ∗ check_ft)

Function to be used as a prologue callback to enable fault tolerance for the task. This prologue will create a try-task,
i.e a duplicate of the task, which will to the actual computation.
The prologue argument can be set to a check_ft function that will be called on termination of the duplicate, which
can check the result of the task, and either confirm success, or resubmit another attempt. If it is not set, the default
implementation is to just resubmit a new try-task.
See Retrying tasks for more details.

57.3.6.35 starpu_task_ft_create_retry()

struct starpu_task ∗ starpu_task_ft_create_retry (

const struct starpu_task ∗ meta_task,

const struct starpu_task ∗ template_task,

void(∗)(void ∗) check_ft)

Create a try-task for a meta_task, given a template_task task template. The meta task can be passed as
template on the first call, but since it is mangled by starpu_task_ft_create_retry(), further calls (typically made by
the check_ft callback) need to be passed the previous try-task as template task.
check_ft is similar to the prologue argument of starpu_task_ft_prologue(), and is typically set to the very function
calling starpu_task_ft_create_retry().
The try-task is returned, and can be modified (e.g. to change scheduling parameters) before being submitted with
starpu_task_submit_nodeps().
See Retrying tasks for more details.

Generated by Doxygen

360 Module Documentation a.k.a StarPU’s API

57.3.6.36 starpu_task_ft_failed()

void starpu_task_ft_failed (

struct starpu_task ∗ task)

Record that this task failed, and should thus be retried. This is usually called from the task codelet function itself,
after checking the result and noticing that the computation went wrong, and thus the task should be retried. The
performance of this task execution will not be recorded for performance models.
This can only be called for a task whose data access modes are either STARPU_R and STARPU_W.

57.3.6.37 starpu_task_ft_success()

void starpu_task_ft_success (

struct starpu_task ∗ meta_task)

Notify that the try-task was successful and thus the meta-task was successful. See Retrying tasks for more details.

57.3.6.38 starpu_task_watchdog_set_hook()

void starpu_task_watchdog_set_hook (

void(∗)(void ∗) hook,

void ∗ hook_arg)

Set the function to call when the watchdog detects that StarPU has not finished any task for STARPU_WATCHDOG_TIMEOUT
seconds. See Watchdog Support for more details.

57.3.6.39 starpu_task_status_get_as_string()

char ∗ starpu_task_status_get_as_string (

enum starpu_task_status status)

Return the given status as a string

57.3.6.40 starpu_set_limit_min_submitted_tasks()

void starpu_set_limit_min_submitted_tasks (

int limit_min)

Specify a minimum number of submitted tasks allowed at a given time, this allows to control the task submission
flow. The value can also be specified with the environment variable STARPU_LIMIT_MIN_SUBMITTED_TASKS.
See How To Reduce The Memory Footprint Of Internal Data Structures for more details.

57.3.6.41 starpu_set_limit_max_submitted_tasks()

void starpu_set_limit_max_submitted_tasks (

int limit_min)

Specify a maximum number of submitted tasks allowed at a given time, this allows to control the task submission
flow. The value can also be specified with the environment variable STARPU_LIMIT_MAX_SUBMITTED_TASKS.
See How To Reduce The Memory Footprint Of Internal Data Structures for more details.

57.3.7 Variable Documentation

57.3.7.1 starpu_codelet_nop

struct starpu_codelet starpu_codelet_nop [extern]

Codelet with empty function defined for all drivers

Generated by Doxygen

57.4 CUDA Extensions 361

57.4 CUDA Extensions

Macros

• #define STARPU_USE_CUDA
• #define STARPU_HAVE_NVML_H
• #define STARPU_MAXCUDADEVS
• #define STARPU_CUBLAS_REPORT_ERROR(status)
• #define STARPU_CUDA_REPORT_ERROR(status)

Functions

• void starpu_cublas_report_error (const char ∗func, const char ∗file, int line, int status)
• void starpu_cuda_report_error (const char ∗func, const char ∗file, int line, cudaError_t status)
• cudaStream_t starpu_cuda_get_local_stream (void)
• const struct cudaDeviceProp ∗ starpu_cuda_get_device_properties (unsigned workerid)
• int starpu_cuda_copy_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t ssize, cudaStream_t stream, enum cudaMemcpyKind kind)
• int starpu_cuda_copy2d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, cudaStream_t stream, enum cudaMemcpy←↩

Kind kind)
• int starpu_cuda_copy3d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks_1, size_t ld1_src, size_t ld1_dst, size_t numblocks_2, size_t ld2_src,
size_t ld2_dst, cudaStream_t stream, enum cudaMemcpyKind kind)

• void starpu_cuda_set_device (unsigned devid)
• nvmlDevice_t starpu_cuda_get_nvmldev (unsigned devid)

• void starpu_cusparse_init (void)
• void starpu_cusparse_shutdown (void)
• cusparseHandle_t starpu_cusparse_get_local_handle (void)

• void starpu_cublas_init (void)
• void starpu_cublas_set_stream (void)
• void starpu_cublas_shutdown (void)

• cublasHandle_t starpu_cublas_get_local_handle (void)

• void starpu_cusolver_init (void)

57.4.1 Detailed Description

57.4.2 Macro Definition Documentation

57.4.2.1 STARPU_USE_CUDA

#define STARPU_USE_CUDA

Defined when StarPU has been installed with CUDA support. It should be used in your code to detect the availability
of CUDA.

57.4.2.2 STARPU_HAVE_NVML_H

#define STARPU_HAVE_NVML_H

Defined when StarPU has been installed with NVidia-ML support. It should be used in your code to detect the
availability of NVML-related functions.

Generated by Doxygen

362 Module Documentation a.k.a StarPU’s API

57.4.2.3 STARPU_MAXCUDADEVS

#define STARPU_MAXCUDADEVS

Define the maximum number of CUDA devices that are supported by StarPU.

57.4.2.4 STARPU_CUBLAS_REPORT_ERROR

#define STARPU_CUBLAS_REPORT_ERROR(

status)

Call starpu_cublas_report_error(), passing the current function, file and line position.

57.4.2.5 STARPU_CUDA_REPORT_ERROR

#define STARPU_CUDA_REPORT_ERROR(

status)

Call starpu_cuda_report_error(), passing the current function, file and line position.

57.4.3 Function Documentation

57.4.3.1 starpu_cublas_report_error()

void starpu_cublas_report_error (

const char ∗ func,

const char ∗ file,

int line,

int status)

Report a CUBLAS error. See CUDA Support for more details.

57.4.3.2 starpu_cuda_report_error()

void starpu_cuda_report_error (

const char ∗ func,

const char ∗ file,

int line,

cudaError_t status)

Report a CUDA error. See CUDA Support for more details.

57.4.3.3 starpu_cuda_get_local_stream()

cudaStream_t starpu_cuda_get_local_stream (

void)

Return the current worker’s CUDA stream. StarPU provides a stream for every CUDA device controlled by Star←↩

PU. This function is only provided for convenience so that programmers can easily use asynchronous operations
within codelets without having to create a stream by hand. Note that the application is not forced to use the
stream provided by starpu_cuda_get_local_stream() and may also create its own streams. Synchronizing with
cudaDeviceSynchronize() is allowed, but will reduce the likelihood of having all transfers overlapped. See
CUDA-specific Optimizations for more details.

57.4.3.4 starpu_cuda_get_device_properties()

const struct cudaDeviceProp ∗ starpu_cuda_get_device_properties (

unsigned workerid)

Return a pointer to device properties for worker workerid (assumed to be a CUDA worker). See
Enabling Implementation According To Capabilities for more details.

Generated by Doxygen

57.4 CUDA Extensions 363

57.4.3.5 starpu_cuda_copy_async_sync()

int starpu_cuda_copy_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

size_t ssize,

cudaStream_t stream,

enum cudaMemcpyKind kind)

Copy ssize bytes from the pointer src_ptr on src_node to the pointer dst_ptr on dst_node. The
function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or if
stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch
was successful. It returns 0 if the synchronous copy was successful, or fails otherwise.
See CUDA Support for more details.

57.4.3.6 starpu_cuda_copy2d_async_sync()

int starpu_cuda_copy2d_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

size_t blocksize,

size_t numblocks,

size_t ld_src,

size_t ld_dst,

cudaStream_t stream,

enum cudaMemcpyKind kind)

Copy numblocks blocks of blocksize bytes from the pointer src_ptr on src_node to the pointer dst←↩

_ptr on dst_node.
The blocks start at addresses which are ld_src (resp. ld_dst) bytes apart in the source (resp. destination) interface.
The function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or
if stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch
was successful. It returns 0 if the synchronous copy was successful, or fails otherwise.
See CUDA Support for more details.

57.4.3.7 starpu_cuda_copy3d_async_sync()

int starpu_cuda_copy3d_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

size_t blocksize,

size_t numblocks_1,

size_t ld1_src,

size_t ld1_dst,

size_t numblocks_2,

size_t ld2_src,

size_t ld2_dst,

cudaStream_t stream,

enum cudaMemcpyKind kind)

Copy numblocks_1 ∗ numblocks_2 blocks of blocksize bytes from the pointer src_ptr on src_node
to the pointer dst_ptr on dst_node.
The blocks are grouped by numblocks_1 blocks whose start addresses are ld1_src (resp. ld1_dst) bytes apart
in the source (resp. destination) interface.
The function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or
if stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch

Generated by Doxygen

364 Module Documentation a.k.a StarPU’s API

was successful. It returns 0 if the synchronous copy was successful, or fails otherwise.
See CUDA Support for more details.

57.4.3.8 starpu_cuda_set_device()

void starpu_cuda_set_device (

unsigned devid)

Call cudaSetDevice(devid) or cudaGLSetGLDevice(devid), according to whether devid is among
the field starpu_conf::cuda_opengl_interoperability.
See CUDA Support for more details.

57.4.3.9 starpu_cuda_get_nvmldev()

nvmlDevice_t starpu_cuda_get_nvmldev (

unsigned devid)

Return the nvml device for a CUDA device See CUDA Support for more details.

57.4.3.10 starpu_cusparse_init()

void starpu_cusparse_init (

void)

Initialize CUSPARSE on every CUDA device controlled by StarPU. This call blocks until CUSPARSE has been
properly initialized on every device. See CUDA-specific Optimizations for more details.

57.4.3.11 starpu_cublas_init()

void starpu_cublas_init (

void)

Initialize CUBLAS on every CUDA device. The CUBLAS library must be initialized prior to any CUBLAS call.
Calling starpu_cublas_init() will initialize CUBLAS on every CUDA device controlled by StarPU. This call blocks until
CUBLAS has been properly initialized on every device. See CUDA-specific Optimizations for more details.

57.4.3.12 starpu_cublas_get_local_handle()

cublasHandle_t starpu_cublas_get_local_handle (

void)

Return the CUBLAS handle to be used to queue CUBLAS kernels. It is properly initialized and configured for
multistream by starpu_cublas_init(). See CUDA-specific Optimizations for more details.

57.4.3.13 starpu_cusolver_init()

void starpu_cusolver_init (

void)

Initialize CUSOLVER on every CUDA device controlled by StarPU. This call blocks until CUSOLVER has been
properly initialized on every device.
See CUDA-specific Optimizations

57.4.3.14 starpu_cublas_set_stream()

void starpu_cublas_set_stream (

void)

Set the proper CUBLAS stream for CUBLAS v1. This must be called from the CUDA codelet before calling CUBLAS
v1 kernels, so that they are queued on the proper CUDA stream. When using one thread per CUDA worker, this
function does not do anything since the CUBLAS stream does not change, and is set once by starpu_cublas_init().
See CUDA-specific Optimizations for more details.

Generated by Doxygen

57.4 CUDA Extensions 365

57.4.3.15 starpu_cublas_shutdown()

void starpu_cublas_shutdown (

void)

Synchronously deinitialize the CUBLAS library on every CUDA device. See CUDA-specific Optimizations for more
details.

57.4.3.16 starpu_cusparse_shutdown()

void starpu_cusparse_shutdown (

void)

Synchronously deinitialize the CUSPARSE library on every CUDA device. See CUDA-specific Optimizations for
more details.

57.4.3.17 starpu_cusparse_get_local_handle()

cusparseHandle_t starpu_cusparse_get_local_handle (

void)

Return the CUSPARSE handle to be used to queue CUSPARSE kernels. It is properly initialized and configured for
multistream by starpu_cusparse_init(). See CUDA-specific Optimizations for more details.

Generated by Doxygen

366 Module Documentation a.k.a StarPU’s API

57.5 Data Interfaces

Data management is done at a high-level in StarPU: rather than accessing a mere list of contiguous buffers, the
tasks may manipulate data that are described by a high-level construct which we call data interface.

Data Structures

• struct starpu_data_copy_methods
• struct starpu_data_interface_ops
• struct starpu_matrix_interface
• struct starpu_coo_interface
• struct starpu_block_interface
• struct starpu_tensor_interface
• struct starpu_ndim_interface
• struct starpu_vector_interface
• struct starpu_variable_interface
• struct starpu_csr_interface
• struct starpu_bcsr_interface
• struct starpu_multiformat_data_interface_ops
• struct starpu_multiformat_interface

Enumerations

• enum starpu_data_interface_id {
STARPU_UNKNOWN_INTERFACE_ID , STARPU_MATRIX_INTERFACE_ID , STARPU_BLOCK_INTERFACE_ID
, STARPU_VECTOR_INTERFACE_ID ,
STARPU_CSR_INTERFACE_ID , STARPU_BCSR_INTERFACE_ID , STARPU_VARIABLE_INTERFACE_ID
, STARPU_VOID_INTERFACE_ID ,
STARPU_MULTIFORMAT_INTERFACE_ID , STARPU_COO_INTERFACE_ID , STARPU_TENSOR_INTERFACE_ID
, STARPU_NDIM_INTERFACE_ID ,
STARPU_MAX_INTERFACE_ID }

Accessing Matrix Data Interfaces

• struct starpu_data_interface_ops starpu_interface_matrix_ops
• void starpu_matrix_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ld,

uint32_t nx, uint32_t ny, size_t elemsize)
• void starpu_matrix_data_register_allocsize (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr,

uint32_t ld, uint32_t nx, uint32_t ny, size_t elemsize, size_t allocsize)
• void starpu_matrix_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ld)
• uint32_t starpu_matrix_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_matrix_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t handle)
• uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_matrix_get_elemsize (starpu_data_handle_t handle)
• size_t starpu_matrix_get_allocsize (starpu_data_handle_t handle)
• #define STARPU_MATRIX_GET_PTR(interface)
• #define STARPU_MATRIX_GET_DEV_HANDLE(interface)
• #define STARPU_MATRIX_GET_OFFSET(interface)
• #define STARPU_MATRIX_GET_NX(interface)
• #define STARPU_MATRIX_GET_NY(interface)
• #define STARPU_MATRIX_GET_LD(interface)
• #define STARPU_MATRIX_GET_ELEMSIZE(interface)
• #define STARPU_MATRIX_GET_ALLOCSIZE(interface)
• #define STARPU_MATRIX_SET_NX(interface, newnx)
• #define STARPU_MATRIX_SET_NY(interface, newny)
• #define STARPU_MATRIX_SET_LD(interface, newld)

Generated by Doxygen

57.5 Data Interfaces 367

Accessing COO Data Interfaces

• struct starpu_data_interface_ops starpu_interface_coo_ops
• void starpu_coo_data_register (starpu_data_handle_t ∗handleptr, int home_node, uint32_t nx, uint32_t ny,

uint32_t n_values, uint32_t ∗columns, uint32_t ∗rows, uintptr_t values, size_t elemsize)
• #define STARPU_COO_GET_COLUMNS(interface)
• #define STARPU_COO_GET_COLUMNS_DEV_HANDLE(interface)
• #define STARPU_COO_GET_ROWS(interface)
• #define STARPU_COO_GET_ROWS_DEV_HANDLE(interface)
• #define STARPU_COO_GET_VALUES(interface)
• #define STARPU_COO_GET_VALUES_DEV_HANDLE(interface)
• #define STARPU_COO_GET_OFFSET
• #define STARPU_COO_GET_NX(interface)
• #define STARPU_COO_GET_NY(interface)
• #define STARPU_COO_GET_NVALUES(interface)
• #define STARPU_COO_GET_ELEMSIZE(interface)

Block Data Interface

• struct starpu_data_interface_ops starpu_interface_block_ops
• void starpu_block_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ldy,

uint32_t ldz, uint32_t nx, uint32_t ny, uint32_t nz, size_t elemsize)
• void starpu_block_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ldy, uint32_t ldz)
• uint32_t starpu_block_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_block_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_block_get_nz (starpu_data_handle_t handle)
• uint32_t starpu_block_get_local_ldy (starpu_data_handle_t handle)
• uint32_t starpu_block_get_local_ldz (starpu_data_handle_t handle)
• uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_block_get_elemsize (starpu_data_handle_t handle)
• #define STARPU_BLOCK_GET_PTR(interface)
• #define STARPU_BLOCK_GET_DEV_HANDLE(interface)
• #define STARPU_BLOCK_GET_OFFSET(interface)
• #define STARPU_BLOCK_GET_NX(interface)
• #define STARPU_BLOCK_GET_NY(interface)
• #define STARPU_BLOCK_GET_NZ(interface)
• #define STARPU_BLOCK_GET_LDY(interface)
• #define STARPU_BLOCK_GET_LDZ(interface)
• #define STARPU_BLOCK_GET_ELEMSIZE(interface)

Tensor Data Interface

• struct starpu_data_interface_ops starpu_interface_tensor_ops
• void starpu_tensor_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ldy,

uint32_t ldz, uint32_t ldt, uint32_t nx, uint32_t ny, uint32_t nz, uint32_t nt, size_t elemsize)
• void starpu_tensor_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ldy, uint32_t ldz, uint32_t ldt)
• uint32_t starpu_tensor_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_nz (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_nt (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_local_ldy (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_local_ldz (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_local_ldt (starpu_data_handle_t handle)
• uintptr_t starpu_tensor_get_local_ptr (starpu_data_handle_t handle)

Generated by Doxygen

368 Module Documentation a.k.a StarPU’s API

• size_t starpu_tensor_get_elemsize (starpu_data_handle_t handle)
• #define STARPU_TENSOR_GET_PTR(interface)
• #define STARPU_TENSOR_GET_DEV_HANDLE(interface)
• #define STARPU_TENSOR_GET_OFFSET(interface)
• #define STARPU_TENSOR_GET_NX(interface)
• #define STARPU_TENSOR_GET_NY(interface)
• #define STARPU_TENSOR_GET_NZ(interface)
• #define STARPU_TENSOR_GET_NT(interface)
• #define STARPU_TENSOR_GET_LDY(interface)
• #define STARPU_TENSOR_GET_LDZ(interface)
• #define STARPU_TENSOR_GET_LDT(interface)
• #define STARPU_TENSOR_GET_ELEMSIZE(interface)

Ndim Array Data Interface

• struct starpu_data_interface_ops starpu_interface_ndim_ops
• void starpu_ndim_data_register (starpu_data_handle_t ∗handleptr, int home_node, uintptr_t ptr, uint32_←↩

t ∗ldn, uint32_t ∗nn, size_t ndim, size_t elemsize)
• void starpu_ndim_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ∗ldn)
• uint32_t ∗ starpu_ndim_get_nn (starpu_data_handle_t handle)
• uint32_t starpu_ndim_get_ni (starpu_data_handle_t handle, size_t i)
• uint32_t ∗ starpu_ndim_get_local_ldn (starpu_data_handle_t handle)
• uint32_t starpu_ndim_get_local_ldi (starpu_data_handle_t handle, size_t i)
• uintptr_t starpu_ndim_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_ndim_get_ndim (starpu_data_handle_t handle)
• size_t starpu_ndim_get_elemsize (starpu_data_handle_t handle)
• #define STARPU_NDIM_GET_PTR(interface)
• #define STARPU_NDIM_GET_DEV_HANDLE(interface)
• #define STARPU_NDIM_GET_OFFSET(interface)
• #define STARPU_NDIM_GET_NN(interface)
• #define STARPU_NDIM_GET_LDN(interface)
• #define STARPU_NDIM_GET_NDIM(interface)
• #define STARPU_NDIM_GET_ELEMSIZE(interface)

Vector Data Interface

• struct starpu_data_interface_ops starpu_interface_vector_ops
• void starpu_vector_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t nx,

size_t elemsize)
• void starpu_vector_data_register_allocsize (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr,

uint32_t nx, size_t elemsize, size_t allocsize)
• void starpu_vector_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset)
• uint32_t starpu_vector_get_nx (starpu_data_handle_t handle)
• size_t starpu_vector_get_elemsize (starpu_data_handle_t handle)
• size_t starpu_vector_get_allocsize (starpu_data_handle_t handle)
• uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t handle)
• #define STARPU_VECTOR_GET_PTR(interface)
• #define STARPU_VECTOR_GET_DEV_HANDLE(interface)
• #define STARPU_VECTOR_GET_OFFSET(interface)
• #define STARPU_VECTOR_GET_NX(interface)
• #define STARPU_VECTOR_GET_ELEMSIZE(interface)
• #define STARPU_VECTOR_GET_ALLOCSIZE(interface)
• #define STARPU_VECTOR_GET_SLICE_BASE(interface)
• #define STARPU_VECTOR_SET_NX(interface, newnx)

Generated by Doxygen

57.5 Data Interfaces 369

Variable Data Interface

• struct starpu_data_interface_ops starpu_interface_variable_ops
• void starpu_variable_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, size_t size)
• void starpu_variable_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev←↩

_handle, size_t offset)
• size_t starpu_variable_get_elemsize (starpu_data_handle_t handle)
• uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t handle)
• #define STARPU_VARIABLE_GET_PTR(interface)
• #define STARPU_VARIABLE_GET_OFFSET(interface)
• #define STARPU_VARIABLE_GET_ELEMSIZE(interface)
• #define STARPU_VARIABLE_GET_DEV_HANDLE(interface)

Void Data Interface

• struct starpu_data_interface_ops starpu_interface_void_ops
• void starpu_void_data_register (starpu_data_handle_t ∗handle)

CSR Data Interface

• struct starpu_data_interface_ops starpu_interface_csr_ops
• void starpu_csr_data_register (starpu_data_handle_t ∗handle, int home_node, uint32_t nnz, uint32_t nrow,

uintptr_t nzval, uint32_t ∗colind, uint32_t ∗rowptr, uint32_t firstentry, size_t elemsize)
• uint32_t starpu_csr_get_nnz (starpu_data_handle_t handle)
• uint32_t starpu_csr_get_nrow (starpu_data_handle_t handle)
• uint32_t starpu_csr_get_firstentry (starpu_data_handle_t handle)
• uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t handle)
• uint32_t ∗ starpu_csr_get_local_colind (starpu_data_handle_t handle)
• uint32_t ∗ starpu_csr_get_local_rowptr (starpu_data_handle_t handle)
• size_t starpu_csr_get_elemsize (starpu_data_handle_t handle)
• #define STARPU_CSR_GET_NNZ(interface)
• #define STARPU_CSR_GET_NROW(interface)
• #define STARPU_CSR_GET_NZVAL(interface)
• #define STARPU_CSR_GET_NZVAL_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_COLIND(interface)
• #define STARPU_CSR_GET_RAM_COLIND(interface)
• #define STARPU_CSR_GET_COLIND_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_ROWPTR(interface)
• #define STARPU_CSR_GET_RAM_ROWPTR(interface)
• #define STARPU_CSR_GET_ROWPTR_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_OFFSET
• #define STARPU_CSR_GET_FIRSTENTRY(interface)
• #define STARPU_CSR_GET_ELEMSIZE(interface)

BCSR Data Interface

• struct starpu_data_interface_ops starpu_interface_bcsr_ops
• void starpu_bcsr_data_register (starpu_data_handle_t ∗handle, int home_node, uint32_t nnz, uint32_t nrow,

uintptr_t nzval, uint32_t ∗colind, uint32_t ∗rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize)
• uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t handle)
• uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t handle)
• uint32_t ∗ starpu_bcsr_get_local_colind (starpu_data_handle_t handle)
• uint32_t ∗ starpu_bcsr_get_local_rowptr (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_r (starpu_data_handle_t handle)

Generated by Doxygen

370 Module Documentation a.k.a StarPU’s API

• uint32_t starpu_bcsr_get_c (starpu_data_handle_t handle)
• size_t starpu_bcsr_get_elemsize (starpu_data_handle_t handle)
• #define STARPU_BCSR_GET_NNZ(interface)
• #define STARPU_BCSR_GET_NROW(interface)
• #define STARPU_BCSR_GET_NZVAL(interface)
• #define STARPU_BCSR_GET_NZVAL_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_COLIND(interface)
• #define STARPU_BCSR_GET_RAM_COLIND(interface)
• #define STARPU_BCSR_GET_COLIND_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_ROWPTR(interface)
• #define STARPU_BCSR_GET_RAM_ROWPTR(interface)
• #define STARPU_BCSR_GET_ROWPTR_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_FIRSTENTRY(interface)
• #define STARPU_BCSR_GET_R(interface)
• #define STARPU_BCSR_GET_C(interface)
• #define STARPU_BCSR_GET_ELEMSIZE(interface)
• #define STARPU_BCSR_GET_OFFSET

Basic API

• void starpu_data_register (starpu_data_handle_t ∗handleptr, int home_node, void ∗data_interface, struct
starpu_data_interface_ops ∗ops)

• void starpu_data_register_ops (struct starpu_data_interface_ops ∗ops)
• void starpu_data_ptr_register (starpu_data_handle_t handle, unsigned node)
• void starpu_data_register_same (starpu_data_handle_t ∗handledst, starpu_data_handle_t handlesrc)
• void ∗ starpu_data_handle_to_pointer (starpu_data_handle_t handle, unsigned node)
• void ∗ starpu_data_get_local_ptr (starpu_data_handle_t handle)
• void ∗ starpu_data_get_interface_on_node (starpu_data_handle_t handle, unsigned memory_node)
• enum starpu_data_interface_id starpu_data_get_interface_id (starpu_data_handle_t handle)
• int starpu_data_pack_node (starpu_data_handle_t handle, unsigned node, void ∗∗ptr, starpu_ssize_t ∗count)
• int starpu_data_pack (starpu_data_handle_t handle, void ∗∗ptr, starpu_ssize_t ∗count)
• int starpu_data_peek_node (starpu_data_handle_t handle, unsigned node, void ∗ptr, size_t count)
• int starpu_data_peek (starpu_data_handle_t handle, void ∗ptr, size_t count)
• int starpu_data_unpack_node (starpu_data_handle_t handle, unsigned node, void ∗ptr, size_t count)
• int starpu_data_unpack (starpu_data_handle_t handle, void ∗ptr, size_t count)
• size_t starpu_data_get_size (starpu_data_handle_t handle)
• size_t starpu_data_get_alloc_size (starpu_data_handle_t handle)
• starpu_ssize_t starpu_data_get_max_size (starpu_data_handle_t handle)
• int starpu_data_get_home_node (starpu_data_handle_t handle)
• void starpu_data_print (starpu_data_handle_t handle, unsigned node, FILE ∗stream)
• int starpu_data_interface_get_next_id (void)
• int starpu_interface_copy (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_offset,

unsigned dst_node, size_t size, void ∗async_data)
• int starpu_interface_copy2d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, void ∗async_data)
• int starpu_interface_copy3d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t blocksize, size_t numblocks1, size_t ld1_src, size_t ld1_dst, size_t num-
blocks2, size_t ld2_src, size_t ld2_dst, void ∗async_data)

• int starpu_interface_copy4d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t blocksize, size_t numblocks1, size_t ld1_src, size_t ld1_dst, size_t num-
blocks2, size_t ld2_src, size_t ld2_dst, size_t numblocks3, size_t ld3_src, size_t ld3_dst, void ∗async_data)

• int starpu_interface_copynd (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t elemsize, size_t ndim, uint32_t ∗nn, uint32_t ∗ldn_src, uint32_t ∗ldn_dst,
void ∗async_data)

• void starpu_interface_start_driver_copy_async (unsigned src_node, unsigned dst_node, double ∗start)

Generated by Doxygen

57.5 Data Interfaces 371

• void starpu_interface_end_driver_copy_async (unsigned src_node, unsigned dst_node, double start)
• void starpu_interface_data_copy (unsigned src_node, unsigned dst_node, size_t size)
• uintptr_t starpu_malloc_on_node_flags (unsigned dst_node, size_t size, int flags)
• uintptr_t starpu_malloc_on_node (unsigned dst_node, size_t size)
• void starpu_free_on_node_flags (unsigned dst_node, uintptr_t addr, size_t size, int flags)
• void starpu_free_on_node (unsigned dst_node, uintptr_t addr, size_t size)
• void starpu_malloc_on_node_set_default_flags (unsigned node, int flags)

MAP API

• uintptr_t starpu_interface_map (uintptr_t src, size_t src_offset, unsigned src_node, unsigned dst_node,
size_t size, int ∗ret)

• int starpu_interface_unmap (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, unsigned dst←↩

_node, size_t size)
• int starpu_interface_update_map (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t

dst_offset, unsigned dst_node, size_t size)

Multiformat Data Interface

• void starpu_multiformat_data_register (starpu_data_handle_t ∗handle, int home_node, void ∗ptr, uint32_t
nobjects, struct starpu_multiformat_data_interface_ops ∗format_ops)

• #define STARPU_MULTIFORMAT_GET_CPU_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_CUDA_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_HIP_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_OPENCL_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_NX(interface)

• uint32_t starpu_hash_crc32c_be_n (const void ∗input, size_t n, uint32_t inputcrc)
• uint32_t starpu_hash_crc32c_be_ptr (void ∗input, uint32_t inputcrc)
• uint32_t starpu_hash_crc32c_be (uint32_t input, uint32_t inputcrc)
• uint32_t starpu_hash_crc32c_string (const char ∗str, uint32_t inputcrc)

57.5.1 Detailed Description

Data management is done at a high-level in StarPU: rather than accessing a mere list of contiguous buffers, the
tasks may manipulate data that are described by a high-level construct which we call data interface.
An example of data interface is the "vector" interface which describes a contiguous data array on a specific memory
node. This interface is a simple structure containing the number of elements in the array, the size of the elements,
and the address of the array in the appropriate address space (this address may be invalid if there is no valid
copy of the array in the memory node). More information on the data interfaces provided by StarPU are given in
Data Interfaces.
When a piece of data managed by StarPU is used by a task, the task implementation is given a pointer to an
interface describing a valid copy of the data that is accessible from the current processing unit.
Every worker is associated to a memory node which is a logical abstraction of the address space from which the
processing unit gets its data. For instance, the memory node associated to the different CPU workers represents
main memory (RAM), the memory node associated to a GPU is DRAM embedded on the device. Every memory
node is identified by a logical index which is accessible from the function starpu_worker_get_memory_node(). When
registering a piece of data to StarPU, the specified memory node indicates where the piece of data initially resides
(we also call this memory node the home node of a piece of data).
In the case of NUMA systems, functions starpu_memory_nodes_numa_devid_to_id() and starpu_memory_nodes_numa_id_to_devid()
can be used to convert from NUMA node numbers as seen by the Operating System and NUMA node numbers as
seen by StarPU.
There are several ways to register a memory region so that it can be managed by StarPU. StarPU provides data
interfaces for vectors, 2D matrices, 3D matrices as well as BCSR and CSR sparse matrices.
Each data interface is provided with a set of field access functions. The ones using a void ∗ parameter aimed to
be used in codelet implementations (see for example the code in Vector Scaling).
Applications can provide their own interface as shown in Defining A New Data Interface.

Generated by Doxygen

372 Module Documentation a.k.a StarPU’s API

57.5.2 Data Structure Documentation

57.5.2.1 struct starpu_data_copy_methods

Define the per-interface methods. If the starpu_data_copy_methods::any_to_any method is provided, it will be used
by default if no specific method is provided. It can still be useful to provide more specific method in case of e.g.
available particular CUDA, HIP or OpenCL support.
See Data copy for more details.

Data Fields

• int(∗ can_copy)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, unsigned
handling_node)

• int(∗ ram_to_ram)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_cuda)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_hip)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_opencl)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_max_fpga)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ cuda_to_ram)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ cuda_to_cuda)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ hip_to_ram)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ hip_to_hip)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ opencl_to_ram)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ opencl_to_opencl)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ max_fpga_to_ram)(void ∗src_interface, unsigned srd_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_cuda_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_cudaStream_t stream)
• int(∗ cuda_to_ram_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_cudaStream_t stream)
• int(∗ cuda_to_cuda_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_cudaStream_t stream)
• int(∗ ram_to_hip_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_hipStream_t stream)
• int(∗ hip_to_ram_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_hipStream_t stream)
• int(∗ hip_to_hip_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_hipStream_t stream)
• int(∗ ram_to_opencl_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_←↩

node, cl_event ∗event)
• int(∗ opencl_to_ram_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_←↩

node, cl_event ∗event)
• int(∗ opencl_to_opencl_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst←↩

_node, cl_event ∗event)
• int(∗ ram_to_max_fpga_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst←↩

_node)
• int(∗ max_fpga_to_ram_async)(void ∗src_interface, unsigned srd_node, void ∗dst_interface, unsigned dst←↩

_node)
• int(∗ any_to_any)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, void
∗async_data)

57.5.2.1.1 Field Documentation

57.5.2.1.1.1 can_copy int(∗ starpu_data_copy_methods::can_copy) (void ∗src_interface, unsigned

src_node, void ∗dst_interface, unsigned dst_node, unsigned handling_node)

If defined, allow the interface to declare whether it supports transferring from src_interface on node src_←↩

node to dst_interface on node dst_node, run from node handling_node. If not defined, it is assumed
that the interface supports all transfers.

Generated by Doxygen

57.5 Data Interfaces 373

57.5.2.1.1.2 ram_to_ram int(∗ starpu_data_copy_methods::ram_to_ram) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node CPU node. Return 0 on success.

57.5.2.1.1.3 ram_to_cuda int(∗ starpu_data_copy_methods::ram_to_cuda) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node CUDA node. Return 0 on success.

57.5.2.1.1.4 ram_to_hip int(∗ starpu_data_copy_methods::ram_to_hip) (void ∗src_interface, unsigned

src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node HIP node. Return 0 on success.

57.5.2.1.1.5 ram_to_opencl int(∗ starpu_data_copy_methods::ram_to_opencl) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node OpenCL node. Return 0 on success.

57.5.2.1.1.6 ram_to_max_fpga int(∗ starpu_data_copy_methods::ram_to_max_fpga) (void ∗src_←↩

interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node FPGA node. Return 0 on success.

57.5.2.1.1.7 cuda_to_ram int(∗ starpu_data_copy_methods::cuda_to_ram) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩

interface interface on the dst_node CPU node. Return 0 on success.

57.5.2.1.1.8 cuda_to_cuda int(∗ starpu_data_copy_methods::cuda_to_cuda) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩

interface interface on the dst_node CUDA node. Return 0 on success.

57.5.2.1.1.9 hip_to_ram int(∗ starpu_data_copy_methods::hip_to_ram) (void ∗src_interface, unsigned

src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node HIP node to the dst_←↩

interface interface on the dst_node CPU node. Return 0 on success.

57.5.2.1.1.10 hip_to_hip int(∗ starpu_data_copy_methods::hip_to_hip) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node HIP node to the dst_←↩

interface interface on the dst_node HIP node. Return 0 on success.

57.5.2.1.1.11 opencl_to_ram int(∗ starpu_data_copy_methods::opencl_to_ram) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩

interface interface on the dst_node CPU node. Return 0 on success.

57.5.2.1.1.12 opencl_to_opencl int(∗ starpu_data_copy_methods::opencl_to_opencl) (void ∗src_←↩

interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩

interface interface on the dst_node OpenCL node. Return 0 on success.

Generated by Doxygen

374 Module Documentation a.k.a StarPU’s API

57.5.2.1.1.13 max_fpga_to_ram int(∗ starpu_data_copy_methods::max_fpga_to_ram) (void ∗src_←↩

interface, unsigned srd_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node FPGA node to the dst_←↩

interface interface on the dst_node CPU node. Return 0 on success.

57.5.2.1.1.14 ram_to_cuda_async int(∗ starpu_data_copy_methods::ram_to_cuda_async) (void ∗src←↩

_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, starpu_cudaStream_←↩

t stream)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node CUDA node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

57.5.2.1.1.15 cuda_to_ram_async int(∗ starpu_data_copy_methods::cuda_to_ram_async) (void ∗src←↩

_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, starpu_cudaStream_←↩

t stream)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩

interface interface on the dst_node CPU node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

57.5.2.1.1.16 cuda_to_cuda_async int(∗ starpu_data_copy_methods::cuda_to_cuda_async) (void

∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, starpu_cudaStream_t

stream)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩

interface interface on the dst_node CUDA node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

57.5.2.1.1.17 ram_to_hip_async int(∗ starpu_data_copy_methods::ram_to_hip_async) (void ∗src←↩

_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, starpu_hipStream_←↩

t stream)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node HIP node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

57.5.2.1.1.18 hip_to_ram_async int(∗ starpu_data_copy_methods::hip_to_ram_async) (void ∗src←↩

_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, starpu_hipStream_←↩

t stream)

Define how to copy data from the src_interface interface on the src_node HIP node to the dst_←↩

interface interface on the dst_node CPU node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

57.5.2.1.1.19 hip_to_hip_async int(∗ starpu_data_copy_methods::hip_to_hip_async) (void ∗src←↩

_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, starpu_hipStream_←↩

t stream)

Define how to copy data from the src_interface interface on the src_node HIP node to the dst_←↩

interface interface on the dst_node HIP node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

57.5.2.1.1.20 ram_to_opencl_async int(∗ starpu_data_copy_methods::ram_to_opencl_async) (void

∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, cl_event ∗event)
Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node OpenCL node, by recording in event, a pointer to a cl_event, the

Generated by Doxygen

57.5 Data Interfaces 375

event of the last submitted transfer. Must return 0 if the transfer was actually completed completely synchronously,
or -EAGAIN if at least some transfers are still ongoing and should be awaited for by the core.

57.5.2.1.1.21 opencl_to_ram_async int(∗ starpu_data_copy_methods::opencl_to_ram_async) (void

∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, cl_event ∗event)
Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩

interface interface on the dst_node CPU node, by recording in event, a pointer to a cl_event, the event
of the last submitted transfer. Must return 0 if the transfer was actually completed completely synchronously, or
-EAGAIN if at least some transfers are still ongoing and should be awaited for by the core.

57.5.2.1.1.22 opencl_to_opencl_async int(∗ starpu_data_copy_methods::opencl_to_opencl_async)

(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, cl_event

∗event)
Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩

interface interface on the dst_node OpenCL node, by recording in event, a pointer to a cl_event, the
event of the last submitted transfer. Must return 0 if the transfer was actually completed completely synchronously,
or -EAGAIN if at least some transfers are still ongoing and should be awaited for by the core.

57.5.2.1.1.23 ram_to_max_fpga_async int(∗ starpu_data_copy_methods::ram_to_max_fpga_async)

(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩

interface interface on the dst_node FPGA node. Must return 0 if the transfer was actually completed com-
pletely synchronously, or -EAGAIN if at least some transfers are still ongoing and should be awaited for by the
core.

57.5.2.1.1.24 max_fpga_to_ram_async int(∗ starpu_data_copy_methods::max_fpga_to_ram_async)

(void ∗src_interface, unsigned srd_node, void ∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node FPGA node to the dst_←↩

interface interface on the dst_node CPU node. Must return 0 if the transfer was actually completed com-
pletely synchronously, or -EAGAIN if at least some transfers are still ongoing and should be awaited for by the
core.

57.5.2.1.1.25 any_to_any int(∗ starpu_data_copy_methods::any_to_any) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node, void ∗async_data)
Define how to copy data from the src_interface interface on the src_node node to the dst_interface
interface on the dst_node node. This is meant to be implemented through the starpu_interface_copy() helper,
to which async_data should be passed as such, and will be used to manage asynchronicity. This must return
-EAGAIN if any of the starpu_interface_copy() calls has returned -EAGAIN (i.e. at least some transfer is still
ongoing), and return 0 otherwise.
This can only be implemented if the interface has ready-to-send data blocks. If the interface is more involved
than this, i.e. it needs to collect pieces of data before transferring, starpu_data_interface_ops::pack_data and
starpu_data_interface_ops::peek_data should be implemented instead, and the core will just transfer the resulting
data buffer.

57.5.2.2 struct starpu_data_interface_ops

Per-interface data management methods.

Data Fields

• void(∗ register_data_handle)(starpu_data_handle_t handle, int home_node, void ∗data_interface)
• void(∗ unregister_data_handle)(starpu_data_handle_t handle)
• starpu_ssize_t(∗ allocate_data_on_node)(void ∗data_interface, unsigned node)
• void(∗ free_data_on_node)(void ∗data_interface, unsigned node)
• void(∗ cache_data_on_node)(void ∗cached_interface, void ∗src_interface, unsigned node)
• void(∗ reuse_data_on_node)(void ∗dst_data_interface, const void ∗cached_interface, unsigned node)
• int(∗ map_data)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)

Generated by Doxygen

376 Module Documentation a.k.a StarPU’s API

• int(∗ unmap_data)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ update_map)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• void(∗ init)(void ∗data_interface)
• const struct starpu_data_copy_methods ∗ copy_methods
• void ∗(∗ handle_to_pointer)(starpu_data_handle_t handle, unsigned node)
• void ∗(∗ to_pointer)(void ∗data_interface, unsigned node)
• size_t(∗ get_size)(starpu_data_handle_t handle)
• size_t(∗ get_alloc_size)(starpu_data_handle_t handle)
• size_t(∗ get_max_size)(starpu_data_handle_t handle)
• uint32_t(∗ footprint)(starpu_data_handle_t handle)
• uint32_t(∗ alloc_footprint)(starpu_data_handle_t handle)
• int(∗ compare)(void ∗data_interface_a, void ∗data_interface_b)
• int(∗ alloc_compare)(void ∗data_interface_a, void ∗data_interface_b)
• void(∗ display)(starpu_data_handle_t handle, FILE ∗f)
• starpu_ssize_t(∗ describe)(void ∗data_interface, char ∗buf, size_t size)
• enum starpu_data_interface_id interfaceid
• size_t interface_size
• char is_multiformat
• char dontcache
• struct starpu_multiformat_data_interface_ops ∗(∗ get_mf_ops)(void ∗data_interface)
• int(∗ pack_data)(starpu_data_handle_t handle, unsigned node, void ∗∗ptr, starpu_ssize_t ∗count)
• int(∗ peek_data)(starpu_data_handle_t handle, unsigned node, void ∗ptr, size_t count)
• int(∗ unpack_data)(starpu_data_handle_t handle, unsigned node, void ∗ptr, size_t count)
• int(∗ pack_meta)(void ∗data_interface, void ∗∗ptr, starpu_ssize_t ∗count)
• int(∗ unpack_meta)(void ∗∗data_interface, void ∗ptr, starpu_ssize_t ∗count)
• int(∗ free_meta)(void ∗data_interface)
• char ∗ name

57.5.2.2.1 Field Documentation

57.5.2.2.1.1 register_data_handle void(∗ starpu_data_interface_ops::register_data_handle) (starpu_data_handle_t

handle, int home_node, void ∗data_interface)
Register an existing interface into a data handle.
This iterates over all memory nodes to initialize all fields of the data interface on each of them. Since data is not
allocated yet except on the home node, pointers should be left as NULL except on the home_node (if >= 0), for
which the pointers should be copied from the given data_interface, which was filled with the application's
pointers.
This method is mandatory.
See Data registration for more details.

57.5.2.2.1.2 unregister_data_handle void(∗ starpu_data_interface_ops::unregister_data_handle)

(starpu_data_handle_t handle)

Unregister a data handle.
This iterates over all memory nodes to free any pointer in the data interface on each of them.
At this point, free_data_on_node has been already called on each of them. This just clears anything that would still
be left.
See Data registration for more details.

57.5.2.2.1.3 allocate_data_on_node starpu_ssize_t(∗ starpu_data_interface_ops::allocate_data_←↩

on_node) (void ∗data_interface, unsigned node)

Allocate data for the interface on a given node. This should use starpu_malloc_on_node() to perform the alloca-
tion(s), and fill the pointers in the data interface. It should return the size of the allocated memory, or -ENOMEM if
memory could not be allocated.
Note that the memory node can be CPU memory, GPU memory, or even disk area. The result returned by
starpu_malloc_on_node() should be just stored as uintptr_t without trying to interpret it since it may be a GPU
pointer, a disk descriptor, etc.

Generated by Doxygen

57.5 Data Interfaces 377

This method is mandatory to be able to support memory nodes.
See Pointers inside the data interface for more details.

57.5.2.2.1.4 free_data_on_node void(∗ starpu_data_interface_ops::free_data_on_node) (void ∗data←↩

_interface, unsigned node)

Free data of the interface on a given node.
This method is mandatory to be able to support memory nodes.
See Pointers inside the data interface for more details.

57.5.2.2.1.5 cache_data_on_node void(∗ starpu_data_interface_ops::cache_data_on_node) (void

∗cached_interface, void ∗src_interface, unsigned node)

Cache the buffers from the given node to a caching interface.
This method is optional, mostly useful when also making starpu_data_interface_ops::unregister_data_handle check
that pointers are NULL.
src_interface is an interface that already has buffers allocated, but which we don't need any more. cached←↩

_interface is a new interface into which the buffer pointers should be transferred, for later reuse when allocating
data of the same kind.
Usually we can just memcpy over the set of pointers and descriptions (this is what StarPU does when this
method is not implemented), but if unregister_data_handle checks that pointers are NULL, we need to addi-
tionally clear the pointers in src_interface. Also, it is not useful to copy the whole interface, only the
pointers need to be copied (essentially the pointers that starpu_data_interface_ops::reuse_data_on_node will
then transfer into a new handle interface), as well as the properties that starpu_data_interface_ops::compare (or
starpu_data_interface_ops::alloc_compare if defined) needs for comparing interfaces for caching compatibility.
When this method is not defined, StarPU will just copy the cached_interface into src_interface.
See Data Interface with Variable Size and Pointers inside the data interface for more details.

57.5.2.2.1.6 reuse_data_on_node void(∗ starpu_data_interface_ops::reuse_data_on_node) (void

∗dst_data_interface, const void ∗cached_interface, unsigned node)

Reuse on the given node the buffers of the provided interface
This method is optional, mostly useful when also defining alloc_footprint to share tiles of the same allocation size
but different shapes, or when the interface contains pointers which are initialized at registration (e.g. nn array in the
ndim interface)
cached_interface is an already-allocated buffer that we want to reuse, and new_data_interface is
an interface in which we want to install that already-allocated buffer. Usually we can just memcpy over the set
of pointers and descriptions. But e.g. with 2D tiles the ld value may not be correct, and memcpy would wrongly
overwrite it in new_data_interface, i.e. reusing a vertical tile allocation for a horizontal tile, or vice-versa.
reuse_data_on_node should thus copy over pointers, and define fields that are usually set by allocate_data_on_←↩

node (e.g. ld).
See Data Interface with Variable Size and Pointers inside the data interface for more details.

57.5.2.2.1.7 map_data int(∗ starpu_data_interface_ops::map_data) (void ∗src_interface, unsigned

src_node, void ∗dst_interface, unsigned dst_node)

Map data from a source to a destination. Define function starpu_interface_map() to set this field. See
Pointers inside the data interface for more details.

57.5.2.2.1.8 unmap_data int(∗ starpu_data_interface_ops::unmap_data) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Unmap data from a source to a destination. Define function starpu_interface_unmap() to set this field. See
Pointers inside the data interface for more details.

57.5.2.2.1.9 update_map int(∗ starpu_data_interface_ops::update_map) (void ∗src_interface,
unsigned src_node, void ∗dst_interface, unsigned dst_node)

Update map data from a source to a destination. Define function starpu_interface_update_map() to set this field.
See Pointers inside the data interface for more details.

57.5.2.2.1.10 init void(∗ starpu_data_interface_ops::init) (void ∗data_interface)
Initialize the interface. This method is optional. It is called when initializing the handler on all the memory nodes.

Generated by Doxygen

378 Module Documentation a.k.a StarPU’s API

57.5.2.2.1.11 copy_methods const struct starpu_data_copy_methods∗ starpu_data_interface_ops←↩

::copy_methods

Struct with pointer to functions for performing ram/cuda/opencl synchronous and asynchronous transfers.
This field is mandatory to be able to support memory nodes, except disk nodes which can be supported by just
implementing starpu_data_interface_ops::pack_data and starpu_data_interface_ops::unpack_data.

57.5.2.2.1.12 handle_to_pointer void ∗(∗ starpu_data_interface_ops::handle_to_pointer) (starpu_data_handle_t

handle, unsigned node)

Deprecated Use starpu_data_interface_ops::to_pointer instead. Return the current pointer (if any) for the handle
on the given node.

This method is only required if starpu_data_interface_ops::to_pointer is not implemented.

57.5.2.2.1.13 to_pointer void ∗(∗ starpu_data_interface_ops::to_pointer) (void ∗data_interface,
unsigned node)

Return the current pointer (if any) for the given interface on the given node.
This method is only required for starpu_data_handle_to_pointer() and starpu_data_get_local_ptr(), and for disk
support.

57.5.2.2.1.14 get_size size_t(∗ starpu_data_interface_ops::get_size) (starpu_data_handle_t

handle)

Return an estimation of the size of data, for performance models and tracing feedback.

57.5.2.2.1.15 get_alloc_size size_t(∗ starpu_data_interface_ops::get_alloc_size) (starpu_data_handle_t

handle)

Return an estimation of the size of allocated data, for allocation management. If not specified, the
starpu_data_interface_ops::get_size method is used instead.

57.5.2.2.1.16 get_max_size size_t(∗ starpu_data_interface_ops::get_max_size) (starpu_data_handle_t

handle)

Return the maximum size that the data may need to increase to. For instance, in the case of compressed matrix
tiles this is the size when the block is fully dense. This is currently only used for feedback tools.

57.5.2.2.1.17 footprint uint32_t(∗ starpu_data_interface_ops::footprint) (starpu_data_handle_t

handle)

Return a 32bit footprint which characterizes the data size and layout (nx, ny, ld, elemsize, etc.), required for indexing
performance models.
starpu_hash_crc32c_be() and alike can be used to produce this 32bit value from various types of values.

57.5.2.2.1.18 alloc_footprint uint32_t(∗ starpu_data_interface_ops::alloc_footprint) (starpu_data_handle_t

handle)

Return a 32bit footprint which characterizes the data allocation, to be used for indexing allocation cache. If not
specified, the starpu_data_interface_ops::footprint method is used instead. If specified, alloc_compare should be
set to provide the strict comparison, and reuse_data_on_node should be set to provide correct buffer reuse.

57.5.2.2.1.19 compare int(∗ starpu_data_interface_ops::compare) (void ∗data_interface_a, void

∗data_interface_b)
Compare the data size and layout of two interfaces (nx, ny, ld, elemsize, etc.), to be used for indexing performance
models. It should return 1 if the two interfaces size and layout match computation-wise, and 0 otherwise. It does
not compare the actual content of the interfaces.

57.5.2.2.1.20 alloc_compare int(∗ starpu_data_interface_ops::alloc_compare) (void ∗data_←↩

interface_a, void ∗data_interface_b)
Compare the data allocation of two interfaces etc.), to be used for indexing allocation cache. It should return 1 if the
two interfaces are allocation-compatible, i.e. basically have the same alloc_size, and 0 otherwise. If not specified,
the starpu_data_interface_ops::compare method is used instead.

Generated by Doxygen

57.5 Data Interfaces 379

57.5.2.2.1.21 display void(∗ starpu_data_interface_ops::display) (starpu_data_handle_t handle,

FILE ∗f)
Dump the sizes of a handle to a file. This is required for performance models

57.5.2.2.1.22 describe starpu_ssize_t(∗ starpu_data_interface_ops::describe) (void ∗data_←↩

interface, char ∗buf, size_t size)

Describe the data into a string in a brief way, such as one letter to describe the type of data, and the data dimensions.
This is required for tracing feedback.

57.5.2.2.1.23 interfaceid enum starpu_data_interface_id starpu_data_interface_ops::interfaceid

An identifier that is unique to each interface.

57.5.2.2.1.24 interface_size size_t starpu_data_interface_ops::interface_size

Size of the interface data descriptor.

57.5.2.2.1.25 dontcache char starpu_data_interface_ops::dontcache

If set to non-zero, StarPU will never try to reuse an allocated buffer for a different handle. This can be notably useful
for application-defined interfaces which have a dynamic size, and for which it thus does not make sense to reuse
the buffer since will probably not have the proper size.

57.5.2.2.1.26 pack_data int(∗ starpu_data_interface_ops::pack_data) (starpu_data_handle_t handle,

unsigned node, void ∗∗ptr, starpu_ssize_t ∗count)
Pack the data handle into a contiguous buffer at the address allocated with starpu_malloc_flags(ptr,
size, 0) (and thus returned in ptr) and set the size of the newly created buffer in count. If ptr is NULL,
the function should not copy the data in the buffer but just set count to the size of the buffer which would have been
allocated. The special value -1 indicates the size is yet unknown.
This method (and starpu_data_interface_ops::unpack_data) is required for disk support if the starpu_data_copy_methods::any_to_any
method is not implemented (because the in-memory data layout is too complex).
This is also required for MPI support if there is no registered MPI data type.

57.5.2.2.1.27 peek_data int(∗ starpu_data_interface_ops::peek_data) (starpu_data_handle_t handle,

unsigned node, void ∗ptr, size_t count)

Read the data handle from the contiguous buffer at the address ptr of size count.

57.5.2.2.1.28 unpack_data int(∗ starpu_data_interface_ops::unpack_data) (starpu_data_handle_t

handle, unsigned node, void ∗ptr, size_t count)

Unpack the data handle from the contiguous buffer at the address ptr of size count. The memory at the address
ptr should be freed after the data unpacking operation.

57.5.2.2.1.29 pack_meta int(∗ starpu_data_interface_ops::pack_meta) (void ∗data_interface,
void ∗∗ptr, starpu_ssize_t ∗count)
Pack the interface into a contiguous buffer and set the size of the newly created buffer in count. This function is
used in master slave mode for data interfaces with a dynamic content.

57.5.2.2.1.30 unpack_meta int(∗ starpu_data_interface_ops::unpack_meta) (void ∗∗data_interface,
void ∗ptr, starpu_ssize_t ∗count)
Unpack the interface from the given buffer and set the size of the unpacked data in count. This function is used in
master slave mode for data interfaces with a dynamic content.

57.5.2.2.1.31 free_meta int(∗ starpu_data_interface_ops::free_meta) (void ∗data_interface)
Free the allocated memory by a previous call to unpack_meta()

57.5.2.2.1.32 name char∗ starpu_data_interface_ops::name

Name of the interface

Generated by Doxygen

380 Module Documentation a.k.a StarPU’s API

57.5.2.3 struct starpu_matrix_interface

Matrix interface for dense matrices

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uintptr_t ptr local pointer of the matrix

uintptr_t dev_handle device handle of the matrix

size_t offset offset in the matrix
uint32_t nx number of elements on the x-axis of the matrix
uint32_t ny number of elements on the y-axis of the matrix

uint32_t ld number of elements between each row of the matrix. Maybe
be equal to starpu_matrix_interface::nx when there is no
padding.

size_t elemsize size of the elements of the matrix
size_t allocsize size actually currently allocated

57.5.2.4 struct starpu_coo_interface

COO Matrices

Data Fields

enum starpu_data_interface_id id identifier of the interface

uint32_t ∗ columns column array of the matrix

uint32_t ∗ rows row array of the matrix

uintptr_t values values of the matrix

uint32_t nx number of elements on the x-axis of the matrix
uint32_t ny number of elements on the y-axis of the matrix

uint32_t n_values number of values registered in the matrix

size_t elemsize size of the elements of the matrix

57.5.2.5 struct starpu_block_interface

Block interface for 3D dense blocks

Data Fields

enum starpu_data_interface_id id identifier of the interface

uintptr_t ptr local pointer of the block

uintptr_t dev_handle device handle of the block.

size_t offset offset in the block.
uint32_t nx number of elements on the x-axis of the block.
uint32_t ny number of elements on the y-axis of the block.

uint32_t nz number of elements on the z-axis of the block.
uint32_t ldy number of elements between two lines

uint32_t ldz number of elements between two planes

size_t elemsize size of the elements of the block.

Generated by Doxygen

57.5 Data Interfaces 381

57.5.2.6 struct starpu_tensor_interface

Tensor interface for 4D dense tensors

Data Fields

enum starpu_data_interface_id id identifier of the interface

uintptr_t ptr local pointer of the tensor

uintptr_t dev_handle device handle of the tensor.

size_t offset offset in the tensor.
uint32_t nx number of elements on the x-axis of the tensor.
uint32_t ny number of elements on the y-axis of the tensor.

uint32_t nz number of elements on the z-axis of the tensor.
uint32_t nt number of elements on the t-axis of the tensor.
uint32_t ldy number of elements between two lines

uint32_t ldz number of elements between two planes

uint32_t ldt number of elements between two cubes
size_t elemsize size of the elements of the tensor.

57.5.2.7 struct starpu_ndim_interface

ndim interface for ndim array

Data Fields

enum starpu_data_interface_id id identifier of the interface

uintptr_t ptr local pointer of the ndim

uintptr_t dev_handle device handle of the ndim.

size_t offset offset in the ndim.
size_t allocsize size actually currently allocated.

uint32_t ∗ nn array of element number on each dimension

uint32_t ∗ ldn array of element number between two units on each dimension

size_t ndim size of the dimension.
size_t elemsize size of the elements of the ndim.

57.5.2.8 struct starpu_vector_interface

todo

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uintptr_t ptr local pointer of the vector

uintptr_t dev_handle device handle of the vector.

size_t offset offset in the vector
uint32_t nx number of elements on the x-axis of the vector

size_t elemsize size of the elements of the vector
uint32_t slice_base vector slice base, used by the StarPU OpenMP runtime support

size_t allocsize size actually currently allocated

Generated by Doxygen

382 Module Documentation a.k.a StarPU’s API

57.5.2.9 struct starpu_variable_interface

Variable interface for a single data (not a vector, a matrix, a list, ...)

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uintptr_t ptr local pointer of the variable

uintptr_t dev_handle device handle of the variable.

size_t offset offset in the variable
size_t elemsize size of the variable

57.5.2.10 struct starpu_csr_interface

CSR interface for sparse matrices (compressed sparse row representation)

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uint32_t nnz number of non-zero entries
uint32_t nrow number of rows
uintptr_t nzval non-zero values

uint32_t ∗ colind position of non-zero entries on the row

uint32_t ∗ rowptr index (in nzval) of the first entry of the row

uint32_t ∗ ram_colind position of non-zero entries on the row (stored in RAM)

uint32_t ∗ ram_rowptr index (in nzval) of the first entry of the row (stored in RAM)

uint32_t firstentry k for k-based indexing (0 or 1 usually). also useful when
partitioning the matrix.

size_t elemsize size of the elements of the matrix

57.5.2.11 struct starpu_bcsr_interface

BCSR interface for sparse matrices (blocked compressed sparse row representation)
Note: when a BCSR matrix is partitioned, nzval, colind, and rowptr point into the corresponding father arrays. The
rowptr content is thus the same as the father's. Firstentry is used to offset this so it becomes valid for the child
arrays.

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uint32_t nnz number of non-zero BLOCKS
uint32_t nrow number of rows (in terms of BLOCKS)

uintptr_t nzval non-zero values: nnz blocks of r∗c elements

uint32_t ∗ colind array of nnz elements, colind[i] is the block-column index for
block i in nzval

uint32_t ∗ rowptr array of nrow+1 elements, rowptr[i] is the block-index (in
nzval) of the first block of row i. By convention, rowptr[nrow] is
the number of blocks, this allows an easier access of the
matrix's elements for the kernels.

uint32_t ∗ ram_colind array of nnz elements (stored in RAM)

uint32_t ∗ ram_rowptr array of nrow+1 elements (stored in RAM)

uint32_t firstentry k for k-based indexing (0 or 1 usually). Also useful when
partitioning the matrix.

Generated by Doxygen

57.5 Data Interfaces 383

Data Fields

uint32_t r height of the blocks

uint32_t c width of the blocks
size_t elemsize size of the elements of the matrix

57.5.2.12 struct starpu_multiformat_data_interface_ops

Multiformat operations

Data Fields

size_t cpu_elemsize size of each element on CPUs

size_t opencl_elemsize size of each element on OpenCL devices

struct starpu_codelet ∗ cpu_to_opencl_cl pointer to a codelet which converts from CPU to OpenCL

struct starpu_codelet ∗ opencl_to_cpu_cl pointer to a codelet which converts from OpenCL to CPU

size_t cuda_elemsize size of each element on CUDA devices
struct starpu_codelet ∗ cpu_to_cuda_cl pointer to a codelet which converts from CPU to CUDA

struct starpu_codelet ∗ cuda_to_cpu_cl pointer to a codelet which converts from CUDA to CPU

57.5.2.13 struct starpu_multiformat_interface

todo

Data Fields

enum starpu_data_interface_id id

void ∗ cpu_ptr

void ∗ cuda_ptr

void ∗ hip_ptr

void ∗ opencl_ptr

uint32_t nx
struct starpu_multiformat_data_interface_ops ∗ ops

57.5.3 Macro Definition Documentation

57.5.3.1 STARPU_MATRIX_GET_PTR

#define STARPU_MATRIX_GET_PTR(

interface)

Return a pointer to the matrix designated by interface, valid on CPUs and CUDA devices only. For OpenCL
devices, the device handle and offset need to be used instead.

57.5.3.2 STARPU_MATRIX_GET_DEV_HANDLE

#define STARPU_MATRIX_GET_DEV_HANDLE(

interface)

Return a device handle for the matrix designated by interface, to be used with OpenCL. The offset returned by
STARPU_MATRIX_GET_OFFSET has to be used in addition to this.

Generated by Doxygen

384 Module Documentation a.k.a StarPU’s API

57.5.3.3 STARPU_MATRIX_GET_OFFSET

#define STARPU_MATRIX_GET_OFFSET(

interface)

Return the offset in the matrix designated by interface, to be used with the device handle.

57.5.3.4 STARPU_MATRIX_GET_NX

#define STARPU_MATRIX_GET_NX(

interface)

Return the number of elements on the x-axis of the matrix designated by interface.

57.5.3.5 STARPU_MATRIX_GET_NY

#define STARPU_MATRIX_GET_NY(

interface)

Return the number of elements on the y-axis of the matrix designated by interface.

57.5.3.6 STARPU_MATRIX_GET_LD

#define STARPU_MATRIX_GET_LD(

interface)

Return the number of elements between each row of the matrix designated by interface. May be equal to nx
when there is no padding.

57.5.3.7 STARPU_MATRIX_GET_ELEMSIZE

#define STARPU_MATRIX_GET_ELEMSIZE(

interface)

Return the size of the elements registered into the matrix designated by interface.

57.5.3.8 STARPU_MATRIX_GET_ALLOCSIZE

#define STARPU_MATRIX_GET_ALLOCSIZE(

interface)

Return the allocated size of the matrix designated by interface.

57.5.3.9 STARPU_MATRIX_SET_NX

#define STARPU_MATRIX_SET_NX(

interface,

newnx)

Set the number of elements on the x-axis of the matrix designated by interface.

57.5.3.10 STARPU_MATRIX_SET_NY

#define STARPU_MATRIX_SET_NY(

interface,

newny)

Set the number of elements on the y-axis of the matrix designated by interface.

57.5.3.11 STARPU_MATRIX_SET_LD

#define STARPU_MATRIX_SET_LD(

interface,

newld)

Set the number of elements between each row of the matrix designated by interface. May be set to the same
value as nx when there is no padding.

Generated by Doxygen

57.5 Data Interfaces 385

57.5.3.12 STARPU_COO_GET_COLUMNS

#define STARPU_COO_GET_COLUMNS(

interface)

Return a pointer to the column array of the matrix designated by interface.

57.5.3.13 STARPU_COO_GET_COLUMNS_DEV_HANDLE

#define STARPU_COO_GET_COLUMNS_DEV_HANDLE(

interface)

Return a device handle for the column array of the matrix designated by interface, to be used with OpenCL.
The offset returned by STARPU_COO_GET_OFFSET has to be used in addition to this.

57.5.3.14 STARPU_COO_GET_ROWS

#define STARPU_COO_GET_ROWS(

interface)

Return a pointer to the rows array of the matrix designated by interface.

57.5.3.15 STARPU_COO_GET_ROWS_DEV_HANDLE

#define STARPU_COO_GET_ROWS_DEV_HANDLE(

interface)

Return a device handle for the row array of the matrix designated by interface, to be used on OpenCL. The
offset returned by STARPU_COO_GET_OFFSET has to be used in addition to this.

57.5.3.16 STARPU_COO_GET_VALUES

#define STARPU_COO_GET_VALUES(

interface)

Return a pointer to the values array of the matrix designated by interface.

57.5.3.17 STARPU_COO_GET_VALUES_DEV_HANDLE

#define STARPU_COO_GET_VALUES_DEV_HANDLE(

interface)

Return a device handle for the value array of the matrix designated by interface, to be used on OpenCL. The
offset returned by STARPU_COO_GET_OFFSET has to be used in addition to this.

57.5.3.18 STARPU_COO_GET_OFFSET

#define STARPU_COO_GET_OFFSET

Return the offset in the arrays of the COO matrix designated by interface.

57.5.3.19 STARPU_COO_GET_NX

#define STARPU_COO_GET_NX(

interface)

Return the number of elements on the x-axis of the matrix designated by interface.

57.5.3.20 STARPU_COO_GET_NY

#define STARPU_COO_GET_NY(

interface)

Return the number of elements on the y-axis of the matrix designated by interface.

57.5.3.21 STARPU_COO_GET_NVALUES

#define STARPU_COO_GET_NVALUES(

interface)

Return the number of values registered in the matrix designated by interface.

Generated by Doxygen

386 Module Documentation a.k.a StarPU’s API

57.5.3.22 STARPU_COO_GET_ELEMSIZE

#define STARPU_COO_GET_ELEMSIZE(

interface)

Return the size of the elements registered into the matrix designated by interface.

57.5.3.23 STARPU_BLOCK_GET_PTR

#define STARPU_BLOCK_GET_PTR(

interface)

Return a pointer to the block designated by interface.

57.5.3.24 STARPU_BLOCK_GET_DEV_HANDLE

#define STARPU_BLOCK_GET_DEV_HANDLE(

interface)

Return a device handle for the block designated by interface, to be used on OpenCL. The offset returned by
STARPU_BLOCK_GET_OFFSET has to be used in addition to this.

57.5.3.25 STARPU_BLOCK_GET_OFFSET

#define STARPU_BLOCK_GET_OFFSET(

interface)

Return the offset in the block designated by interface, to be used with the device handle.

57.5.3.26 STARPU_BLOCK_GET_NX

#define STARPU_BLOCK_GET_NX(

interface)

Return the number of elements on the x-axis of the block designated by interface.

57.5.3.27 STARPU_BLOCK_GET_NY

#define STARPU_BLOCK_GET_NY(

interface)

Return the number of elements on the y-axis of the block designated by interface.

57.5.3.28 STARPU_BLOCK_GET_NZ

#define STARPU_BLOCK_GET_NZ(

interface)

Return the number of elements on the z-axis of the block designated by interface.

57.5.3.29 STARPU_BLOCK_GET_LDY

#define STARPU_BLOCK_GET_LDY(

interface)

Return the number of elements between each row of the block designated by interface. May be equal to nx
when there is no padding.

57.5.3.30 STARPU_BLOCK_GET_LDZ

#define STARPU_BLOCK_GET_LDZ(

interface)

Return the number of elements between each z plane of the block designated by interface. May be equal to
nx∗ny when there is no padding.

Generated by Doxygen

57.5 Data Interfaces 387

57.5.3.31 STARPU_BLOCK_GET_ELEMSIZE

#define STARPU_BLOCK_GET_ELEMSIZE(

interface)

Return the size of the elements of the block designated by interface.

57.5.3.32 STARPU_TENSOR_GET_PTR

#define STARPU_TENSOR_GET_PTR(

interface)

Return a pointer to the tensor designated by interface.

57.5.3.33 STARPU_TENSOR_GET_DEV_HANDLE

#define STARPU_TENSOR_GET_DEV_HANDLE(

interface)

Return a device handle for the tensor designated by interface, to be used on OpenCL. The offset returned by
STARPU_TENSOR_GET_OFFSET has to be used in addition to this.

57.5.3.34 STARPU_TENSOR_GET_OFFSET

#define STARPU_TENSOR_GET_OFFSET(

interface)

Return the offset in the tensor designated by interface, to be used with the device handle.

57.5.3.35 STARPU_TENSOR_GET_NX

#define STARPU_TENSOR_GET_NX(

interface)

Return the number of elements on the x-axis of the tensor designated by interface.

57.5.3.36 STARPU_TENSOR_GET_NY

#define STARPU_TENSOR_GET_NY(

interface)

Return the number of elements on the y-axis of the tensor designated by interface.

57.5.3.37 STARPU_TENSOR_GET_NZ

#define STARPU_TENSOR_GET_NZ(

interface)

Return the number of elements on the z-axis of the tensor designated by interface.

57.5.3.38 STARPU_TENSOR_GET_NT

#define STARPU_TENSOR_GET_NT(

interface)

Return the number of elements on the t-axis of the tensor designated by interface.

57.5.3.39 STARPU_TENSOR_GET_LDY

#define STARPU_TENSOR_GET_LDY(

interface)

Return the number of elements between each row of the tensor designated by interface. May be equal to nx
when there is no padding.

Generated by Doxygen

388 Module Documentation a.k.a StarPU’s API

57.5.3.40 STARPU_TENSOR_GET_LDZ

#define STARPU_TENSOR_GET_LDZ(

interface)

Return the number of elements between each z plane of the tensor designated by interface. May be equal to
nx∗ny when there is no padding.

57.5.3.41 STARPU_TENSOR_GET_LDT

#define STARPU_TENSOR_GET_LDT(

interface)

Return the number of elements between each t cubes of the tensor designated by interface. May be equal to
nx∗ny∗nz when there is no padding.

57.5.3.42 STARPU_TENSOR_GET_ELEMSIZE

#define STARPU_TENSOR_GET_ELEMSIZE(

interface)

Return the size of the elements of the tensor designated by interface.

57.5.3.43 STARPU_NDIM_GET_PTR

#define STARPU_NDIM_GET_PTR(

interface)

Return a pointer to the ndim array designated by interface.

57.5.3.44 STARPU_NDIM_GET_DEV_HANDLE

#define STARPU_NDIM_GET_DEV_HANDLE(

interface)

Return a device handle for the ndim array designated by interface, to be used on OpenCL. The offset returned
by STARPU_NDIM_GET_OFFSET has to be used in addition to this.

57.5.3.45 STARPU_NDIM_GET_OFFSET

#define STARPU_NDIM_GET_OFFSET(

interface)

Return the offset in the ndim designated by interface, to be used with the device handle.

57.5.3.46 STARPU_NDIM_GET_NN

#define STARPU_NDIM_GET_NN(

interface)

Return the number of elements on each dimension of the ndim array designated by interface.

57.5.3.47 STARPU_NDIM_GET_LDN

#define STARPU_NDIM_GET_LDN(

interface)

Return the number of elements between each two units on each dimension of the ndim array designated by
interface. May be equal to nx when there is no padding.

57.5.3.48 STARPU_NDIM_GET_NDIM

#define STARPU_NDIM_GET_NDIM(

interface)

Return the dimension size of the ndim array designated by interface.

Generated by Doxygen

57.5 Data Interfaces 389

57.5.3.49 STARPU_NDIM_GET_ELEMSIZE

#define STARPU_NDIM_GET_ELEMSIZE(

interface)

Return the size of the elements of the ndim array designated by interface.

57.5.3.50 STARPU_VECTOR_GET_PTR

#define STARPU_VECTOR_GET_PTR(

interface)

Return a pointer to the array designated by interface, valid on CPUs and CUDA only. For OpenCL, the device
handle and offset need to be used instead.

57.5.3.51 STARPU_VECTOR_GET_DEV_HANDLE

#define STARPU_VECTOR_GET_DEV_HANDLE(

interface)

Return a device handle for the array designated by interface, to be used with OpenCL. the offset returned by
STARPU_VECTOR_GET_OFFSET has to be used in addition to this.

57.5.3.52 STARPU_VECTOR_GET_OFFSET

#define STARPU_VECTOR_GET_OFFSET(

interface)

Return the offset in the array designated by interface, to be used with the device handle.

57.5.3.53 STARPU_VECTOR_GET_NX

#define STARPU_VECTOR_GET_NX(

interface)

Return the number of elements registered into the array designated by interface.

57.5.3.54 STARPU_VECTOR_GET_ELEMSIZE

#define STARPU_VECTOR_GET_ELEMSIZE(

interface)

Return the size of each element of the array designated by interface.

57.5.3.55 STARPU_VECTOR_GET_ALLOCSIZE

#define STARPU_VECTOR_GET_ALLOCSIZE(

interface)

Return the size of each element of the array designated by interface.

57.5.3.56 STARPU_VECTOR_GET_SLICE_BASE

#define STARPU_VECTOR_GET_SLICE_BASE(

interface)

Return the OpenMP slice base annotation of each element of the array designated by interface.

57.5.3.57 STARPU_VECTOR_SET_NX

#define STARPU_VECTOR_SET_NX(

interface,

newnx)

Set the number of elements registered into the array designated by interface.

Generated by Doxygen

390 Module Documentation a.k.a StarPU’s API

57.5.3.58 STARPU_VARIABLE_GET_PTR

#define STARPU_VARIABLE_GET_PTR(

interface)

Return a pointer to the variable designated by interface.

57.5.3.59 STARPU_VARIABLE_GET_OFFSET

#define STARPU_VARIABLE_GET_OFFSET(

interface)

Return the offset in the variable designated by interface, to be used with the device handle.

57.5.3.60 STARPU_VARIABLE_GET_ELEMSIZE

#define STARPU_VARIABLE_GET_ELEMSIZE(

interface)

Return the size of the variable designated by interface.

57.5.3.61 STARPU_VARIABLE_GET_DEV_HANDLE

#define STARPU_VARIABLE_GET_DEV_HANDLE(

interface)

Return a device handle for the variable designated by interface, to be used with OpenCL. The offset returned
by STARPU_VARIABLE_GET_OFFSET has to be used in addition to this.

57.5.3.62 STARPU_CSR_GET_NNZ

#define STARPU_CSR_GET_NNZ(

interface)

Return the number of non-zero values in the matrix designated by interface.

57.5.3.63 STARPU_CSR_GET_NROW

#define STARPU_CSR_GET_NROW(

interface)

Return the size of the row pointer array of the matrix designated by interface.

57.5.3.64 STARPU_CSR_GET_NZVAL

#define STARPU_CSR_GET_NZVAL(

interface)

Return a pointer to the non-zero values of the matrix designated by interface.

57.5.3.65 STARPU_CSR_GET_NZVAL_DEV_HANDLE

#define STARPU_CSR_GET_NZVAL_DEV_HANDLE(

interface)

Return a device handle for the array of non-zero values in the matrix designated by interface. The offset
returned by STARPU_CSR_GET_OFFSET has to used in addition to this.

57.5.3.66 STARPU_CSR_GET_COLIND

#define STARPU_CSR_GET_COLIND(

interface)

Return a pointer to the column index of the matrix designated by interface.

57.5.3.67 STARPU_CSR_GET_RAM_COLIND

#define STARPU_CSR_GET_RAM_COLIND(

interface)

Return a RAM pointer to the column index of the matrix designated by interface.

Generated by Doxygen

57.5 Data Interfaces 391

57.5.3.68 STARPU_CSR_GET_COLIND_DEV_HANDLE

#define STARPU_CSR_GET_COLIND_DEV_HANDLE(

interface)

Return a device handle for the column index of the matrix designated by interface. The offset returned by
STARPU_CSR_GET_OFFSET has to be used in addition to this.

57.5.3.69 STARPU_CSR_GET_ROWPTR

#define STARPU_CSR_GET_ROWPTR(

interface)

Return a pointer to the row pointer array of the matrix designated by interface.

57.5.3.70 STARPU_CSR_GET_RAM_ROWPTR

#define STARPU_CSR_GET_RAM_ROWPTR(

interface)

Return a RAM pointer to the row pointer array of the matrix designated by interface.

57.5.3.71 STARPU_CSR_GET_ROWPTR_DEV_HANDLE

#define STARPU_CSR_GET_ROWPTR_DEV_HANDLE(

interface)

Return a device handle for the row pointer array of the matrix designated by interface. The offset returned by
STARPU_CSR_GET_OFFSET has to be used in addition to this.

57.5.3.72 STARPU_CSR_GET_OFFSET

#define STARPU_CSR_GET_OFFSET

Return the offset in the arrays (colind, rowptr, nzval) of the matrix designated by interface, to be used with the
device handles.

57.5.3.73 STARPU_CSR_GET_FIRSTENTRY

#define STARPU_CSR_GET_FIRSTENTRY(

interface)

Return the index at which all arrays (the column indexes, the row pointers...) of the interface start.

57.5.3.74 STARPU_CSR_GET_ELEMSIZE

#define STARPU_CSR_GET_ELEMSIZE(

interface)

Return the size of the elements registered into the matrix designated by interface.

57.5.3.75 STARPU_BCSR_GET_NNZ

#define STARPU_BCSR_GET_NNZ(

interface)

Return the number of non-zero values in the matrix designated by interface.

57.5.3.76 STARPU_BCSR_GET_NROW

#define STARPU_BCSR_GET_NROW(

interface)

Return the number of block rows in the matrix designated by interface.

57.5.3.77 STARPU_BCSR_GET_NZVAL

#define STARPU_BCSR_GET_NZVAL(

interface)

Return a pointer to the non-zero values of the matrix designated by interface.

Generated by Doxygen

392 Module Documentation a.k.a StarPU’s API

57.5.3.78 STARPU_BCSR_GET_NZVAL_DEV_HANDLE

#define STARPU_BCSR_GET_NZVAL_DEV_HANDLE(

interface)

Return a device handle for the array of non-zero values in the matrix designated by interface. The offset
returned by STARPU_BCSR_GET_OFFSET has to be used in addition to this.

57.5.3.79 STARPU_BCSR_GET_COLIND

#define STARPU_BCSR_GET_COLIND(

interface)

Return a pointer to the column index of the matrix designated by interface.

57.5.3.80 STARPU_BCSR_GET_RAM_COLIND

#define STARPU_BCSR_GET_RAM_COLIND(

interface)

Return a RAM pointer to the column index of the matrix designated by interface.

57.5.3.81 STARPU_BCSR_GET_COLIND_DEV_HANDLE

#define STARPU_BCSR_GET_COLIND_DEV_HANDLE(

interface)

Return a device handle for the column index of the matrix designated by interface. The offset returned by
STARPU_BCSR_GET_OFFSET has to be used in addition to this.

57.5.3.82 STARPU_BCSR_GET_ROWPTR

#define STARPU_BCSR_GET_ROWPTR(

interface)

Return a pointer to the row pointer array of the matrix designated by interface.

57.5.3.83 STARPU_BCSR_GET_RAM_ROWPTR

#define STARPU_BCSR_GET_RAM_ROWPTR(

interface)

Return a RAM pointer to the row pointer array of the matrix designated by interface.

57.5.3.84 STARPU_BCSR_GET_ROWPTR_DEV_HANDLE

#define STARPU_BCSR_GET_ROWPTR_DEV_HANDLE(

interface)

Return a device handle for the row pointer array of the matrix designated by interface. The offset returned by
STARPU_BCSR_GET_OFFSET has to be used in addition to this.

57.5.3.85 STARPU_BCSR_GET_FIRSTENTRY

#define STARPU_BCSR_GET_FIRSTENTRY(

interface)

Return the base of the indexing (0 or 1 usually) in the matrix designated by interface.

57.5.3.86 STARPU_BCSR_GET_R

#define STARPU_BCSR_GET_R(

interface)

Return the height of blocks in the matrix designated by interface.

Generated by Doxygen

57.5 Data Interfaces 393

57.5.3.87 STARPU_BCSR_GET_C

#define STARPU_BCSR_GET_C(

interface)

Return the width of blocks in the matrix designated by interface.

57.5.3.88 STARPU_BCSR_GET_ELEMSIZE

#define STARPU_BCSR_GET_ELEMSIZE(

interface)

Return the size of elements in the matrix designated by interface.

57.5.3.89 STARPU_BCSR_GET_OFFSET

#define STARPU_BCSR_GET_OFFSET

Return the offset in the arrays (coling, rowptr, nzval) of the matrix designated by interface, to be used with the
device handles.

57.5.3.90 STARPU_MULTIFORMAT_GET_CPU_PTR

#define STARPU_MULTIFORMAT_GET_CPU_PTR(

interface)

Return the local pointer to the data with CPU format.

57.5.3.91 STARPU_MULTIFORMAT_GET_CUDA_PTR

#define STARPU_MULTIFORMAT_GET_CUDA_PTR(

interface)

Return the local pointer to the data with CUDA format.

57.5.3.92 STARPU_MULTIFORMAT_GET_HIP_PTR

#define STARPU_MULTIFORMAT_GET_HIP_PTR(

interface)

Return the local pointer to the data with HIP format.

57.5.3.93 STARPU_MULTIFORMAT_GET_OPENCL_PTR

#define STARPU_MULTIFORMAT_GET_OPENCL_PTR(

interface)

Return the local pointer to the data with OpenCL format.

57.5.3.94 STARPU_MULTIFORMAT_GET_NX

#define STARPU_MULTIFORMAT_GET_NX(

interface)

Return the number of elements in the data.

57.5.4 Enumeration Type Documentation

57.5.4.1 starpu_data_interface_id

enum starpu_data_interface_id

Identifier for all predefined StarPU data interfaces

Enumerator

STARPU_UNKNOWN_INTERFACE_ID Unknown interface

Generated by Doxygen

394 Module Documentation a.k.a StarPU’s API

Enumerator

STARPU_MATRIX_INTERFACE_ID Identifier for the matrix data interface
STARPU_BLOCK_INTERFACE_ID Identifier for the block data interface

STARPU_VECTOR_INTERFACE_ID Identifier for the vector data interface
STARPU_CSR_INTERFACE_ID Identifier for the CSR data interface

STARPU_BCSR_INTERFACE_ID Identifier for the BCSR data interface
STARPU_VARIABLE_INTERFACE_ID Identifier for the variable data interface

STARPU_VOID_INTERFACE_ID Identifier for the void data interface
STARPU_MULTIFORMAT_INTERFACE_ID Identifier for the multiformat data interface

STARPU_COO_INTERFACE_ID Identifier for the COO data interface
STARPU_TENSOR_INTERFACE_ID Identifier for the tensor data interface

STARPU_NDIM_INTERFACE_ID Identifier for the ndim array data interface

STARPU_MAX_INTERFACE_ID Maximum number of data interfaces

57.5.5 Function Documentation

57.5.5.1 starpu_data_register()

void starpu_data_register (

starpu_data_handle_t ∗ handleptr,

int home_node,

void ∗ data_interface,

struct starpu_data_interface_ops ∗ ops)

Register a piece of data into the handle located at the handleptr address. The data_interface buffer con-
tains the initial description of the data in the home_node. The ops argument is a pointer to a structure describing
the different methods used to manipulate this type of interface. See starpu_data_interface_ops for more details on
this structure. If home_node is -1, StarPU will automatically allocate the memory when it is used for the first time
in write-only mode. Once such data handle has been automatically allocated, it is possible to access it using any
access mode. Note that StarPU supplies a set of predefined types of interface (e.g. vector or matrix) which can be
registered by the means of helper functions (e.g. starpu_vector_data_register() or starpu_matrix_data_register()).
See Data registration for more details.

57.5.5.2 starpu_data_register_ops()

void starpu_data_register_ops (

struct starpu_data_interface_ops ∗ ops)

Register the given data interface operations. If the field starpu_data_interface_ops::field is set to STARPU_UNKNOWN_INTERFACE_ID,
then a new identifier will be set by calling starpu_data_interface_get_next_id(). The function is automatically called
when registering a piece of data with starpu_data_register(). It is only necessary to call it beforehand for some
specific cases (such as the usmaster slave mode).

57.5.5.3 starpu_data_ptr_register()

void starpu_data_ptr_register (

starpu_data_handle_t handle,

unsigned node)

Register that a buffer for handle on node will be set. This is typically used by starpu_∗_ptr_register
helpers before setting the interface pointers for this node, to tell the core that that is now allocated. See
Pointers inside the data interface for more details.

57.5.5.4 starpu_data_register_same()

void starpu_data_register_same (

Generated by Doxygen

57.5 Data Interfaces 395

starpu_data_handle_t ∗ handledst,

starpu_data_handle_t handlesrc)

Register a new piece of data into the handle handledst with the same interface as the handle handlesrc.
See Data handles helpers for more details.

57.5.5.5 starpu_data_handle_to_pointer()

void ∗ starpu_data_handle_to_pointer (

starpu_data_handle_t handle,

unsigned node)

Return the pointer associated with handle on node node or NULL if handle’s interface does not support this
operation or data for this handle is not allocated on that node. See Handles data buffer pointers for more details.

57.5.5.6 starpu_data_get_local_ptr()

void ∗ starpu_data_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle or NULL if handle’s interface does not have any data allocated
locally. See Handles data buffer pointers for more details.

57.5.5.7 starpu_data_get_interface_on_node()

void ∗ starpu_data_get_interface_on_node (

starpu_data_handle_t handle,

unsigned memory_node)

Return the interface associated with handle on memory_node. See Data pack/peek/unpack for more details.

57.5.5.8 starpu_data_get_interface_id()

enum starpu_data_interface_id starpu_data_get_interface_id (

starpu_data_handle_t handle)

Return the unique identifier of the interface associated with the given handle. See Helpers for more details.

57.5.5.9 starpu_data_pack_node()

int starpu_data_pack_node (

starpu_data_handle_t handle,

unsigned node,

void ∗∗ ptr,

starpu_ssize_t ∗ count)

Execute the packing operation of the interface of the data registered at handle (see starpu_data_interface_ops).
This packing operation must allocate a buffer large enough at ptr on node node and copy into the newly allocated
buffer the data associated to handle. count will be set to the size of the allocated buffer. If ptr is NULL, the
function should not copy the data in the buffer but just set count to the size of the buffer which would have been
allocated. The special value -1 indicates the size is yet unknown. See Data handles helpers for more details.

57.5.5.10 starpu_data_pack()

int starpu_data_pack (

starpu_data_handle_t handle,

void ∗∗ ptr,

starpu_ssize_t ∗ count)

Like starpu_data_pack_node(), but for the local memory node. See Data handles helpers for more details.

57.5.5.11 starpu_data_peek_node()

int starpu_data_peek_node (

starpu_data_handle_t handle,

Generated by Doxygen

396 Module Documentation a.k.a StarPU’s API

unsigned node,

void ∗ ptr,

size_t count)

Read in handle's node replicate the data located at ptr of size count as described by the interface of the
data. The interface registered at handle must define a peeking operation (see starpu_data_interface_ops). See
Data handles helpers for more details.

57.5.5.12 starpu_data_peek()

int starpu_data_peek (

starpu_data_handle_t handle,

void ∗ ptr,

size_t count)

Read in handle's local replicate the data located at ptr of size count as described by the interface of the
data. The interface registered at handle must define a peeking operation (see starpu_data_interface_ops). See
Data handles helpers for more details.

57.5.5.13 starpu_data_unpack_node()

int starpu_data_unpack_node (

starpu_data_handle_t handle,

unsigned node,

void ∗ ptr,

size_t count)

Unpack in handle the data located at ptr of size count allocated on node node as described by the interface of
the data. The interface registered at handlemust define an unpacking operation (see starpu_data_interface_ops).
See Data handles helpers for more details.

57.5.5.14 starpu_data_unpack()

int starpu_data_unpack (

starpu_data_handle_t handle,

void ∗ ptr,

size_t count)

Unpack in handle the data located at ptr of size count as described by the interface of the data. The interface reg-
istered at handle must define a unpacking operation (see starpu_data_interface_ops). See Data handles helpers
for more details.

57.5.5.15 starpu_data_get_size()

size_t starpu_data_get_size (

starpu_data_handle_t handle)

Return the size of the data associated with handle. See Data handles helpers for more details.

57.5.5.16 starpu_data_get_alloc_size()

size_t starpu_data_get_alloc_size (

starpu_data_handle_t handle)

Return the size of the allocated data associated with handle. See Data handles helpers for more details.

57.5.5.17 starpu_data_get_max_size()

starpu_ssize_t starpu_data_get_max_size (

starpu_data_handle_t handle)

Return the maximum size that the handle data may need to increase to. See Data handles helpers for more
details.

Generated by Doxygen

57.5 Data Interfaces 397

57.5.5.18 starpu_data_get_home_node()

int starpu_data_get_home_node (

starpu_data_handle_t handle)

See Data handles helpers for more details.

57.5.5.19 starpu_data_print()

void starpu_data_print (

starpu_data_handle_t handle,

unsigned node,

FILE ∗ stream)

Print basic information on handle on node. See Data handles helpers for more details.

57.5.5.20 starpu_data_interface_get_next_id()

int starpu_data_interface_get_next_id (

void)

Return the next available id for a newly created data interface (Defining A New Data Interface).

57.5.5.21 starpu_interface_copy()

int starpu_interface_copy (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t size,

void ∗ async_data)

Copy size bytes from byte offset src_offset of src on src_node to byte offset dst_offset of dst on
dst_node. This is to be used in the starpu_data_copy_methods::any_to_any copy method, which is provided with
async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing, or 0 if
the transfer is already completed.
See Data copy for more details.

57.5.5.22 starpu_interface_copy2d()

int starpu_interface_copy2d (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t blocksize,

size_t numblocks,

size_t ld_src,

size_t ld_dst,

void ∗ async_data)

Copy numblocks blocks of blocksize bytes from byte offset src_offset of src on src_node to byte
offset dst_offset of dst on dst_node.
The blocks start at addresses which are ld_src (resp. ld_dst) bytes apart in the source (resp. destination) interface.
If blocksize == ld_src == ld_dst, the transfer is optimized into a single starpu_interface_copy call.
This is to be used in the starpu_data_copy_methods::any_to_any copy method for 2D data, which is provided with
async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing, or 0 if
the transfer is already completed.
See Data copy for more details.

Generated by Doxygen

398 Module Documentation a.k.a StarPU’s API

57.5.5.23 starpu_interface_copy3d()

int starpu_interface_copy3d (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t blocksize,

size_t numblocks1,

size_t ld1_src,

size_t ld1_dst,

size_t numblocks2,

size_t ld2_src,

size_t ld2_dst,

void ∗ async_data)

Copy numblocks_1 ∗ numblocks_2 blocks of blocksize bytes from byte offset src_offset of src on
src_node to byte offset dst_offset of dst on dst_node.
The blocks are grouped by numblocks_1 blocks whose start addresses are ld1_src (resp. ld1_dst) bytes apart
in the source (resp. destination) interface.
Such groups are grouped by numblocks_2 groups whose start addresses are ld2_src (resp. ld2_dst) bytes apart in
the source (resp. destination) interface.
If the blocks are contiguous, the transfers will be optimized.
This is to be used in the starpu_data_copy_methods::any_to_any copy method for 3D data, which is provided with
async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing, or 0 if
the transfer is already completed.
See Data copy for more details.

57.5.5.24 starpu_interface_copy4d()

int starpu_interface_copy4d (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t blocksize,

size_t numblocks1,

size_t ld1_src,

size_t ld1_dst,

size_t numblocks2,

size_t ld2_src,

size_t ld2_dst,

size_t numblocks3,

size_t ld3_src,

size_t ld3_dst,

void ∗ async_data)

Copy numblocks_1 ∗ numblocks_2 ∗ numblocks_3 blocks of blocksize bytes from byte offset src←↩

_offset of src on src_node to byte offset dst_offset of dst on dst_node.
The blocks are grouped by numblocks_1 blocks whose start addresses are ld1_src (resp. ld1_dst) bytes apart
in the source (resp. destination) interface.
Such groups are grouped by numblocks_2 groups whose start addresses are ld2_src (resp. ld2_dst) bytes apart in
the source (resp. destination) interface.
Such groups are grouped by numblocks_3 groups whose start addresses are ld3_src (resp. ld3_dst) bytes apart in
the source (resp. destination) interface.
If the blocks are contiguous, the transfers will be optimized.
This is to be used in the starpu_data_copy_methods::any_to_any copy method for 4D data, which is provided with

Generated by Doxygen

57.5 Data Interfaces 399

async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing, or 0 if
the transfer is already completed.
See Data copy for more details.

57.5.5.25 starpu_interface_copynd()

int starpu_interface_copynd (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t elemsize,

size_t ndim,

uint32_t ∗ nn,

uint32_t ∗ ldn_src,

uint32_t ∗ ldn_dst,

void ∗ async_data)

Copy nn[1] ∗ nn[2]...∗ nn[ndim-1] blocks of nn[0] ∗ elemsize bytes from byte offset src_offset of src on
src_node to byte offset dst_offset of dst on dst_node.
The blocks are grouped by nn[i] blocks (i = 1, 2, ... ndim-1) whose start addresses are ldn_src[i] ∗ elemsize
(resp. ld1_dst[i] ∗ elemsize) bytes apart in the source (resp. destination) interface.
If the blocks are contiguous, the transfers will be optimized.
This is to be used in the starpu_data_copy_methods::any_to_any copy method for Ndim data, which is provided
with async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing,
or 0 if the transfer is already completed.
See Data copy for more details.

57.5.5.26 starpu_interface_start_driver_copy_async()

void starpu_interface_start_driver_copy_async (

unsigned src_node,

unsigned dst_node,

double ∗ start)

When an asynchronous implementation of the data transfer is implemented, the call to the underlying
CUDA, OpenCL, etc. call should be surrounded by calls to starpu_interface_start_driver_copy_async() and
starpu_interface_end_driver_copy_async(), so that it is recorded in offline execution traces, and the timing
of the submission is checked. start must point to a variable whose value will be passed unchanged to
starpu_interface_end_driver_copy_async().
See Data copy for more details.

57.5.5.27 starpu_interface_end_driver_copy_async()

void starpu_interface_end_driver_copy_async (

unsigned src_node,

unsigned dst_node,

double start)

See starpu_interface_start_driver_copy_async(). See Data copy for more details.

57.5.5.28 starpu_interface_data_copy()

void starpu_interface_data_copy (

unsigned src_node,

unsigned dst_node,

size_t size)

Record in offline execution traces the copy of size bytes from node src_node to node dst_node. See
Data copy for more details.

Generated by Doxygen

400 Module Documentation a.k.a StarPU’s API

57.5.5.29 starpu_malloc_on_node_flags()

uintptr_t starpu_malloc_on_node_flags (

unsigned dst_node,

size_t size,

int flags)

Allocate size bytes on node dst_node with the given allocation flags (such as STARPU_MALLOC_PINNED,
STARPU_MALLOC_COUNT, etc.). This returns 0 if allocation failed, the allocation method should then return
-ENOMEM as allocated size. Deallocation must be done with starpu_free_on_node_flags().
See Data Interface with Variable Size for more details.

57.5.5.30 starpu_malloc_on_node()

uintptr_t starpu_malloc_on_node (

unsigned dst_node,

size_t size)

Allocate size bytes on node dst_node with the default allocation flags. This returns 0 if allocation failed,
the allocation method should then return -ENOMEM as allocated size. Deallocation must be done with
starpu_free_on_node().
See Data allocation for more details.

57.5.5.31 starpu_free_on_node_flags()

void starpu_free_on_node_flags (

unsigned dst_node,

uintptr_t addr,

size_t size,

int flags)

Free addr of size bytes on node dst_nodewhich was previously allocated with starpu_malloc_on_node_flags()
with the given allocation flags.
See Data Interface with Variable Size for more details.

57.5.5.32 starpu_free_on_node()

void starpu_free_on_node (

unsigned dst_node,

uintptr_t addr,

size_t size)

Free addr of size bytes on node dst_node which was previously allocated with starpu_malloc_on_node().
See Data allocation for more details.

57.5.5.33 starpu_malloc_on_node_set_default_flags()

void starpu_malloc_on_node_set_default_flags (

unsigned node,

int flags)

Define the default flags for allocations performed by starpu_malloc_on_node() and starpu_free_on_node(). The de-
fault is STARPU_MALLOC_PINNED | STARPU_MALLOC_COUNT. See How to Limit Memory Used By StarPU And Cache Buffer Allocations
for more details.

57.5.5.34 starpu_interface_map()

uintptr_t starpu_interface_map (

uintptr_t src,

size_t src_offset,

unsigned src_node,

unsigned dst_node,

size_t size,

int ∗ ret)

Used to set starpu_data_interface_ops::map_data. See Pointers inside the data interface for more details.

Generated by Doxygen

57.5 Data Interfaces 401

57.5.5.35 starpu_interface_unmap()

int starpu_interface_unmap (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

unsigned dst_node,

size_t size)

Used to set starpu_data_interface_ops::unmap_data. See Pointers inside the data interface for more details.

57.5.5.36 starpu_interface_update_map()

int starpu_interface_update_map (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t size)

Used to set starpu_data_interface_ops::update_map. See Pointers inside the data interface for more details.

57.5.5.37 starpu_matrix_data_register()

void starpu_matrix_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t ld,

uint32_t nx,

uint32_t ny,

size_t elemsize)

Register the nx x ny 2D matrix of elemsize-byte elements pointed by ptr and initialize handle to represent
it. ld specifies the number of elements between rows. a value greater than nx adds padding, which can be useful
for alignment purposes.
Here an example of how to use the function.
float *matrix;
starpu_data_handle_t matrix_handle;
matrix = (float*)malloc(width * height * sizeof(float));
starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (uintptr_t)matrix, width, width, height,

sizeof(float));

See Matrix Data Interface for more details.

57.5.5.38 starpu_matrix_data_register_allocsize()

void starpu_matrix_data_register_allocsize (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t ld,

uint32_t nx,

uint32_t ny,

size_t elemsize,

size_t allocsize)

Similar to starpu_matrix_data_register, but additionally specifies which allocation size should be used instead of the
initial nx∗ny∗elemsize.
See Data Interface with Variable Size for more details.

Generated by Doxygen

402 Module Documentation a.k.a StarPU’s API

57.5.5.39 starpu_matrix_ptr_register()

void starpu_matrix_ptr_register (

starpu_data_handle_t handle,

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset,

uint32_t ld)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably), with ld elements between rows.

57.5.5.40 starpu_matrix_get_nx()

uint32_t starpu_matrix_get_nx (

starpu_data_handle_t handle)

Return the number of elements on the x-axis of the matrix designated by handle.

57.5.5.41 starpu_matrix_get_ny()

uint32_t starpu_matrix_get_ny (

starpu_data_handle_t handle)

Return the number of elements on the y-axis of the matrix designated by handle.

57.5.5.42 starpu_matrix_get_local_ld()

uint32_t starpu_matrix_get_local_ld (

starpu_data_handle_t handle)

Return the number of elements between each row of the matrix designated by handle. Maybe be equal to nx
when there is no padding.

57.5.5.43 starpu_matrix_get_local_ptr()

uintptr_t starpu_matrix_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle.

57.5.5.44 starpu_matrix_get_elemsize()

size_t starpu_matrix_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements registered into the matrix designated by handle.

57.5.5.45 starpu_matrix_get_allocsize()

size_t starpu_matrix_get_allocsize (

starpu_data_handle_t handle)

Return the allocated size of the matrix designated by handle.

57.5.5.46 starpu_coo_data_register()

void starpu_coo_data_register (

starpu_data_handle_t ∗ handleptr,

int home_node,

uint32_t nx,

uint32_t ny,

uint32_t n_values,

uint32_t ∗ columns,

uint32_t ∗ rows,

Generated by Doxygen

57.5 Data Interfaces 403

uintptr_t values,

size_t elemsize)

Register the nx x ny 2D matrix given in the COO format, using the columns, rows, values arrays, which must
have n_values elements of size elemsize. Initialize handleptr. See COO Data Interface for more details.

57.5.5.47 starpu_block_data_register()

void starpu_block_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t ldy,

uint32_t ldz,

uint32_t nx,

uint32_t ny,

uint32_t nz,

size_t elemsize)

Register the nx x ny x nz 3D matrix of elemsize byte elements pointed by ptr and initialize handle to
represent it. Again, ldy and ldz specify the number of elements between rows and between z planes.
Here an example of how to use the function.
float *block;
starpu_data_handle_t block_handle;
block = (float*)malloc(nx*ny*nz*sizeof(float));
starpu_block_data_register(&block_handle, STARPU_MAIN_RAM, (uintptr_t)block, nx, nx*ny, nx, ny, nz,

sizeof(float));

See Block Data Interface for more details.

57.5.5.48 starpu_block_ptr_register()

void starpu_block_ptr_register (

starpu_data_handle_t handle,

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset,

uint32_t ldy,

uint32_t ldz)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably), with ldy elements between rows and ldz elements
between z planes.

57.5.5.49 starpu_block_get_nx()

uint32_t starpu_block_get_nx (

starpu_data_handle_t handle)

Return the number of elements on the x-axis of the block designated by handle.

57.5.5.50 starpu_block_get_ny()

uint32_t starpu_block_get_ny (

starpu_data_handle_t handle)

Return the number of elements on the y-axis of the block designated by handle.

57.5.5.51 starpu_block_get_nz()

uint32_t starpu_block_get_nz (

starpu_data_handle_t handle)

Return the number of elements on the z-axis of the block designated by handle.

Generated by Doxygen

404 Module Documentation a.k.a StarPU’s API

57.5.5.52 starpu_block_get_local_ldy()

uint32_t starpu_block_get_local_ldy (

starpu_data_handle_t handle)

Return the number of elements between each row of the block designated by handle, in the format of the current
memory node.

57.5.5.53 starpu_block_get_local_ldz()

uint32_t starpu_block_get_local_ldz (

starpu_data_handle_t handle)

Return the number of elements between each z plane of the block designated by handle, in the format of the
current memory node.

57.5.5.54 starpu_block_get_local_ptr()

uintptr_t starpu_block_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle.

57.5.5.55 starpu_block_get_elemsize()

size_t starpu_block_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements of the block designated by handle.

57.5.5.56 starpu_tensor_data_register()

void starpu_tensor_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t ldy,

uint32_t ldz,

uint32_t ldt,

uint32_t nx,

uint32_t ny,

uint32_t nz,

uint32_t nt,

size_t elemsize)

Register the nx x ny x nz x nt 4D tensor of elemsize byte elements pointed by ptr and initialize handle
to represent it. Again, ldy, ldz, and ldt specify the number of elements between rows, between z planes and
between t cubes.
Here an example of how to use the function.
float *tensor;
starpu_data_handle_t tensor_handle;
tensor = (float*)malloc(nx*ny*nz*nt*sizeof(float));
starpu_tensor_data_register(&tensor_handle, STARPU_MAIN_RAM, (uintptr_t)tensor, nx, nx*ny, nx*ny*nz, nx, ny,

nz, nt, sizeof(float));

See Tensor Data Interface for more details.

57.5.5.57 starpu_tensor_ptr_register()

void starpu_tensor_ptr_register (

starpu_data_handle_t handle,

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset,

uint32_t ldy,

Generated by Doxygen

57.5 Data Interfaces 405

uint32_t ldz,

uint32_t ldt)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably), with ldy elements between rows, and ldz elements
between z planes, and ldt elements between t cubes.

57.5.5.58 starpu_tensor_get_nx()

uint32_t starpu_tensor_get_nx (

starpu_data_handle_t handle)

Return the number of elements on the x-axis of the tensor designated by handle.

57.5.5.59 starpu_tensor_get_ny()

uint32_t starpu_tensor_get_ny (

starpu_data_handle_t handle)

Return the number of elements on the y-axis of the tensor designated by handle.

57.5.5.60 starpu_tensor_get_nz()

uint32_t starpu_tensor_get_nz (

starpu_data_handle_t handle)

Return the number of elements on the z-axis of the tensor designated by handle.

57.5.5.61 starpu_tensor_get_nt()

uint32_t starpu_tensor_get_nt (

starpu_data_handle_t handle)

Return the number of elements on the t-axis of the tensor designated by handle.

57.5.5.62 starpu_tensor_get_local_ldy()

uint32_t starpu_tensor_get_local_ldy (

starpu_data_handle_t handle)

Return the number of elements between each row of the tensor designated by handle, in the format of the current
memory node.

57.5.5.63 starpu_tensor_get_local_ldz()

uint32_t starpu_tensor_get_local_ldz (

starpu_data_handle_t handle)

Return the number of elements between each z plane of the tensor designated by handle, in the format of the
current memory node.

57.5.5.64 starpu_tensor_get_local_ldt()

uint32_t starpu_tensor_get_local_ldt (

starpu_data_handle_t handle)

Return the number of elements between each t cubes of the tensor designated by handle, in the format of the
current memory node.

57.5.5.65 starpu_tensor_get_local_ptr()

uintptr_t starpu_tensor_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle.

Generated by Doxygen

406 Module Documentation a.k.a StarPU’s API

57.5.5.66 starpu_tensor_get_elemsize()

size_t starpu_tensor_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements of the tensor designated by handle.

57.5.5.67 starpu_ndim_data_register()

void starpu_ndim_data_register (

starpu_data_handle_t ∗ handleptr,

int home_node,

uintptr_t ptr,

uint32_t ∗ ldn,

uint32_t ∗ nn,

size_t ndim,

size_t elemsize)

Register the nn[0] x nn[1] x ... ndim-dimension matrix of elemsize byte elements pointed by ptr and
initialize handle to represent it. Again, ldn, specifies the number of elements between two units on each dimen-
sion.
Here an example of how to use the function.
float *ndim_arr;
size_t arrsize = 1;

int i;
for (i = 0; i < ndim; i++)

arrsize = arrsize * nn[i];
starpu_data_handle_t ndim_handle;
ndim_arr = (float*)malloc(arrsize*sizeof(float));
starpu_ndim_data_register(&ndim_handle, STARPU_MAIN_RAM, (uintptr_t)ndim_arr, ldn, nn, ndim, sizeof(float));

See Ndim Data Interface for more details.

57.5.5.68 starpu_ndim_ptr_register()

void starpu_ndim_ptr_register (

starpu_data_handle_t handle,

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset,

uint32_t ∗ ldn)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device
handle dev_handle and offset offset (for OpenCL, notably), with ldn elements between two units on each
dimension.

57.5.5.69 starpu_ndim_get_nn()

uint32_t ∗ starpu_ndim_get_nn (

starpu_data_handle_t handle)

Return the number of elements on each dimension of the ndim array designated by handle.

57.5.5.70 starpu_ndim_get_ni()

uint32_t starpu_ndim_get_ni (

starpu_data_handle_t handle,

size_t i)

Return the number of elements on the i-axis of the ndim array designated by handle. When i=0, it means x-axis,
when i=1, it means y-axis, when i=2, it means z-axis, etc.

57.5.5.71 starpu_ndim_get_local_ldn()

uint32_t ∗ starpu_ndim_get_local_ldn (

starpu_data_handle_t handle)

Generated by Doxygen

57.5 Data Interfaces 407

Return the number of elements between two units on each dimension of the ndim array designated by handle, in
the format of the current memory node.

57.5.5.72 starpu_ndim_get_local_ldi()

uint32_t starpu_ndim_get_local_ldi (

starpu_data_handle_t handle,

size_t i)

Return the number of elements between two units i-axis dimension of the ndim array designated by handle, in the
format of the current memory node.

57.5.5.73 starpu_ndim_get_local_ptr()

uintptr_t starpu_ndim_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle.

57.5.5.74 starpu_ndim_get_ndim()

size_t starpu_ndim_get_ndim (

starpu_data_handle_t handle)

Return the dimension size.

57.5.5.75 starpu_ndim_get_elemsize()

size_t starpu_ndim_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements of the ndim array designated by handle.

57.5.5.76 starpu_vector_data_register()

void starpu_vector_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t nx,

size_t elemsize)

Register the nx elemsize-byte elements pointed to by ptr and initialize handle to represent it.
Here an example of how to use the function.
float vector[NX];
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));

See Vector Data Interface for more details.

57.5.5.77 starpu_vector_data_register_allocsize()

void starpu_vector_data_register_allocsize (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t nx,

size_t elemsize,

size_t allocsize)

Similar to starpu_vector_data_register, but additionally specifies which allocation size should be used instead of the
initial nx∗elemsize. See Data Interface with Variable Size for more details.

57.5.5.78 starpu_vector_ptr_register()

void starpu_vector_ptr_register (

starpu_data_handle_t handle,

Generated by Doxygen

408 Module Documentation a.k.a StarPU’s API

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably)

57.5.5.79 starpu_vector_get_nx()

uint32_t starpu_vector_get_nx (

starpu_data_handle_t handle)

Return the number of elements registered into the array designated by handle.

57.5.5.80 starpu_vector_get_elemsize()

size_t starpu_vector_get_elemsize (

starpu_data_handle_t handle)

Return the size of each element of the array designated by handle.

57.5.5.81 starpu_vector_get_allocsize()

size_t starpu_vector_get_allocsize (

starpu_data_handle_t handle)

Return the allocated size of the array designated by handle.

57.5.5.82 starpu_vector_get_local_ptr()

uintptr_t starpu_vector_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle.

57.5.5.83 starpu_variable_data_register()

void starpu_variable_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

size_t size)

Register the size byte element pointed to by ptr, which is typically a scalar, and initialize handle to represent
this data item.
Here an example of how to use the function.
float var = 42.0;
starpu_data_handle_t var_handle;
starpu_variable_data_register(&var_handle, STARPU_MAIN_RAM, (uintptr_t)&var, sizeof(var));

See Variable Data Interface for more details.

57.5.5.84 starpu_variable_ptr_register()

void starpu_variable_ptr_register (

starpu_data_handle_t handle,

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably)

57.5.5.85 starpu_variable_get_elemsize()

size_t starpu_variable_get_elemsize (

starpu_data_handle_t handle)

Generated by Doxygen

57.5 Data Interfaces 409

Return the size of the variable designated by handle.

57.5.5.86 starpu_variable_get_local_ptr()

uintptr_t starpu_variable_get_local_ptr (

starpu_data_handle_t handle)

Return a pointer to the variable designated by handle.

57.5.5.87 starpu_void_data_register()

void starpu_void_data_register (

starpu_data_handle_t ∗ handle)

Register a void interface. There is no data really associated to that interface, but it may be used as a synchronization
mechanism. It also permits to express an abstract piece of data that is managed by the application internally: this
makes it possible to forbid the concurrent execution of different tasks accessing the same void data in read-write
concurrently. See Data handles helpers for more details.

57.5.5.88 starpu_csr_data_register()

void starpu_csr_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uint32_t nnz,

uint32_t nrow,

uintptr_t nzval,

uint32_t ∗ colind,

uint32_t ∗ rowptr,

uint32_t firstentry,

size_t elemsize)

Register a CSR (Compressed Sparse Row Representation) sparse matrix. See CSR Data Interface for more details.

57.5.5.89 starpu_csr_get_nnz()

uint32_t starpu_csr_get_nnz (

starpu_data_handle_t handle)

Return the number of non-zero values in the matrix designated by handle.

57.5.5.90 starpu_csr_get_nrow()

uint32_t starpu_csr_get_nrow (

starpu_data_handle_t handle)

Return the size of the row pointer array of the matrix designated by handle.

57.5.5.91 starpu_csr_get_firstentry()

uint32_t starpu_csr_get_firstentry (

starpu_data_handle_t handle)

Return the index at which all arrays (the column indexes, the row pointers...) of the matrix designated by handle.

57.5.5.92 starpu_csr_get_local_nzval()

uintptr_t starpu_csr_get_local_nzval (

starpu_data_handle_t handle)

Return a local pointer to the non-zero values of the matrix designated by handle.

Generated by Doxygen

410 Module Documentation a.k.a StarPU’s API

57.5.5.93 starpu_csr_get_local_colind()

uint32_t ∗ starpu_csr_get_local_colind (

starpu_data_handle_t handle)

Return a local pointer to the column index of the matrix designated by handle.

57.5.5.94 starpu_csr_get_local_rowptr()

uint32_t ∗ starpu_csr_get_local_rowptr (

starpu_data_handle_t handle)

Return a local pointer to the row pointer array of the matrix designated by handle.

57.5.5.95 starpu_csr_get_elemsize()

size_t starpu_csr_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements registered into the matrix designated by handle.

57.5.5.96 starpu_bcsr_data_register()

void starpu_bcsr_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uint32_t nnz,

uint32_t nrow,

uintptr_t nzval,

uint32_t ∗ colind,

uint32_t ∗ rowptr,

uint32_t firstentry,

uint32_t r,

uint32_t c,

size_t elemsize)

This variant of starpu_data_register() uses the BCSR (Blocked Compressed Sparse Row Representation) sparse
matrix interface. Register the sparse matrix made of nnz non-zero blocks of elements of size elemsize stored
in nzval and initializes handle to represent it. Blocks have size r ∗ c. nrow is the number of rows (in terms
of blocks), colind is an array of nnz elements, colind[i] is the block-column index for block i in nzval, rowptr
is an array of nrow+1 elements, rowptr[i] is the block-index (in nzval) of the first block of row i. By conven-
tion, rowptr[nrow] is the number of blocks, this allows an easier access of the matrix's elements for the kernels.
firstentry is the index of the first entry of the given arrays (usually 0 or 1).
Here an example with the following matrix:
| 0 1 0 0 |
| 2 3 0 0 |
| 4 5 8 9 |
| 6 7 10 11 |
nzval = [0, 1, 2, 3] ++ [4, 5, 6, 7] ++ [8, 9, 10, 11]
colind = [0, 0, 1]
rowptr = [0, 1, 3]
r = c = 2

which translates into the following code
int R = 2; // Size of the blocks
int C = 2;
int NROWS = 2;
int NNZ_BLOCKS = 3; // out of 4
int NZVAL_SIZE = (R*C*NNZ_BLOCKS);
int nzval[NZVAL_SIZE] =
{

0, 1, 2, 3, // First block
4, 5, 6, 7, // Second block
8, 9, 10, 11 // Third block

};
uint32_t colind[NNZ_BLOCKS] =
{

0, // block-column index for first block in nzval
0, // block-column index for second block in nzval
1 // block-column index for third block in nzval

};
uint32_t rowptr[NROWS+1] =
{

Generated by Doxygen

57.5 Data Interfaces 411

0, // block-index in nzval of the first block of the first row.
1, // block-index in nzval of the first block of the second row.
NNZ_BLOCKS // number of blocks, to allow an easier element’s access for the kernels

};
starpu_data_handle_t bcsr_handle;
starpu_bcsr_data_register(&bcsr_handle,

STARPU_MAIN_RAM,
NNZ_BLOCKS,
NROWS,
(uintptr_t) nzval,
colind,
rowptr,
0, // firstentry
R,
C,
sizeof(nzval[0]));

See BCSR Data Interface for more details.

57.5.5.97 starpu_bcsr_get_nnz()

uint32_t starpu_bcsr_get_nnz (

starpu_data_handle_t handle)

Return the number of non-zero elements in the matrix designated by handle.

57.5.5.98 starpu_bcsr_get_nrow()

uint32_t starpu_bcsr_get_nrow (

starpu_data_handle_t handle)

Return the number of rows (in terms of blocks of size r∗c) in the matrix designated by handle.

57.5.5.99 starpu_bcsr_get_firstentry()

uint32_t starpu_bcsr_get_firstentry (

starpu_data_handle_t handle)

Return the index at which all arrays (the column indexes, the row pointers...) of the matrix desginated by handle.

57.5.5.100 starpu_bcsr_get_local_nzval()

uintptr_t starpu_bcsr_get_local_nzval (

starpu_data_handle_t handle)

Return a pointer to the non-zero values of the matrix designated by handle.

57.5.5.101 starpu_bcsr_get_local_colind()

uint32_t ∗ starpu_bcsr_get_local_colind (

starpu_data_handle_t handle)

Return a pointer to the column index, which holds the positions of the non-zero entries in the matrix designated by
handle.

57.5.5.102 starpu_bcsr_get_local_rowptr()

uint32_t ∗ starpu_bcsr_get_local_rowptr (

starpu_data_handle_t handle)

Return the row pointer array of the matrix designated by handle.

57.5.5.103 starpu_bcsr_get_r()

uint32_t starpu_bcsr_get_r (

starpu_data_handle_t handle)

Return the number of rows in a block.

Generated by Doxygen

412 Module Documentation a.k.a StarPU’s API

57.5.5.104 starpu_bcsr_get_c()

uint32_t starpu_bcsr_get_c (

starpu_data_handle_t handle)

Return the number of columns in a block.

57.5.5.105 starpu_bcsr_get_elemsize()

size_t starpu_bcsr_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements in the matrix designated by handle.

57.5.5.106 starpu_multiformat_data_register()

void starpu_multiformat_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

void ∗ ptr,

uint32_t nobjects,

struct starpu_multiformat_data_interface_ops ∗ format_ops)

Register a piece of data that can be represented in different ways, depending upon the processing unit that manipu-
lates it. It allows the programmer, for instance, to use an array of structures when working on a CPU, and a structure
of arrays when working on a GPU. nobjects is the number of elements in the data. format_ops describes the
format. See The Multiformat Interface for more details.

57.5.5.107 starpu_hash_crc32c_be_n()

uint32_t starpu_hash_crc32c_be_n (

const void ∗ input,

size_t n,

uint32_t inputcrc)

Compute the CRC of a byte buffer seeded by the inputcrc current state. The return value should be consid-
ered as the new current state for future CRC computation. This is used for computing data size footprint. See
Data footprint for more details.

57.5.5.108 starpu_hash_crc32c_be_ptr()

uint32_t starpu_hash_crc32c_be_ptr (

void ∗ input,

uint32_t inputcrc)

Compute the CRC of a pointer value seeded by the inputcrc current state. The return value should be con-
sidered as the new current state for future CRC computation. This is used for computing data size footprint. See
Data footprint for more details.

57.5.5.109 starpu_hash_crc32c_be()

uint32_t starpu_hash_crc32c_be (

uint32_t input,

uint32_t inputcrc)

Compute the CRC of a 32bit number seeded by the inputcrc current state. The return value should be con-
sidered as the new current state for future CRC computation. This is used for computing data size footprint. See
Data footprint for more details.

57.5.5.110 starpu_hash_crc32c_string()

uint32_t starpu_hash_crc32c_string (

const char ∗ str,

uint32_t inputcrc)

Generated by Doxygen

57.5 Data Interfaces 413

Compute the CRC of a string seeded by the inputcrc current state. The return value should be considered as
the new current state for future CRC computation. This is used for computing data size footprint. See Data footprint
for more details.

Generated by Doxygen

414 Module Documentation a.k.a StarPU’s API

57.6 Data Management

Data management facilities provided by StarPU. We show how to use existing data interfaces in Data Interfaces,
but developers can design their own data interfaces if required.

Typedefs

• typedef struct _starpu_data_state ∗ starpu_data_handle_t
• typedef struct starpu_arbiter ∗ starpu_arbiter_t

Enumerations

• enum starpu_data_access_mode {
STARPU_NONE , STARPU_R , STARPU_W , STARPU_RW ,
STARPU_SCRATCH , STARPU_REDUX , STARPU_COMMUTE , STARPU_SSEND ,
STARPU_LOCALITY , STARPU_MPI_REDUX , STARPU_NOPLAN , STARPU_UNMAP ,
STARPU_NOFOOTPRINT , STARPU_ACCESS_MODE_MAX }

• enum starpu_is_prefetch {
STARPU_FETCH , STARPU_TASK_PREFETCH , STARPU_PREFETCH , STARPU_IDLEFETCH ,
STARPU_NFETCH }

Functions

• void starpu_data_set_name (starpu_data_handle_t handle, const char ∗name)
• void starpu_data_set_coordinates_array (starpu_data_handle_t handle, unsigned dimensions, int dims[])
• void starpu_data_set_coordinates (starpu_data_handle_t handle, unsigned dimensions,...)
• unsigned starpu_data_get_coordinates_array (starpu_data_handle_t handle, unsigned dimensions, int

dims[])
• void starpu_data_unregister (starpu_data_handle_t handle)
• void starpu_data_unregister_no_coherency (starpu_data_handle_t handle)
• void starpu_data_unregister_submit (starpu_data_handle_t handle)
• void starpu_data_deinitialize (starpu_data_handle_t handle)
• void starpu_data_deinitialize_submit (starpu_data_handle_t handle)
• void starpu_data_invalidate (starpu_data_handle_t handle)
• void starpu_data_invalidate_submit (starpu_data_handle_t handle)
• void starpu_data_advise_as_important (starpu_data_handle_t handle, unsigned is_important)
• starpu_arbiter_t starpu_arbiter_create (void) STARPU_ATTRIBUTE_MALLOC
• void starpu_data_assign_arbiter (starpu_data_handle_t handle, starpu_arbiter_t arbiter)
• void starpu_arbiter_destroy (starpu_arbiter_t arbiter)
• int starpu_data_request_allocation (starpu_data_handle_t handle, unsigned node)
• int starpu_data_fetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_prefetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_prefetch_on_node_prio (starpu_data_handle_t handle, unsigned node, unsigned async, int

prio)
• int starpu_data_idle_prefetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_idle_prefetch_on_node_prio (starpu_data_handle_t handle, unsigned node, unsigned async,

int prio)
• unsigned starpu_data_is_on_node (starpu_data_handle_t handle, unsigned node)
• void starpu_data_wont_use (starpu_data_handle_t handle)
• int starpu_data_evict_from_node (starpu_data_handle_t handle, unsigned node)
• void starpu_data_set_wt_mask (starpu_data_handle_t handle, uint32_t wt_mask)
• void starpu_data_set_ooc_flag (starpu_data_handle_t handle, unsigned flag)
• unsigned starpu_data_get_ooc_flag (starpu_data_handle_t handle)
• void starpu_data_query_status2 (starpu_data_handle_t handle, int memory_node, int ∗is_allocated, int ∗is←↩

_valid, int ∗is_loading, int ∗is_requested)

Generated by Doxygen

57.6 Data Management 415

• void starpu_data_query_status (starpu_data_handle_t handle, int memory_node, int ∗is_allocated, int ∗is←↩

_valid, int ∗is_requested)
• void starpu_data_set_reduction_methods (starpu_data_handle_t handle, struct starpu_codelet ∗redux_cl,

struct starpu_codelet ∗init_cl)
• void starpu_data_set_reduction_methods_with_args (starpu_data_handle_t handle, struct starpu_codelet
∗redux_cl, void ∗redux_cl_arg, struct starpu_codelet ∗init_cl, void ∗init_cl_arg)

• struct starpu_data_interface_ops ∗ starpu_data_get_interface_ops (starpu_data_handle_t handle)
• unsigned starpu_data_test_if_allocated_on_node (starpu_data_handle_t handle, unsigned memory_node)
• unsigned starpu_data_test_if_mapped_on_node (starpu_data_handle_t handle, unsigned memory_node)
• void starpu_memchunk_tidy (unsigned memory_node)
• void starpu_data_set_user_data (starpu_data_handle_t handle, void ∗user_data)
• void ∗ starpu_data_get_user_data (starpu_data_handle_t handle)
• void starpu_data_set_sched_data (starpu_data_handle_t handle, void ∗sched_data)
• void ∗ starpu_data_get_sched_data (starpu_data_handle_t handle)
• int starpu_data_can_evict (starpu_data_handle_t handle, unsigned node, enum starpu_is_prefetch is_←↩

prefetch)

Access registered data from the application

• int starpu_data_acquire (starpu_data_handle_t handle, enum starpu_data_access_mode mode)
• int starpu_data_acquire_on_node (starpu_data_handle_t handle, int node, enum starpu_data_access_mode

mode)
• int starpu_data_acquire_cb (starpu_data_handle_t handle, enum starpu_data_access_mode mode,

void(∗callback)(void ∗), void ∗arg)
• int starpu_data_acquire_on_node_cb (starpu_data_handle_t handle, int node, enum starpu_data_access_mode

mode, void(∗callback)(void ∗), void ∗arg)
• int starpu_data_acquire_cb_sequential_consistency (starpu_data_handle_t handle, enum starpu_data_access_mode

mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency)
• int starpu_data_acquire_on_node_cb_sequential_consistency (starpu_data_handle_t handle, int node, enum

starpu_data_access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency)
• int starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids (starpu_data_handle_t handle,

int node, enum starpu_data_access_mode mode, void(∗callback_acquired)(void ∗arg, int ∗node, enum
starpu_data_access_mode mode), void(∗callback)(void ∗arg), void ∗arg, int sequential_consistency, int quick,
long ∗pre_sync_jobid, long ∗post_sync_jobid, int prio)

• int starpu_data_acquire_try (starpu_data_handle_t handle, enum starpu_data_access_mode mode)
• int starpu_data_acquire_on_node_try (starpu_data_handle_t handle, int node, enum starpu_data_access_mode

mode)
• void starpu_data_release (starpu_data_handle_t handle)
• void starpu_data_release_on_node (starpu_data_handle_t handle, int node)
• void starpu_data_release_to (starpu_data_handle_t handle, enum starpu_data_access_mode down_to_←↩

mode)
• void starpu_data_release_to_on_node (starpu_data_handle_t handle, enum starpu_data_access_mode

down_to_mode, int node)
• #define STARPU_ACQUIRE_NO_NODE
• #define STARPU_ACQUIRE_NO_NODE_LOCK_ALL
• #define STARPU_DATA_ACQUIRE_CB(handle, mode, code)

Implicit Data Dependencies

In this section, we describe how StarPU makes it possible to insert implicit task dependencies in order to enforce
sequential data consistency. When this data consistency is enabled on a specific data handle, any data access
will appear as sequentially consistent from the application. For instance, if the application submits two tasks that
access the same piece of data in read-only mode, and then a third task that access it in write mode, dependencies
will be added between the two first tasks and the third one. Implicit data dependencies are also inserted in the case
of data accesses from the application.

• void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t handle, unsigned flag)

Generated by Doxygen

416 Module Documentation a.k.a StarPU’s API

• unsigned starpu_data_get_sequential_consistency_flag (starpu_data_handle_t handle)
• unsigned starpu_data_get_default_sequential_consistency_flag (void)
• void starpu_data_set_default_sequential_consistency_flag (unsigned flag)

57.6.1 Detailed Description

Data management facilities provided by StarPU. We show how to use existing data interfaces in Data Interfaces,
but developers can design their own data interfaces if required.

57.6.2 Macro Definition Documentation

57.6.2.1 STARPU_ACQUIRE_NO_NODE

#define STARPU_ACQUIRE_NO_NODE

This macro can be used to acquire data, but not require it to be available on a given node, only enforce R/W
dependencies. This can for instance be used to wait for tasks which produce the data, but without requesting a
fetch to the main memory.

57.6.2.2 STARPU_ACQUIRE_NO_NODE_LOCK_ALL

#define STARPU_ACQUIRE_NO_NODE_LOCK_ALL

Similar to STARPU_ACQUIRE_NO_NODE, but will lock the data on all nodes, preventing them from being evicted
for instance. This is mostly useful inside StarPU only.

57.6.2.3 STARPU_DATA_ACQUIRE_CB

#define STARPU_DATA_ACQUIRE_CB(

handle,

mode,

code)

STARPU_DATA_ACQUIRE_CB() is the same as starpu_data_acquire_cb(), except that the code to be executed in
a callback is directly provided as a macro parameter, and the data handle is automatically released after it. This
permits to easily execute code which depends on the value of some registered data. This is non-blocking too and
may be called from task callbacks.

57.6.3 Typedef Documentation

57.6.3.1 starpu_data_handle_t

typedef struct _starpu_data_state∗ starpu_data_handle_t

StarPU uses starpu_data_handle_t as an opaque handle to manage a piece of data. Once a piece of data has
been registered to StarPU, it is associated to a starpu_data_handle_t which keeps track of the state of the piece of
data over the entire machine, so that we can maintain data consistency and locate data replicates for instance. See
Data Interface for more details.

57.6.3.2 starpu_arbiter_t

typedef struct starpu_arbiter∗ starpu_arbiter_t

This is an arbiter, which implements an advanced but centralized management of concurrent data accesses, see
Concurrent Data Accesses for the details.

57.6.4 Enumeration Type Documentation

Generated by Doxygen

57.6 Data Management 417

57.6.4.1 starpu_data_access_mode

enum starpu_data_access_mode

Describe a StarPU data access mode
Note: when adding a flag here, update _starpu_detect_implicit_data_deps_with_handle
Note: other STARPU_∗ values in include/starpu_task_util.h

Enumerator

STARPU_NONE todo
STARPU_R read-only mode

STARPU_W write-only mode

STARPU_RW read-write mode. Equivalent to STARPU_R|STARPU_W

STARPU_SCRATCH A temporary buffer is allocated for the task, but StarPU does not enforce
data consistency—i.e. each device has its own buffer, independently from
each other (even for CPUs), and no data transfer is ever performed. This
is useful for temporary variables to avoid allocating/freeing buffers inside
each task. Currently, no behavior is defined concerning the relation with
the STARPU_R and STARPU_W modes and the value provided at
registration — i.e., the value of the scratch buffer is undefined at entry of
the codelet function. It is being considered for future extensions at least to
define the initial value. For now, data to be used in STARPU_SCRATCH
mode should be registered with node -1 and a NULL pointer, since the
value of the provided buffer is simply ignored for now.
See Scratch Data for more details.

STARPU_REDUX Reduction mode. StarPU will allocate on the fly a per-worker buffer, so
that various tasks that access the same data in STARPU_REDUX mode
can execute in parallel. When a task accesses the data without
STARPU_REDUX, StarPU will automatically reduce the different
contributions.
Codelets contributing to these reductions with STARPU_REDUX must be
registered with STARPU_RW | STARPU_COMMUTE access modes.
See Data Reduction for more details.

STARPU_COMMUTE STARPU_COMMUTE can be passed along STARPU_W or STARPU_RW
to express that StarPU can let tasks commute, which is useful e.g. when
bringing a contribution into some data, which can be done in any order
(but still require sequential consistency against reads or non-commutative
writes).
See Commute Data Access for more details.

STARPU_SSEND used in starpu_mpi_task_insert() to specify the data has to be sent using
a synchronous and non-blocking mode (see starpu_mpi_issend())

STARPU_LOCALITY used to tell the scheduler which data is the most important for the task,
and should thus be used to try to group tasks on the same core or cache,
etc. For now only the ws and lws schedulers take this flag into account,
and only when rebuild with USE_LOCALITY flag defined in the
src/sched_policies/work_stealing_policy.c source code.
TODO add extended description in documentation.

STARPU_MPI_REDUX Inter-node reduction only. This is similar to STARPU_REDUX, except that
StarPU will allocate a per-node buffer only, i.e. parallelism will be
achieved between nodes, but not within each node. This is useful when
the per-worker buffers allocated with STARPU_REDUX consume too
much memory.
See Inter-node reduction for more details.

STARPU_NOPLAN Disable automatic submission of asynchronous partitioning/unpartitioning,
only use internally by StarPU

STARPU_UNMAP Request unmapping the destination replicate, only use internally by
StarPU

Generated by Doxygen

418 Module Documentation a.k.a StarPU’s API

Enumerator

STARPU_NOFOOTPRINT Ignore this data for the footprint computation. See Scratch Data

STARPU_ACCESS_MODE_MAX The purpose of STARPU_ACCESS_MODE_MAX is to be the maximum
of this enum.

57.6.4.2 starpu_is_prefetch

enum starpu_is_prefetch

Prefetch levels
Data requests are ordered by priorities, but also by prefetching level, between data that a task wants now, and data
that we will probably want "soon".

Enumerator

STARPU_FETCH A task really needs it now!

STARPU_TASK_PREFETCH A task will need it soon
STARPU_PREFETCH It is a good idea to have it asap

STARPU_IDLEFETCH Get this here when you have time to

57.6.5 Function Documentation

57.6.5.1 starpu_data_set_name()

void starpu_data_set_name (

starpu_data_handle_t handle,

const char ∗ name)

Set the name of the data, to be shown in various profiling tools. See Creating a Gantt Diagram for more details.

57.6.5.2 starpu_data_set_coordinates_array()

void starpu_data_set_coordinates_array (

starpu_data_handle_t handle,

unsigned dimensions,

int dims[])

Set the coordinates of the data, to be shown in various profiling tools. dimensions is the size of the dims array.
This can be for instance the tile coordinates within a big matrix. See Creating a Gantt Diagram for more details.

57.6.5.3 starpu_data_set_coordinates()

void starpu_data_set_coordinates (

starpu_data_handle_t handle,

unsigned dimensions,

...)

Set the coordinates of the data, to be shown in various profiling tools. dimensions is the number of subsequent
int parameters. This can be for instance the tile coordinates within a big matrix. See Creating a Gantt Diagram
for more details.

57.6.5.4 starpu_data_get_coordinates_array()

unsigned starpu_data_get_coordinates_array (

starpu_data_handle_t handle,

Generated by Doxygen

57.6 Data Management 419

unsigned dimensions,

int dims[])

Get the coordinates of the data, as set by a previous call to starpu_data_set_coordinates_array() or
starpu_data_set_coordinates() dimensions is the size of the dims array. This returns the actual number
of returned coordinates. See Creating a Gantt Diagram for more details.

57.6.5.5 starpu_data_unregister()

void starpu_data_unregister (

starpu_data_handle_t handle)

Unregister a data handle from StarPU. If the data was automatically allocated by StarPU because the home node
was -1, all automatically allocated buffers are freed. Otherwise, a valid copy of the data is put back into the home
node in the buffer that was initially registered. Using a data handle that has been unregistered from StarPU results
in an undefined behaviour. In case we do not need to update the value of the data in the home node, we can use
the function starpu_data_unregister_no_coherency() instead. See Task Submission for more details.

57.6.5.6 starpu_data_unregister_no_coherency()

void starpu_data_unregister_no_coherency (

starpu_data_handle_t handle)

Similar to starpu_data_unregister(), except that StarPU does not put back a valid copy into the home node, in the
buffer that was initially registered. See Data Management Allocation for more details.

57.6.5.7 starpu_data_unregister_submit()

void starpu_data_unregister_submit (

starpu_data_handle_t handle)

Destroy the data handle once it is no longer needed by any submitted task. No coherency is provided.
This is not safe to call starpu_data_unregister_submit() on a handle that comes from the registration of a non-NULL
application home buffer, since the moment when the unregistration will happen is unknown to the application. Only
calling starpu_shutdown() allows to be sure that the data was really unregistered. See Temporary Data for more
details.

57.6.5.8 starpu_data_deinitialize()

void starpu_data_deinitialize (

starpu_data_handle_t handle)

Deinitialize all replicates of the data handle immediately. After data deinitialization, the first access to handle
must be performed in STARPU_W mode. Accessing an deinitialized data in STARPU_R mode results in undefined
behaviour. See Data Management Allocation for more details.

57.6.5.9 starpu_data_deinitialize_submit()

void starpu_data_deinitialize_submit (

starpu_data_handle_t handle)

Submit deinitialization of the data handle after completion of previously submitted tasks. See Data Management Allocation
for more details.

57.6.5.10 starpu_data_invalidate()

void starpu_data_invalidate (

starpu_data_handle_t handle)

Destroy all replicates of the data handle immediately. After data invalidation, the first access to handle must be
performed in STARPU_W mode. Accessing an invalidated data in STARPU_R mode results in undefined behaviour.
See Data Management Allocation for more details.
This is the same as starpu_data_deinitialize(), plus explicitly releasing the buffers.

Generated by Doxygen

420 Module Documentation a.k.a StarPU’s API

57.6.5.11 starpu_data_invalidate_submit()

void starpu_data_invalidate_submit (

starpu_data_handle_t handle)

Submit invalidation of the data handle after completion of previously submitted tasks. See Data Management Allocation
for more details.
This is the same as starpu_data_deinitialize_submit(), plus explicitly releasing the buffers.

57.6.5.12 starpu_data_advise_as_important()

void starpu_data_advise_as_important (

starpu_data_handle_t handle,

unsigned is_important)

Specify that the data handle can be discarded without impacting the application.

57.6.5.13 starpu_data_acquire()

int starpu_data_acquire (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode)

The application must call this function prior to accessing registered data from main memory outside tasks. StarPU
ensures that the application will get an up-to-date copy of handle in main memory located where the data was orig-
inally registered, and that all concurrent accesses (e.g. from tasks) will be consistent with the access mode specified
with mode. starpu_data_release() must be called once the application no longer needs to access the piece of data.
Note that implicit data dependencies are also enforced by starpu_data_acquire(), i.e. starpu_data_acquire()
will wait for all tasks scheduled to work on the data, unless they have been disabled explicitly by call-
ing starpu_data_set_default_sequential_consistency_flag() or starpu_data_set_sequential_consistency_flag().
starpu_data_acquire() is a blocking call, so that it cannot be called from tasks or from their callbacks (in that case,
starpu_data_acquire() returns -EDEADLK). Upon successful completion, this function returns 0. See Data Access
for more details.

57.6.5.14 starpu_data_acquire_on_node()

int starpu_data_acquire_on_node (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode)

Similar to starpu_data_acquire(), except that the data will be available on the given memory node instead of main
memory. STARPU_ACQUIRE_NO_NODE and STARPU_ACQUIRE_NO_NODE_LOCK_ALL can be used instead
of an explicit node number. See Data Access for more details.

57.6.5.15 starpu_data_acquire_cb()

int starpu_data_acquire_cb (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg)

Asynchronous equivalent of starpu_data_acquire(). When the data specified in handle is available in the access
mode, the callback function is executed. The application may access the requested data during the execution
of callback. The callback function must call starpu_data_release() once the application no longer needs to
access the piece of data. Note that implicit data dependencies are also enforced by starpu_data_acquire_cb() in
case they are not disabled. Contrary to starpu_data_acquire(), this function is non-blocking and may be called from
task callbacks. Upon successful completion, this function returns 0. See Data Access for more details.

57.6.5.16 starpu_data_acquire_on_node_cb()

int starpu_data_acquire_on_node_cb (

starpu_data_handle_t handle,

Generated by Doxygen

57.6 Data Management 421

int node,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg)

Similar to starpu_data_acquire_cb(), except that the data will be available on the given memory node instead of main
memory. STARPU_ACQUIRE_NO_NODE and STARPU_ACQUIRE_NO_NODE_LOCK_ALL can be used instead
of an explicit node number. See Data Access for more details.

57.6.5.17 starpu_data_acquire_cb_sequential_consistency()

int starpu_data_acquire_cb_sequential_consistency (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg,

int sequential_consistency)

Similar to starpu_data_acquire_cb() with the possibility of enabling or disabling data dependencies. When the
data specified in handle is available in the access mode, the callback function is executed. The applica-
tion may access the requested data during the execution of this callback. The callback function must
call starpu_data_release() once the application no longer needs to access the piece of data. Note that implicit
data dependencies are also enforced by starpu_data_acquire_cb_sequential_consistency() in case they are not
disabled specifically for the given handle or by the parameter sequential_consistency. Similarly to
starpu_data_acquire_cb(), this function is non-blocking and may be called from task callbacks. Upon successful
completion, this function returns 0. See Data Access for more details.

57.6.5.18 starpu_data_acquire_on_node_cb_sequential_consistency()

int starpu_data_acquire_on_node_cb_sequential_consistency (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg,

int sequential_consistency)

Similar to starpu_data_acquire_cb_sequential_consistency(), except that the data will be available on the given
memory node instead of main memory. STARPU_ACQUIRE_NO_NODE and STARPU_ACQUIRE_NO_NODE_LOCK_ALL
can be used instead of an explicit node number. See Data Access for more details.

57.6.5.19 starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids()

int starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode,

void(∗)(void ∗arg, int ∗node, enum starpu_data_access_mode mode) callback_acquired,

void(∗)(void ∗arg) callback,

void ∗ arg,

int sequential_consistency,

int quick,

long ∗ pre_sync_jobid,

long ∗ post_sync_jobid,

int prio)

Similar to starpu_data_acquire_on_node_cb_sequential_consistency(), except that the pre_sync_jobid and post←↩

_sync_jobid parameters can be used to retrieve the jobid of the synchronization tasks. pre_sync_jobid happens just
before the acquisition, and post_sync_jobid happens just after the release.
callback_acquired is called when the data is acquired in terms of semantic, but the data is not fetched yet.
It is given a pointer to the node, which it can modify if it wishes so.
This is a very internal interface, subject to changes, do not use this.

Generated by Doxygen

422 Module Documentation a.k.a StarPU’s API

57.6.5.20 starpu_data_acquire_try()

int starpu_data_acquire_try (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode)

The application can call this function instead of starpu_data_acquire() so as to acquire the data like
starpu_data_acquire(), but only if all previously-submitted tasks have completed, in which case starpu_data_acquire_try()
returns 0. StarPU will have ensured that the application will get an up-to-date copy of handle in main memory
located where the data was originally registered. starpu_data_release() must be called once the application no
longer needs to access the piece of data. See Data Access for more details.

57.6.5.21 starpu_data_acquire_on_node_try()

int starpu_data_acquire_on_node_try (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode)

Similar to starpu_data_acquire_try(), except that the data will be available on the given memory node instead of
main memory. STARPU_ACQUIRE_NO_NODE and STARPU_ACQUIRE_NO_NODE_LOCK_ALL can be used
instead of an explicit node number. See Data Access for more details.

57.6.5.22 starpu_data_release()

void starpu_data_release (

starpu_data_handle_t handle)

Release the piece of data acquired by the application either by starpu_data_acquire() or by starpu_data_acquire_cb().
See Data Access for more details.

57.6.5.23 starpu_data_release_on_node()

void starpu_data_release_on_node (

starpu_data_handle_t handle,

int node)

Similar to starpu_data_release(), except that the data was made available on the given memory node instead of
main memory. The node parameter must be exactly the same as the corresponding starpu_data_acquire←↩

_on_node∗ call. See Data Access for more details.

57.6.5.24 starpu_data_release_to()

void starpu_data_release_to (

starpu_data_handle_t handle,

enum starpu_data_access_mode down_to_mode)

Partly release the piece of data acquired by the application either by starpu_data_acquire() or by starpu_data_acquire_cb(),
switching the acquisition down to down_to_mode. For now, only releasing from STARPU_RW or STARPU_W
acquisition down to STARPU_R is supported, or down to the same acquisition. STARPU_NONE can also be
passed as down_to_mode, in which case this is equivalent to calling starpu_data_release(). See Data Access
for more details.

57.6.5.25 starpu_data_release_to_on_node()

void starpu_data_release_to_on_node (

starpu_data_handle_t handle,

enum starpu_data_access_mode down_to_mode,

int node)

Similar to starpu_data_release_to(), except that the data was made available on the given memory node instead of
main memory. The node parameter must be exactly the same as the corresponding starpu_data_acquire←↩

_on_node∗ call. See Data Access for more details.

Generated by Doxygen

57.6 Data Management 423

57.6.5.26 starpu_arbiter_create()

starpu_arbiter_t starpu_arbiter_create (

void)

Create a data access arbiter, see Concurrent Data Accesses for the details

57.6.5.27 starpu_data_assign_arbiter()

void starpu_data_assign_arbiter (

starpu_data_handle_t handle,

starpu_arbiter_t arbiter)

Make access to handle managed by arbiter, see Concurrent Data Accesses for the details.

57.6.5.28 starpu_arbiter_destroy()

void starpu_arbiter_destroy (

starpu_arbiter_t arbiter)

Destroy the arbiter. This must only be called after all data assigned to it have been unregistered. See
Concurrent Data Accesses for the details.

57.6.5.29 starpu_data_request_allocation()

int starpu_data_request_allocation (

starpu_data_handle_t handle,

unsigned node)

Explicitly ask StarPU to allocate room for a piece of data on the specified memory node. See Data Prefetch for
more details.

57.6.5.30 starpu_data_fetch_on_node()

int starpu_data_fetch_on_node (

starpu_data_handle_t handle,

unsigned node,

unsigned async)

Issue a fetch request for the data handle to node, i.e. requests that the data be replicated to the given node
as soon as possible, so that it is available there for tasks. If async is 0, the call will block until the transfer is
achieved, else the call will return immediately, after having just queued the request. In the latter case, the request
will asynchronously wait for the completion of any task writing on the data. See Data Prefetch for more details.

57.6.5.31 starpu_data_prefetch_on_node()

int starpu_data_prefetch_on_node (

starpu_data_handle_t handle,

unsigned node,

unsigned async)

Issue a prefetch request for the data handle to node, i.e. requests that the data be replicated to node when
there is room for it, so that it is available there for tasks. If async is 0, the call will block until the transfer is
achieved, else the call will return immediately, after having just queued the request. In the latter case, the request
will asynchronously wait for the completion of any task writing on the data. See Data Prefetch for more details.

57.6.5.32 starpu_data_prefetch_on_node_prio()

int starpu_data_prefetch_on_node_prio (

starpu_data_handle_t handle,

unsigned node,

unsigned async,

int prio)

See Data Prefetch for more details.

Generated by Doxygen

424 Module Documentation a.k.a StarPU’s API

57.6.5.33 starpu_data_idle_prefetch_on_node()

int starpu_data_idle_prefetch_on_node (

starpu_data_handle_t handle,

unsigned node,

unsigned async)

Issue an idle prefetch request for the data handle to node, i.e. requests that the data be replicated to node,
so that it is available there for tasks, but only when the bus is really idle. If async is 0, the call will block until the
transfer is achieved, else the call will return immediately, after having just queued the request. In the latter case,
the request will asynchronously wait for the completion of any task writing on the data. See Data Prefetch for more
details.

57.6.5.34 starpu_data_idle_prefetch_on_node_prio()

int starpu_data_idle_prefetch_on_node_prio (

starpu_data_handle_t handle,

unsigned node,

unsigned async,

int prio)

See Data Prefetch for more details.

57.6.5.35 starpu_data_is_on_node()

unsigned starpu_data_is_on_node (

starpu_data_handle_t handle,

unsigned node)

Check whether a valid copy of handle is currently available on memory node node (or a transfer request for
getting so is ongoing). See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.6.5.36 starpu_data_wont_use()

void starpu_data_wont_use (

starpu_data_handle_t handle)

Advise StarPU that handle will not be used in the close future, and is thus a good candidate for eviction from
GPUs. StarPU will thus write its value back to its home node when the bus is idle, and select this data in priority for
eviction when memory gets low. See Data Prefetch for more details.

57.6.5.37 starpu_data_evict_from_node()

int starpu_data_evict_from_node (

starpu_data_handle_t handle,

unsigned node)

Advise StarPU to evict handle from the memory node node StarPU will thus write its value back to its home
node, before evicting it. This may however fail if e.g. some task is still working on it.
If the eviction was successful, 0 is returned ; -1 is returned otherwise.
See Data Prefetch for more details.

57.6.5.38 starpu_data_set_wt_mask()

void starpu_data_set_wt_mask (

starpu_data_handle_t handle,

uint32_t wt_mask)

Set the write-through mask of the data handle (and its children), i.e. a bitmask of nodes where the data should be
always replicated after modification. It also prevents the data from being evicted from these nodes when memory
gets scarse. When the data is modified, it is automatically transferred into those memory nodes. For instance a
1<<0 write-through mask means that the CUDA workers will commit their changes in main memory (node 0). See
Data Management Allocation for more details.

Generated by Doxygen

57.6 Data Management 425

57.6.5.39 starpu_data_set_sequential_consistency_flag()

void starpu_data_set_sequential_consistency_flag (

starpu_data_handle_t handle,

unsigned flag)

Set the data consistency mode associated to a data handle. The consistency mode set using this function has the
priority over the default mode which can be set with starpu_data_set_default_sequential_consistency_flag(). See
Sequential Consistency and Data Management Allocation for more details.

57.6.5.40 starpu_data_get_sequential_consistency_flag()

unsigned starpu_data_get_sequential_consistency_flag (

starpu_data_handle_t handle)

Get the data consistency mode associated to the data handle handle. See Sequential Consistency for more
details.

57.6.5.41 starpu_data_get_default_sequential_consistency_flag()

unsigned starpu_data_get_default_sequential_consistency_flag (

void)

Return the default sequential consistency flag. See Sequential Consistency for more details.

57.6.5.42 starpu_data_set_default_sequential_consistency_flag()

void starpu_data_set_default_sequential_consistency_flag (

unsigned flag)

Set the default sequential consistency flag. If a non-zero value is passed, a sequential data consistency will be
enforced for all handles registered after this function call, otherwise it is disabled. By default, StarPU enables
sequential data consistency. It is also possible to select the data consistency mode of a specific data handle with
the function starpu_data_set_sequential_consistency_flag(). See Sequential Consistency for more details.

57.6.5.43 starpu_data_set_ooc_flag()

void starpu_data_set_ooc_flag (

starpu_data_handle_t handle,

unsigned flag)

Set whether this data should be elligible to be evicted to disk storage (1) or not (0). The default is 1. See
Data Registration for more details.

57.6.5.44 starpu_data_get_ooc_flag()

unsigned starpu_data_get_ooc_flag (

starpu_data_handle_t handle)

Get whether this data was set to be elligible to be evicted to disk storage (1) or not (0). See Data Registration for
more details.

57.6.5.45 starpu_data_query_status2()

void starpu_data_query_status2 (

starpu_data_handle_t handle,

int memory_node,

int ∗ is_allocated,

int ∗ is_valid,

int ∗ is_loading,

int ∗ is_requested)

Query the status of handle on the specified memory_node.
is_allocated tells whether memory was allocated there for the data. is_valid tells whether the actual
value is available there. is_loading tells whether the actual value is getting loaded there. is_requested
tells whether the actual value is requested to be loaded there by some fetch/prefetch/idlefetch request. See
Data Prefetch for more details.

Generated by Doxygen

426 Module Documentation a.k.a StarPU’s API

57.6.5.46 starpu_data_query_status()

void starpu_data_query_status (

starpu_data_handle_t handle,

int memory_node,

int ∗ is_allocated,

int ∗ is_valid,

int ∗ is_requested)

Same as starpu_data_query_status2(), but without the is_loading parameter. See Data Prefetch for more details.

57.6.5.47 starpu_data_set_reduction_methods()

void starpu_data_set_reduction_methods (

starpu_data_handle_t handle,

struct starpu_codelet ∗ redux_cl,

struct starpu_codelet ∗ init_cl)

Set the codelets to be used for handle when it is accessed in the mode STARPU_REDUX. Per-worker buffers will
be initialized with the codelet init_cl (which has to take one handle with STARPU_W), and reduction between
per-worker buffers will be done with the codelet redux_cl (which has to take a first accumulation handle with
STARPU_RW|STARPU_COMMUTE, and a second contribution handle with STARPU_R). See Data Reduction and
Temporary Data for more details.

57.6.5.48 starpu_data_set_reduction_methods_with_args()

void starpu_data_set_reduction_methods_with_args (

starpu_data_handle_t handle,

struct starpu_codelet ∗ redux_cl,

void ∗ redux_cl_arg,

struct starpu_codelet ∗ init_cl,

void ∗ init_cl_arg)

Same as starpu_data_set_reduction_methods() but allows to pass arguments to the reduction and init tasks

57.6.5.49 starpu_data_test_if_allocated_on_node()

unsigned starpu_data_test_if_allocated_on_node (

starpu_data_handle_t handle,

unsigned memory_node)

See Data Prefetch for more details.

57.6.5.50 starpu_data_test_if_mapped_on_node()

unsigned starpu_data_test_if_mapped_on_node (

starpu_data_handle_t handle,

unsigned memory_node)

See Data Prefetch for more details.

57.6.5.51 starpu_memchunk_tidy()

void starpu_memchunk_tidy (

unsigned memory_node)

See Data Prefetch for more details.

57.6.5.52 starpu_data_set_user_data()

void starpu_data_set_user_data (

starpu_data_handle_t handle,

void ∗ user_data)

Set the field user_data for the handle to user_data . It can then be retrieved with starpu_data_get_user_data().
user_data can be any application-defined value, for instance a pointer to an object-oriented container for the
data. See Data handles helpers for more details.

Generated by Doxygen

57.6 Data Management 427

57.6.5.53 starpu_data_get_user_data()

void ∗ starpu_data_get_user_data (

starpu_data_handle_t handle)

Retrieve the field user_data previously set for the handle. See Data handles helpers for more details.

57.6.5.54 starpu_data_set_sched_data()

void starpu_data_set_sched_data (

starpu_data_handle_t handle,

void ∗ sched_data)

Set the field sched_data for the handle to sched_data . It can then be retrieved with starpu_data_get_sched_data().
sched_data can be any scheduler-defined value. See Data handles helpers for more details.

57.6.5.55 starpu_data_get_sched_data()

void ∗ starpu_data_get_sched_data (

starpu_data_handle_t handle)

Retrieve the field sched_data previously set for the handle. See Data handles helpers for more details.

57.6.5.56 starpu_data_can_evict()

int starpu_data_can_evict (

starpu_data_handle_t handle,

unsigned node,

enum starpu_is_prefetch is_prefetch)

Check whether data handle can be evicted now from node node. See Data Prefetch for more details.

Generated by Doxygen

428 Module Documentation a.k.a StarPU’s API

57.7 Data Partition

Data Structures

• struct starpu_data_filter

Basic API

• void starpu_data_partition (starpu_data_handle_t initial_handle, struct starpu_data_filter ∗f)
• void starpu_data_unpartition (starpu_data_handle_t root_data, unsigned gathering_node)
• starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t handle, unsigned i)
• int starpu_data_get_nb_children (starpu_data_handle_t handle)
• starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t root_data, unsigned depth,...)
• starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t root_data, unsigned depth, va_list

pa)
• void starpu_data_map_filters (starpu_data_handle_t root_data, unsigned nfilters,...)
• void starpu_data_vmap_filters (starpu_data_handle_t root_data, unsigned nfilters, va_list pa)
• void starpu_data_map_filters_parray (starpu_data_handle_t root_handle, int nfilters, struct starpu_data_filter
∗∗filters)

• void starpu_data_map_filters_array (starpu_data_handle_t root_handle, int nfilters, struct starpu_data_filter
∗filters)

Asynchronous API

• void starpu_data_partition_plan (starpu_data_handle_t initial_handle, struct starpu_data_filter ∗f,
starpu_data_handle_t ∗children)

• void starpu_data_partition_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t
∗children)

• void starpu_data_partition_readonly_submit (starpu_data_handle_t initial_handle, unsigned nparts,
starpu_data_handle_t ∗children)

• void starpu_data_partition_readonly_submit_sequential_consistency (starpu_data_handle_t initial_handle,
unsigned nparts, starpu_data_handle_t ∗children, int sequential_consistency)

• void starpu_data_partition_readwrite_upgrade_submit (starpu_data_handle_t initial_handle, unsigned
nparts, starpu_data_handle_t ∗children)

• void starpu_data_partition_readonly_downgrade_submit (starpu_data_handle_t initial_handle, unsigned
nparts, starpu_data_handle_t ∗children)

• void starpu_data_unpartition_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t
∗children, int gathering_node)

• void starpu_data_unpartition_readonly_submit (starpu_data_handle_t initial_handle, unsigned nparts,
starpu_data_handle_t ∗children, int gathering_node)

• void starpu_data_partition_clean (starpu_data_handle_t root_data, unsigned nparts, starpu_data_handle_t
∗children)

• void starpu_data_partition_clean_node (starpu_data_handle_t root_data, unsigned nparts, starpu_data_handle_t
∗children, int gather_node)

• void starpu_data_unpartition_submit_sequential_consistency_cb (starpu_data_handle_t initial_handle, un-
signed nparts, starpu_data_handle_t ∗children, int gather_node, int sequential_consistency, void(∗callback←↩

_func)(void ∗), void ∗callback_arg)
• void starpu_data_partition_submit_sequential_consistency (starpu_data_handle_t initial_handle, unsigned

nparts, starpu_data_handle_t ∗children, int sequential_consistency)
• void starpu_data_unpartition_submit_sequential_consistency (starpu_data_handle_t initial_handle, un-

signed nparts, starpu_data_handle_t ∗children, int gathering_node, int sequential_consistency)

Predefined BCSR Filter Functions

Predefined partitioning functions for BCSR data. Examples on how to use them are shown in Partitioning Data.

• void starpu_bcsr_filter_canonical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

Generated by Doxygen

57.7 Data Partition 429

• unsigned starpu_bcsr_filter_canonical_block_get_nchildren (struct starpu_data_filter ∗f, starpu_data_handle_t
handle)

• struct starpu_data_interface_ops ∗ starpu_bcsr_filter_canonical_block_child_ops (struct starpu_data_filter
∗f, unsigned child)

• void starpu_bcsr_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

Predefined CSR Filter Functions

Predefined partitioning functions for CSR data. Examples on how to use them are shown in Partitioning Data.

• void starpu_csr_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

Predefined Matrix Filter Functions

Predefined partitioning functions for matrix data. Examples on how to use them are shown in Partitioning Data.
Note: this is using the C element order which is row-major, i.e. elements with consecutive x coordinates are
consecutive in memory.

• void starpu_matrix_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_matrix_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_pick_vector_y (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_matrix_filter_pick_vector_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• void starpu_matrix_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_matrix_filter_pick_variable_child_ops (struct starpu_data_filter ∗f,
unsigned child)

Predefined Vector Filter Functions

Predefined partitioning functions for vector data. Examples on how to use them are shown in Partitioning Data.

• void starpu_vector_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_vector_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_vector_filter_list_long (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_vector_filter_list (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_vector_filter_divide_in_2 (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_vector_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_vector_filter_pick_variable_child_ops (struct starpu_data_filter ∗f,
unsigned child)

Generated by Doxygen

430 Module Documentation a.k.a StarPU’s API

Predefined Block Filter Functions

Predefined partitioning functions for block data. Examples on how to use them are shown in Partitioning Data. An
example is available in examples/filters/shadow3d.c Note: this is using the C element order which is
row-major, i.e. elements with consecutive x coordinates are consecutive in memory.

• void starpu_block_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_block_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_depth_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_depth_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_pick_matrix_z (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_pick_matrix_y (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_block_filter_pick_matrix_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• void starpu_block_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_block_filter_pick_variable_child_ops (struct starpu_data_filter ∗f,
unsigned child)

Predefined Tensor Filter Functions

Predefined partitioning functions for tensor data.

• void starpu_tensor_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_tensor_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_depth_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_depth_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_time_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_tensor_filter_time_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_pick_block_t (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_pick_block_z (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_pick_block_y (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_tensor_filter_pick_block_child_ops (struct starpu_data_filter ∗f,
unsigned child)

Generated by Doxygen

57.7 Data Partition 431

• void starpu_tensor_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_tensor_filter_pick_variable_child_ops (struct starpu_data_filter ∗f,
unsigned child)

Predefined Ndim Filter Functions

Predefined partitioning functions for ndim array data.

• void starpu_ndim_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_ndim_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_tensor (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_matrix (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_vector (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_pick_ndim (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_5d_pick_tensor (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_4d_pick_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_3d_pick_matrix (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_2d_pick_vector (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_1d_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_tensor_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_block_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_matrix_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_vector_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_variable_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_tensor_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_block_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_matrix_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_vector_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_variable_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• void starpu_filter_nparts_compute_chunk_size_and_offset (unsigned n, unsigned nparts, size_t elemsize,
unsigned id, unsigned blocksize, unsigned ∗chunk_size, size_t ∗offset)

Generated by Doxygen

432 Module Documentation a.k.a StarPU’s API

57.7.1 Detailed Description

57.7.2 Data Structure Documentation

57.7.2.1 struct starpu_data_filter

Describe a data partitioning operation, to be given to starpu_data_partition(). See Defining A New Data Filter for
more details.

Data Fields

• void(∗ filter_func)(void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗, unsigned id, un-
signed nparts)

• unsigned nchildren
• unsigned(∗ get_nchildren)(struct starpu_data_filter ∗, starpu_data_handle_t initial_handle)
• struct starpu_data_interface_ops ∗(∗ get_child_ops)(struct starpu_data_filter ∗, unsigned id)
• unsigned filter_arg
• void ∗ filter_arg_ptr

57.7.2.1.1 Field Documentation

57.7.2.1.1.1 filter_func void(∗ starpu_data_filter::filter_func) (void ∗father_interface, void

∗child_interface, struct starpu_data_filter ∗, unsigned id, unsigned nparts)

Fill the child_interface structure with interface information for the i -th child of the parent father_←↩

interface (among nparts). The filter structure is provided, allowing to inspect the starpu_data_filter::filter_arg
and starpu_data_filter::filter_arg_ptr parameters. The details of what needs to be filled in child_interface
vary according to the data interface, but generally speaking:

• id is usually just copied over from the father, when the sub data has the same structure as the father, e.g. a
subvector is a vector, a submatrix is a matrix, etc. This is however not the case for instance when dividing a
BCSR matrix into its dense blocks, which then are matrices.

• nx, ny and alike are usually divided by the number of subdata, depending how the subdivision is done (e.g.
nx division vs ny division for vertical matrix division vs horizontal matrix division).

• ld for matrix interfaces are usually just copied over: the leading dimension (ld) usually does not change.

• elemsize is usually just copied over.

• ptr, the pointer to the data, has to be computed according to i and the father's ptr, so as to point to the
start of the sub data. This should however be done only if the father has ptr different from NULL: in the
OpenCL case notably, the dev_handle and offset fields are used instead.

• dev_handle should be just copied over from the parent.

• offset has to be computed according to i and the father's offset, so as to provide the offset of the start
of the sub data. This is notably used for the OpenCL case.

57.7.2.1.1.2 nchildren unsigned starpu_data_filter::nchildren

Number of parts to partition the data into.

57.7.2.1.1.3 get_nchildren unsigned(∗ starpu_data_filter::get_nchildren) (struct starpu_data_filter

∗, starpu_data_handle_t initial_handle)

Return the number of children. This can be used instead of starpu_data_filter::nchildren when the number of
children depends on the actual data (e.g. the number of blocks in a sparse matrix).

57.7.2.1.1.4 get_child_ops struct starpu_data_interface_ops ∗(∗ starpu_data_filter::get_child_←↩

ops) (struct starpu_data_filter ∗, unsigned id)

When children use different data interface, return which interface is used by child number id.

Generated by Doxygen

57.7 Data Partition 433

57.7.2.1.1.5 filter_arg unsigned starpu_data_filter::filter_arg

Additional parameter for the filter function

57.7.2.1.1.6 filter_arg_ptr void∗ starpu_data_filter::filter_arg_ptr

Additional pointer parameter for the filter function, such as the sizes of the different parts.

57.7.3 Function Documentation

57.7.3.1 starpu_data_partition()

void starpu_data_partition (

starpu_data_handle_t initial_handle,

struct starpu_data_filter ∗ f)

Request the partitioning of initial_handle into several subdata according to the filter f.
Here an example of how to use the function.
struct starpu_data_filter f =
{

.filter_func = starpu_matrix_filter_block,

.nchildren = nslicesx
};
starpu_data_partition(A_handle, &f);

See Partitioning Data for more details.

57.7.3.2 starpu_data_unpartition()

void starpu_data_unpartition (

starpu_data_handle_t root_data,

unsigned gathering_node)

Unapply the filter which has been applied to root_data, thus unpartitioning the data. The pieces of data are
collected back into one big piece in the gathering_node (usually STARPU_MAIN_RAM). Tasks working on the
partitioned data will be waited for by starpu_data_unpartition().
Here an example of how to use the function.
starpu_data_unpartition(A_handle, STARPU_MAIN_RAM);

See Partitioning Data for more details.

57.7.3.3 starpu_data_get_child()

starpu_data_handle_t starpu_data_get_child (

starpu_data_handle_t handle,

unsigned i)

Return the i -th child of the given handle, which must have been partitioned beforehand. See Partitioning Data
for more details.

57.7.3.4 starpu_data_get_nb_children()

int starpu_data_get_nb_children (

starpu_data_handle_t handle)

Return the number of children handle has been partitioned into. See Partitioning Data for more details.

57.7.3.5 starpu_data_get_sub_data()

starpu_data_handle_t starpu_data_get_sub_data (

starpu_data_handle_t root_data,

unsigned depth,

...)

After partitioning a StarPU data by applying a filter, starpu_data_get_sub_data() can be used to get handles for
each of the data portions. root_data is the parent data that was partitioned. depth is the number of filters to
traverse (in case several filters have been applied, to e.g. partition in row blocks, and then in column blocks), and
the subsequent parameters are the indexes. The function returns a handle to the subdata.

Generated by Doxygen

434 Module Documentation a.k.a StarPU’s API

Here an example of how to use the function.
h = starpu_data_get_sub_data(A_handle, 1, taskx);

See Partitioning Data for more details.

57.7.3.6 starpu_data_vget_sub_data()

starpu_data_handle_t starpu_data_vget_sub_data (

starpu_data_handle_t root_data,

unsigned depth,

va_list pa)

Similar to starpu_data_get_sub_data() but use a va_list for the parameter list. See Partitioning Data for more
details.

57.7.3.7 starpu_data_map_filters()

void starpu_data_map_filters (

starpu_data_handle_t root_data,

unsigned nfilters,

...)

Apply nfilters filters to the handle designated by root_handle recursively. nfilters pointers to variables
of the type starpu_data_filter should be given. See Partitioning Data for more details.

57.7.3.8 starpu_data_vmap_filters()

void starpu_data_vmap_filters (

starpu_data_handle_t root_data,

unsigned nfilters,

va_list pa)

Apply nfilters filters to the handle designated by root_handle recursively. Use a va_list of pointers to
variables of the type starpu_data_filter. See Partitioning Data for more details.

57.7.3.9 starpu_data_map_filters_parray()

void starpu_data_map_filters_parray (

starpu_data_handle_t root_handle,

int nfilters,

struct starpu_data_filter ∗∗ filters)

Apply nfilters filters to the handle designated by root_handle recursively. The pointer of the filter list
filters of the type starpu_data_filter should be given. See Partitioning Data for more details.

57.7.3.10 starpu_data_map_filters_array()

void starpu_data_map_filters_array (

starpu_data_handle_t root_handle,

int nfilters,

struct starpu_data_filter ∗ filters)

Apply nfilters filters to the handle designated by root_handle recursively. The list of filter filters of the
type starpu_data_filter should be given. See Partitioning Data for more details.

57.7.3.11 starpu_data_partition_plan()

void starpu_data_partition_plan (

starpu_data_handle_t initial_handle,

struct starpu_data_filter ∗ f,

starpu_data_handle_t ∗ children)

Plan to partition initial_handle into several subdata according to the filter f. The handles are returned into
the children array, which has to be the same size as the number of parts described in f. These handles are not
immediately usable, starpu_data_partition_submit() has to be called to submit the actual partitioning.
Here is an example of how to use the function:
starpu_data_handle_t children[nslicesx];

Generated by Doxygen

57.7 Data Partition 435

struct starpu_data_filter f =
{

.filter_func = starpu_matrix_filter_block,

.nchildren = nslicesx
};
starpu_data_partition_plan(A_handle, &f, children);

See Asynchronous Partitioning for more details.

57.7.3.12 starpu_data_partition_submit()

void starpu_data_partition_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children)

Submit the actual partitioning of initial_handle into the nparts children handles. This call is asyn-
chronous, it only submits that the partitioning should be done, so that the children handles can now be used to
submit tasks, and initial_handle can not be used to submit tasks any more (to guarantee coherency). For
instance,
starpu_data_partition_submit(A_handle, nslicesx, children);

See Asynchronous Partitioning for more details.

57.7.3.13 starpu_data_partition_readonly_submit()

void starpu_data_partition_readonly_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children)

Similar to starpu_data_partition_submit(), but do not invalidate initial_handle. This allows to continue using
it, but the application has to be careful not to write to initial_handle or children handles, only read from
them, since the coherency is otherwise not guaranteed. This thus allows to submit various tasks which concurrently
read from various partitions of the data.
When the application wants to write to initial_handle again, it should call starpu_data_unpartition_submit(),
which will properly add dependencies between the reads on the children and the writes to be submitted.
If instead the application wants to write to children handles, it should call starpu_data_partition_readwrite_upgrade_submit(),
which will correctly add dependencies between the reads on the initial_handle and the writes to be submit-
ted. See Asynchronous Partitioning for more details.

57.7.3.14 starpu_data_partition_readonly_submit_sequential_consistency()

void starpu_data_partition_readonly_submit_sequential_consistency (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int sequential_consistency)

Similar to starpu_data_partition_readonly_submit(), but allow to specify the coherency to be used for the main data
initial_handle. See Asynchronous Partitioning for more details.

57.7.3.15 starpu_data_partition_readwrite_upgrade_submit()

void starpu_data_partition_readwrite_upgrade_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children)

Assume that a partitioning of initial_handle has already been submitted in readonly mode through
starpu_data_partition_readonly_submit(), and will upgrade that partitioning into read-write mode for the
children, by invalidating initial_handle, and adding the necessary dependencies. See Asynchronous Partitioning
for more details.

57.7.3.16 starpu_data_partition_readonly_downgrade_submit()

void starpu_data_partition_readonly_downgrade_submit (

Generated by Doxygen

436 Module Documentation a.k.a StarPU’s API

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children)

Assume that a partitioning of initial_handle has already been submitted in read-write mode through
starpu_data_partition_submit(), and will downgrade that partitioning into read-only mode for the children, fetch-
ing data back to the initial_handle, and adding the necessary dependencies. See Asynchronous Partitioning
for more details.

57.7.3.17 starpu_data_unpartition_submit()

void starpu_data_unpartition_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gathering_node)

Assuming that initial_handle is partitioned into children, submit an unpartitionning of initial_←↩

handle, i.e. submit a gathering of the pieces on the requested gathering_node memory node, and submit
an invalidation of the children. See Asynchronous Partitioning for more details.

57.7.3.18 starpu_data_unpartition_readonly_submit()

void starpu_data_unpartition_readonly_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gathering_node)

Similar to starpu_data_partition_submit(), but do not invalidate initial_handle. This allows to continue using
it, but the application has to be careful not to write to initial_handle or children handles, only read from
them, since the coherency is otherwise not guaranteed. This thus allows to submit various tasks which concurrently
read from various partitions of the data. See Asynchronous Partitioning for more details.

57.7.3.19 starpu_data_partition_clean()

void starpu_data_partition_clean (

starpu_data_handle_t root_data,

unsigned nparts,

starpu_data_handle_t ∗ children)

Clear the partition planning established between root_data and children with starpu_data_partition_plan().
This will notably submit an unregister all the children, which can thus not be used any more afterwards. See
Asynchronous Partitioning for more details.

57.7.3.20 starpu_data_partition_clean_node()

void starpu_data_partition_clean_node (

starpu_data_handle_t root_data,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gather_node)

Similar to starpu_data_partition_clean() but the root data will be gathered on the given node. See
Asynchronous Partitioning for more details.

57.7.3.21 starpu_data_unpartition_submit_sequential_consistency_cb()

void starpu_data_unpartition_submit_sequential_consistency_cb (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gather_node,

int sequential_consistency,

Generated by Doxygen

57.7 Data Partition 437

void(∗)(void ∗) callback_func,

void ∗ callback_arg)

Similar to starpu_data_unpartition_submit_sequential_consistency() but allow to specify a callback function for the
unpartitiong task. See Asynchronous Partitioning for more details.

57.7.3.22 starpu_data_partition_submit_sequential_consistency()

void starpu_data_partition_submit_sequential_consistency (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int sequential_consistency)

Similar to starpu_data_partition_submit() but also allow to specify the coherency to be used for the main data
initial_handle through the parameter sequential_consistency. See Asynchronous Partitioning for
more details.

57.7.3.23 starpu_data_unpartition_submit_sequential_consistency()

void starpu_data_unpartition_submit_sequential_consistency (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gathering_node,

int sequential_consistency)

Similar to starpu_data_unpartition_submit() but also allow to specify the coherency to be used for the main data
initial_handle through the parameter sequential_consistency. See Asynchronous Partitioning for
more details.

57.7.3.24 starpu_bcsr_filter_canonical_block()

void starpu_bcsr_filter_canonical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block-sparse matrix into dense matrices. starpu_data_filter::get_child_ops needs to be set to
starpu_bcsr_filter_canonical_block_child_ops() and starpu_data_filter::get_nchildren set to starpu_bcsr_filter_canonical_block_get_nchildren().
See BCSR Data Interface for more details.

57.7.3.25 starpu_bcsr_filter_canonical_block_get_nchildren()

unsigned starpu_bcsr_filter_canonical_block_get_nchildren (

struct starpu_data_filter ∗ f,

starpu_data_handle_t handle)

Return the number of children obtained with starpu_bcsr_filter_canonical_block(). See BCSR Data Interface for
more details.

57.7.3.26 starpu_bcsr_filter_canonical_block_child_ops()

struct starpu_data_interface_ops ∗ starpu_bcsr_filter_canonical_block_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_bcsr_filter_canonical_block(). See BCSR Data Interface
for more details.

57.7.3.27 starpu_bcsr_filter_vertical_block()

void starpu_bcsr_filter_vertical_block (

void ∗ father_interface,

Generated by Doxygen

438 Module Documentation a.k.a StarPU’s API

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block-sparse matrix into block-sparse matrices.
The split is done along the leading dimension, i.e. along adjacent nnz blocks.
See BCSR Data Interface for more details.

57.7.3.28 starpu_csr_filter_vertical_block()

void starpu_csr_filter_vertical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block-sparse matrix into vertical block-sparse matrices.
See CSR Data Interface for more details.

57.7.3.29 starpu_matrix_filter_block()

void starpu_matrix_filter_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a dense Matrix along the x dimension, thus getting (x/nparts ,y) matrices. If nparts does not divide x,
the last submatrix contains the remainder.
See Matrix Data Interface for more details.

57.7.3.30 starpu_matrix_filter_block_shadow()

void starpu_matrix_filter_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a dense Matrix along the x dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus get-
ting ((x-2∗shadow)/nparts +2∗shadow,y) matrices. If nparts does not divide x-2∗shadow, the last submatrix
contains the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts. A
usage example is available in examples/filters/shadow2d.c
See Matrix Data Interface for more details.

57.7.3.31 starpu_matrix_filter_vertical_block()

void starpu_matrix_filter_vertical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a dense Matrix along the y dimension, thus getting (x,y/nparts) matrices. If nparts does not divide y,
the last submatrix contains the remainder.
See Matrix Data Interface for more details.

Generated by Doxygen

57.7 Data Partition 439

57.7.3.32 starpu_matrix_filter_vertical_block_shadow()

void starpu_matrix_filter_vertical_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a dense Matrix along the y dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus get-
ting (x,(y-2∗shadow)/nparts +2∗shadow) matrices. If nparts does not divide y-2∗shadow, the last submatrix
contains the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts. A
usage example is available in examples/filters/shadow2d.c
See Matrix Data Interface for more details.

57.7.3.33 starpu_matrix_filter_pick_vector_y()

void starpu_matrix_filter_pick_vector_y (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous vectors from a matrix along the Y dimension. The starting position on Y-axis is set in
starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_matrix_filter_pick_vector_child_ops(). A usage example
is available in examples/filters/fmatrix_pick_vector.c
See Matrix Data Interface for more details.

57.7.3.34 starpu_matrix_filter_pick_vector_child_ops()

struct starpu_data_interface_ops ∗ starpu_matrix_filter_pick_vector_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_matrix_filter_pick_vector_y(). See Matrix Data Interface
for more details.

57.7.3.35 starpu_matrix_filter_pick_variable()

void starpu_matrix_filter_pick_variable (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous variables from a matrix. The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_matrix_filter_pick_variable_child_ops(). A usage exam-
ple is available in examples/filters/fmatrix_pick_variable.c
See Matrix Data Interface for more details.

57.7.3.36 starpu_matrix_filter_pick_variable_child_ops()

struct starpu_data_interface_ops ∗ starpu_matrix_filter_pick_variable_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_matrix_filter_pick_variable(). See Matrix Data Interface
for more details.

Generated by Doxygen

440 Module Documentation a.k.a StarPU’s API

57.7.3.37 starpu_vector_filter_block()

void starpu_vector_filter_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface once
partitioned in nparts chunks of equal size.
See Vector Data Interface for more details.

57.7.3.38 starpu_vector_filter_block_shadow()

void starpu_vector_filter_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface once
partitioned in nparts chunks of equal size with a shadow border starpu_data_filter::filter_arg_ptr, thus getting a
vector of size (n-2∗shadow)/nparts+2∗shadow. The starpu_data_filter::filter_arg_ptr field of f must be the
shadow size casted into void∗.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts. An
usage example is available in examples/filters/shadow.c
See Vector Data Interface for more details.

57.7.3.39 starpu_vector_filter_list_long()

void starpu_vector_filter_list_long (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface
once partitioned into nparts chunks according to the starpu_data_filter::filter_arg_ptr field of f. The
starpu_data_filter::filter_arg_ptr field must point to an array of nparts long elements, each of which specifies the
number of elements in each chunk of the partition.
See Vector Data Interface for more details.

57.7.3.40 starpu_vector_filter_list()

void starpu_vector_filter_list (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface
once partitioned into nparts chunks according to the starpu_data_filter::filter_arg_ptr field of f. The
starpu_data_filter::filter_arg_ptr field must point to an array of nparts uint32_t elements, each of which specifies
the number of elements in each chunk of the partition.
See Vector Data Interface for more details.

57.7.3.41 starpu_vector_filter_divide_in_2()

void starpu_vector_filter_divide_in_2 (

void ∗ father_interface,

Generated by Doxygen

57.7 Data Partition 441

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface once
partitioned in 2 chunks of equal size, ignoring nparts. Thus, id must be 0 or 1.
See Vector Data Interface for more details.

57.7.3.42 starpu_vector_filter_pick_variable()

void starpu_vector_filter_pick_variable (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous variables from a vector. The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_vector_filter_pick_variable_child_ops(). A usage exam-
ple is available in examples/filters/fvector_pick_variable.c
See Vector Data Interface for more details.

57.7.3.43 starpu_vector_filter_pick_variable_child_ops()

struct starpu_data_interface_ops ∗ starpu_vector_filter_pick_variable_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_vector_filter_pick_variable(). See Vector Data Interface
for more details.

57.7.3.44 starpu_block_filter_block()

void starpu_block_filter_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the X dimension, thus getting (x/nparts ,y,z) 3D matrices. If nparts does not divide x,
the last submatrix contains the remainder.
See Block Data Interface for more details.

57.7.3.45 starpu_block_filter_block_shadow()

void starpu_block_filter_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the X dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus getting ((x-
2∗shadow)/nparts +2∗shadow,y,z) blocks. If nparts does not divide x, the last submatrix contains the remain-
der.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.
See Block Data Interface for more details.

57.7.3.46 starpu_block_filter_vertical_block()

void starpu_block_filter_vertical_block (

void ∗ father_interface,

Generated by Doxygen

442 Module Documentation a.k.a StarPU’s API

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the Y dimension, thus getting (x,y/nparts ,z) blocks. If nparts does not divide y, the last
submatrix contains the remainder.
See Block Data Interface for more details.

57.7.3.47 starpu_block_filter_vertical_block_shadow()

void starpu_block_filter_vertical_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the Y dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus getting (x,(y-
2∗shadow)/nparts +2∗shadow,z) 3D matrices. If nparts does not divide y, the last submatrix contains the
remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.
See Block Data Interface for more details.

57.7.3.48 starpu_block_filter_depth_block()

void starpu_block_filter_depth_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the Z dimension, thus getting (x,y,z/nparts) blocks. If nparts does not divide z, the last
submatrix contains the remainder.
See Block Data Interface for more details.

57.7.3.49 starpu_block_filter_depth_block_shadow()

void starpu_block_filter_depth_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the Z dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus getting (x,y,(z-
2∗shadow)/nparts +2∗shadow) blocks. If nparts does not divide z, the last submatrix contains the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.
See Block Data Interface for more details.

57.7.3.50 starpu_block_filter_pick_matrix_z()

void starpu_block_filter_pick_matrix_z (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous matrices from a block along the Z dimension. The starting position on Z-axis is set in
starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_block_filter_pick_matrix_child_ops(). A usage example
is available in examples/filters/fblock_pick_matrix.c

Generated by Doxygen

57.7 Data Partition 443

See Block Data Interface for more details.

57.7.3.51 starpu_block_filter_pick_matrix_y()

void starpu_block_filter_pick_matrix_y (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous matrices from a block along the Y dimension. The starting position on Y-axis is set in
starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_block_filter_pick_matrix_child_ops(). A usage example
is available in examples/filters/fblock_pick_matrix.c
See Block Data Interface for more details.

57.7.3.52 starpu_block_filter_pick_matrix_child_ops()

struct starpu_data_interface_ops ∗ starpu_block_filter_pick_matrix_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_block_filter_pick_matrix_z() and starpu_block_filter_pick_matrix_y().
See Block Data Interface for more details.

57.7.3.53 starpu_block_filter_pick_variable()

void starpu_block_filter_pick_variable (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous variables from a block. The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_block_filter_pick_variable_child_ops(). A usage exam-
ple is available in examples/filters/fblock_pick_variable.c
See Block Data Interface for more details.

57.7.3.54 starpu_block_filter_pick_variable_child_ops()

struct starpu_data_interface_ops ∗ starpu_block_filter_pick_variable_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_block_filter_pick_variable(). See Block Data Interface for
more details.

57.7.3.55 starpu_tensor_filter_block()

void starpu_tensor_filter_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a tensor along the X dimension, thus getting (x/nparts ,y,z,t) tensors. If nparts does not divide x, the
last submatrix contains the remainder.
See Tensor Data Interface for more details.

Generated by Doxygen

444 Module Documentation a.k.a StarPU’s API

57.7.3.56 starpu_tensor_filter_block_shadow()

void starpu_tensor_filter_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a tensor along the X dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus getting ((x-
2∗shadow)/nparts +2∗shadow,y,z,t) tensors. If nparts does not divide x, the last submatrix contains the re-
mainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.
See Tensor Data Interface for more details.

57.7.3.57 starpu_tensor_filter_vertical_block()

void starpu_tensor_filter_vertical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a tensor along the Y dimension, thus getting (x,y/nparts ,z,t) tensors. If nparts does not divide y, the
last submatrix contains the remainder.
See Tensor Data Interface for more details.

57.7.3.58 starpu_tensor_filter_vertical_block_shadow()

void starpu_tensor_filter_vertical_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a tensor along the Y dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus getting (x,(y-
2∗shadow)/nparts +2∗shadow,z,t) tensors. If nparts does not divide y, the last submatrix contains the remain-
der.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.
See Tensor Data Interface for more details.

57.7.3.59 starpu_tensor_filter_depth_block()

void starpu_tensor_filter_depth_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a tensor along the Z dimension, thus getting (x,y,z/nparts,t) tensors. If nparts does not divide z, the
last submatrix contains the remainder.
See Tensor Data Interface for more details.

57.7.3.60 starpu_tensor_filter_depth_block_shadow()

void starpu_tensor_filter_depth_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

Generated by Doxygen

57.7 Data Partition 445

unsigned id,

unsigned nparts)

Partition a tensor along the Z dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus getting (x,y,(z-
2∗shadow)/nparts +2∗shadow,t) tensors. If nparts does not divide z, the last submatrix contains the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.
See Tensor Data Interface for more details.

57.7.3.61 starpu_tensor_filter_time_block()

void starpu_tensor_filter_time_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a tensor along the T dimension, thus getting (x,y,z,t/nparts) tensors. If nparts does not divide t, the
last submatrix contains the remainder.
See Tensor Data Interface for more details.

57.7.3.62 starpu_tensor_filter_time_block_shadow()

void starpu_tensor_filter_time_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a tensor along the T dimension, with a shadow border starpu_data_filter::filter_arg_ptr, thus getting (x,y,z,(t-
2∗shadow)/nparts +2∗shadow) tensors. If nparts does not divide t, the last submatrix contains the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.
See Tensor Data Interface for more details.

57.7.3.63 starpu_tensor_filter_pick_block_t()

void starpu_tensor_filter_pick_block_t (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous blocks from a tensor along the T dimension. The starting position on T-axis is set in
starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_tensor_filter_pick_block_child_ops(). A usage example
is available in examples/filters/ftensor_pick_block.c
See Tensor Data Interface for more details.

57.7.3.64 starpu_tensor_filter_pick_block_z()

void starpu_tensor_filter_pick_block_z (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous blocks from a tensor along the Z dimension. The starting position on Z-axis is set in
starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_tensor_filter_pick_block_child_ops(). A usage example
is available in examples/filters/ftensor_pick_block.c
See Tensor Data Interface for more details.

Generated by Doxygen

446 Module Documentation a.k.a StarPU’s API

57.7.3.65 starpu_tensor_filter_pick_block_y()

void starpu_tensor_filter_pick_block_y (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous blocks from a tensor along the Y dimension. The starting position on Y-axis is set in
starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_tensor_filter_pick_block_child_ops(). A usage example
is available in examples/filters/ftensor_pick_block.c
See Tensor Data Interface for more details.

57.7.3.66 starpu_tensor_filter_pick_block_child_ops()

struct starpu_data_interface_ops ∗ starpu_tensor_filter_pick_block_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_tensor_filter_pick_block_t(), starpu_tensor_filter_pick_block_z()
and starpu_tensor_filter_pick_block_y(). See Tensor Data Interface for more details.

57.7.3.67 starpu_tensor_filter_pick_variable()

void starpu_tensor_filter_pick_variable (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous variables from a tensor. The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_tensor_filter_pick_variable_child_ops(). A usage exam-
ple is available in examples/filters/ftensor_pick_variable.c
See Tensor Data Interface for more details.

57.7.3.68 starpu_tensor_filter_pick_variable_child_ops()

struct starpu_data_interface_ops ∗ starpu_tensor_filter_pick_variable_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_tensor_filter_pick_variable(). See Tensor Data Interface
for more details.

57.7.3.69 starpu_ndim_filter_block()

void starpu_ndim_filter_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a ndim array along the given dimension set in starpu_data_filter::filter_arg. If nparts does not divide the
element number on dimension, the last submatrix contains the remainder.
See Ndim Data Interface for more details.

57.7.3.70 starpu_ndim_filter_block_shadow()

void starpu_ndim_filter_block_shadow (

void ∗ father_interface,

Generated by Doxygen

57.7 Data Partition 447

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a ndim array along the given dimension set in starpu_data_filter::filter_arg, with a shadow border
starpu_data_filter::filter_arg_ptr. If nparts does not divide the element number on dimension, the last subma-
trix contains the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.
See Ndim Data Interface for more details.

57.7.3.71 starpu_ndim_filter_to_tensor()

void starpu_ndim_filter_to_tensor (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a 4-dim array into nparts tensors along the given dimension set in starpu_data_filter::filter_arg.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_to_tensor_child_ops(). A usage example is
available in examples/filters/fndim_to_tensor.c
See Ndim Data Interface for more details.

57.7.3.72 starpu_ndim_filter_to_block()

void starpu_ndim_filter_to_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a 3-dim array into nparts blocks along the given dimension set in starpu_data_filter::filter_arg.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_to_block_child_ops(). A usage example is
available in examples/filters/fndim_to_block.c
See Ndim Data Interface for more details.

57.7.3.73 starpu_ndim_filter_to_matrix()

void starpu_ndim_filter_to_matrix (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a 2-dim array into nparts matrices along the given dimension set in starpu_data_filter::filter_arg.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_to_matrix_child_ops(). A usage example is
available in examples/filters/fndim_to_matrix.c
See Ndim Data Interface for more details.

57.7.3.74 starpu_ndim_filter_to_vector()

void starpu_ndim_filter_to_vector (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a 1-dim array into nparts vectors.

Generated by Doxygen

448 Module Documentation a.k.a StarPU’s API

starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_to_vector_child_ops(). A usage example is
available in examples/filters/fndim_to_vector.c
See Ndim Data Interface for more details.

57.7.3.75 starpu_ndim_filter_to_variable()

void starpu_ndim_filter_to_variable (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Transfer a 0-dim array to a variable.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_to_variable_child_ops(). A usage example
is available in examples/filters/fndim_to_variable.c
See Ndim Data Interface for more details.

57.7.3.76 starpu_ndim_filter_pick_ndim()

void starpu_ndim_filter_pick_ndim (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous (n-1)dim arrays from a ndim array along the given dimension set in starpu_data_filter::filter_arg.
The starting position is set in starpu_data_filter::filter_arg_ptr.
A usage example is available in examples/filters/fndim_pick_ndim.c
See Ndim Data Interface for more details.

57.7.3.77 starpu_ndim_filter_5d_pick_tensor()

void starpu_ndim_filter_5d_pick_tensor (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous tensors from a 5-dim array along the given dimension set in starpu_data_filter::filter_arg.
The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_pick_tensor_child_ops(). A usage example
is available in examples/filters/fndim_5d_pick_tensor.c
See Ndim Data Interface for more details.

57.7.3.78 starpu_ndim_filter_4d_pick_block()

void starpu_ndim_filter_4d_pick_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous blocks from a 4-dim array along the given dimension set in starpu_data_filter::filter_arg.
The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_pick_block_child_ops(). A usage example
is available in examples/filters/fndim_4d_pick_block.c
See Ndim Data Interface for more details.

Generated by Doxygen

57.7 Data Partition 449

57.7.3.79 starpu_ndim_filter_3d_pick_matrix()

void starpu_ndim_filter_3d_pick_matrix (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous matrices from a 3-dim array along the given dimension set in starpu_data_filter::filter_arg.
The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_pick_matrix_child_ops(). A usage example
is available in examples/filters/fndim_3d_pick_matrix.c
See Ndim Data Interface for more details.

57.7.3.80 starpu_ndim_filter_2d_pick_vector()

void starpu_ndim_filter_2d_pick_vector (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous vectors from a 2-dim array along the given dimension set in starpu_data_filter::filter_arg.
The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_pick_vector_child_ops(). A usage example
is available in examples/filters/fndim_2d_pick_vector.c
See Ndim Data Interface for more details.

57.7.3.81 starpu_ndim_filter_1d_pick_variable()

void starpu_ndim_filter_1d_pick_variable (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous variables from a 1-dim array. The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_pick_variable_child_ops(). A usage example
is available in examples/filters/fndim_1d_pick_variable.c
See Ndim Data Interface for more details.

57.7.3.82 starpu_ndim_filter_pick_variable()

void starpu_ndim_filter_pick_variable (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Pick nparts contiguous variables from a ndim array. The starting position is set in starpu_data_filter::filter_arg_ptr.
starpu_data_filter::get_child_ops needs to be set to starpu_ndim_filter_pick_variable_child_ops(). A usage example
is available in examples/filters/fndim_pick_variable.c
See Ndim Data Interface for more details.

57.7.3.83 starpu_ndim_filter_pick_tensor_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_tensor_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Generated by Doxygen

450 Module Documentation a.k.a StarPU’s API

Return the child_ops of the partition obtained with starpu_ndim_filter_pick_tensor(). See Ndim Data Interface for
more details.

57.7.3.84 starpu_ndim_filter_pick_block_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_block_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_pick_block(). See Ndim Data Interface for
more details.

57.7.3.85 starpu_ndim_filter_pick_matrix_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_matrix_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_pick_matrix(). See Ndim Data Interface for
more details.

57.7.3.86 starpu_ndim_filter_pick_vector_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_vector_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_pick_vector(). See Ndim Data Interface for
more details.

57.7.3.87 starpu_ndim_filter_pick_variable_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_variable_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_pick_variable(). See Ndim Data Interface for
more details.

57.7.3.88 starpu_ndim_filter_to_tensor_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_tensor_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_to_tensor(). See Ndim Data Interface for more
details.

57.7.3.89 starpu_ndim_filter_to_block_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_block_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_to_block(). See Ndim Data Interface for more
details.

57.7.3.90 starpu_ndim_filter_to_matrix_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_matrix_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_to_matrix(). See Ndim Data Interface for more
details.

Generated by Doxygen

57.7 Data Partition 451

57.7.3.91 starpu_ndim_filter_to_vector_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_vector_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_to_vector(). See Ndim Data Interface for more
details.

57.7.3.92 starpu_ndim_filter_to_variable_child_ops()

struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_variable_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_ndim_filter_to_variable(). See Ndim Data Interface for
more details.

57.7.3.93 starpu_filter_nparts_compute_chunk_size_and_offset()

void starpu_filter_nparts_compute_chunk_size_and_offset (

unsigned n,

unsigned nparts,

size_t elemsize,

unsigned id,

unsigned blocksize,

unsigned ∗ chunk_size,

size_t ∗ offset)

Given an integer n, n the number of parts it must be divided in, id the part currently considered, determines
the chunk_size and the offset, taking into account the size of the elements stored in the data structure
elemsize and blocksize, which is most often 1. See Defining A New Data Filter for more details.

Generated by Doxygen

452 Module Documentation a.k.a StarPU’s API

57.8 Expert Mode

Functions

• void starpu_wake_all_blocked_workers (void)
• int starpu_progression_hook_register (unsigned(∗func)(void ∗arg), void ∗arg)
• void starpu_progression_hook_deregister (int hook_id)
• int starpu_idle_hook_register (unsigned(∗func)(void ∗arg), void ∗arg)
• void starpu_idle_hook_deregister (int hook_id)

57.8.1 Detailed Description

57.8.2 Function Documentation

57.8.2.1 starpu_wake_all_blocked_workers()

void starpu_wake_all_blocked_workers (

void)

Wake all the workers, so they can inspect data requests and task submissions again.

57.8.2.2 starpu_progression_hook_register()

int starpu_progression_hook_register (

unsigned(∗)(void ∗arg) func,

void ∗ arg)

Register a progression hook, to be called when workers are idle.

57.8.2.3 starpu_progression_hook_deregister()

void starpu_progression_hook_deregister (

int hook_id)

Unregister a given progression hook.

Generated by Doxygen

57.9 Explicit Dependencies 453

57.9 Explicit Dependencies

Typedefs

• typedef uint64_t starpu_tag_t

Functions

• void starpu_task_declare_deps_array (struct starpu_task ∗task, unsigned ndeps, struct starpu_task ∗task←↩

_array[])
• void starpu_task_declare_deps (struct starpu_task ∗task, unsigned ndeps,...)
• void starpu_task_declare_end_deps_array (struct starpu_task ∗task, unsigned ndeps, struct starpu_task
∗task_array[])

• void starpu_task_declare_end_deps (struct starpu_task ∗task, unsigned ndeps,...)
• int starpu_task_get_task_succs (struct starpu_task ∗task, unsigned ndeps, struct starpu_task ∗task_array[])
• int starpu_task_get_task_scheduled_succs (struct starpu_task ∗task, unsigned ndeps, struct starpu_task
∗task_array[])

• void starpu_task_end_dep_add (struct starpu_task ∗t, int nb_deps)
• void starpu_task_end_dep_release (struct starpu_task ∗t)
• void starpu_tag_declare_deps (starpu_tag_t id, unsigned ndeps,...)
• void starpu_tag_declare_deps_array (starpu_tag_t id, unsigned ndeps, starpu_tag_t ∗array)
• int starpu_tag_wait (starpu_tag_t id)
• int starpu_tag_wait_array (unsigned ntags, starpu_tag_t ∗id)
• void starpu_tag_restart (starpu_tag_t id)
• void starpu_tag_remove (starpu_tag_t id)
• void starpu_tag_notify_from_apps (starpu_tag_t id)
• void starpu_tag_notify_restart_from_apps (starpu_tag_t id)
• struct starpu_task ∗ starpu_tag_get_task (starpu_tag_t id)

57.9.1 Detailed Description

57.9.2 Typedef Documentation

57.9.2.1 starpu_tag_t

typedef uint64_t starpu_tag_t

Define a task logical identifier. It is possible to associate a task with a unique tag chosen by the application, and
to express dependencies between tasks by the means of those tags. To do so, fill the field starpu_task::tag_id with
a tag number (can be arbitrary) and set the field starpu_task::use_tag to 1. If starpu_tag_declare_deps() is called
with this tag number, the task will not be started until the tasks which holds the declared dependency tags are
completed.

57.9.3 Function Documentation

57.9.3.1 starpu_task_declare_deps_array()

void starpu_task_declare_deps_array (

struct starpu_task ∗ task,

unsigned ndeps,

struct starpu_task ∗ task_array[])

Declare task dependencies between a task and an array of tasks of length ndeps. This function must be called
prior to the submission of the task, but it may called after the submission or the execution of the tasks in the array,
provided the tasks are still valid (i.e. they were not automatically destroyed). Calling this function on a task that was
already submitted or with an entry of task_array that is no longer a valid task results in an undefined behaviour.

Generated by Doxygen

454 Module Documentation a.k.a StarPU’s API

If ndeps is 0, no dependency is added. It is possible to call starpu_task_declare_deps_array() several times on the
same task, in this case, the dependencies are added. It is possible to have redundancy in the task dependencies.
See Tasks And Tags Dependencies for more details.

57.9.3.2 starpu_task_declare_deps()

void starpu_task_declare_deps (

struct starpu_task ∗ task,

unsigned ndeps,

...)

Declare task dependencies between a task and an series of ndeps tasks, similarly to starpu_task_declare_deps_array(),
but the tasks are passed after ndeps, which indicates how many tasks task shall be made to depend on. If
ndeps is 0, no dependency is added. See Tasks And Tags Dependencies for more details.

57.9.3.3 starpu_task_declare_end_deps_array()

void starpu_task_declare_end_deps_array (

struct starpu_task ∗ task,

unsigned ndeps,

struct starpu_task ∗ task_array[])

Declare task end dependencies between a task and an array of tasks of length ndeps. task will appear
as terminated not only when task is termination, but also when the tasks of task_array have terminated.
This function must be called prior to the termination of the task, but it may called after the submission or the
execution of the tasks in the array, provided the tasks are still valid (i.e. they were not automatically destroyed).
Calling this function on a task that was already terminated or with an entry of task_array that is no longer
a valid task results in an undefined behaviour. If ndeps is 0, no dependency is added. It is possible to call
starpu_task_declare_end_deps_array() several times on the same task, in this case, the dependencies are added.
It is currently not implemented to have redundancy in the task dependencies. See Tasks And Tags Dependencies
for more details.

57.9.3.4 starpu_task_declare_end_deps()

void starpu_task_declare_end_deps (

struct starpu_task ∗ task,

unsigned ndeps,

...)

Declare task end dependencies between a task and an series of ndeps tasks, similarly to starpu_task_declare_end_deps_array(),
but the tasks are passed after ndeps, which indicates how many tasks task 's termination shall be made to
depend on. If ndeps is 0, no dependency is added. See Tasks And Tags Dependencies for more details.

57.9.3.5 starpu_task_get_task_succs()

int starpu_task_get_task_succs (

struct starpu_task ∗ task,

unsigned ndeps,

struct starpu_task ∗ task_array[])

Fill task_array with the list of tasks which are direct children of task. ndeps is the size of task_array.
This function returns the number of direct children. task_array can be set to NULL if ndeps is 0, which allows
to compute the number of children before allocating an array to store them. This function can only be called if task
has not completed yet, otherwise the results are undefined. The result may also be outdated if some additional
dependency has been added in the meanwhile. See Getting Task Children for more details.

57.9.3.6 starpu_task_get_task_scheduled_succs()

int starpu_task_get_task_scheduled_succs (

struct starpu_task ∗ task,

unsigned ndeps,

struct starpu_task ∗ task_array[])

Generated by Doxygen

57.9 Explicit Dependencies 455

Behave like starpu_task_get_task_succs(), except that it only reports tasks which will go through the scheduler,
thus avoiding tasks with not codelet, or with explicit placement. See Getting Task Children for more details.

57.9.3.7 starpu_task_end_dep_add()

void starpu_task_end_dep_add (

struct starpu_task ∗ t,

int nb_deps)

Add nb_deps end dependencies to the task t. This means the task will not terminate until the required number of
calls to the function starpu_task_end_dep_release() has been made. See Tasks And Tags Dependencies for more
details.

57.9.3.8 starpu_task_end_dep_release()

void starpu_task_end_dep_release (

struct starpu_task ∗ t)

Unlock 1 end dependency to the task t. This function must be called after starpu_task_end_dep_add(). See
Tasks And Tags Dependencies for more details.

57.9.3.9 starpu_tag_declare_deps()

void starpu_tag_declare_deps (

starpu_tag_t id,

unsigned ndeps,

...)

Specify the dependencies of the task identified by tag id. The first argument specifies the tag which is configured,
the second argument gives the number of tag(s) on which id depends. The following arguments are the tags which
have to be terminated to unlock the task. This function must be called before the associated task is submitted to
StarPU with starpu_task_submit().
WARNING! Use with caution. Because of the variable arity of starpu_tag_declare_deps(), note that the last ar-
guments must be of type starpu_tag_t : constant values typically need to be explicitly casted. Otherwise, due
to integer sizes and argument passing on the stack, the C compiler might consider the tag 0x200000003
instead of 0x2 and 0x3 when calling starpu_tag_declare_deps(0x1, 2, 0x2, 0x3). Using the
starpu_tag_declare_deps_array() function avoids this hazard.
// Tag 0x1 depends on tags 0x32 and 0x52
starpu_tag_declare_deps((starpu_tag_t)0x1, 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);

See Tasks And Tags Dependencies for more details.

57.9.3.10 starpu_tag_declare_deps_array()

void starpu_tag_declare_deps_array (

starpu_tag_t id,

unsigned ndeps,

starpu_tag_t ∗ array)

Similar to starpu_tag_declare_deps(), except that its does not take a variable number of arguments but an array
of tags of size ndeps.
// Tag 0x1 depends on tags 0x32 and 0x52
starpu_tag_t tag_array[2] = {0x32, 0x52};
starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);

See Tasks And Tags Dependencies for more details.

57.9.3.11 starpu_tag_wait()

int starpu_tag_wait (

starpu_tag_t id)

Block until the task associated to tag id has been executed. This is a blocking call which must therefore not be
called within tasks or callbacks, but only from the application directly. It is possible to synchronize with the same tag
multiple times, as long as the starpu_tag_remove() function is not called. Note that it is still possible to synchronize
with a tag associated to a task for which the structure starpu_task was freed (e.g. if the field starpu_task::destroy
was enabled). See Waiting For Tasks for more details.

Generated by Doxygen

456 Module Documentation a.k.a StarPU’s API

57.9.3.12 starpu_tag_wait_array()

int starpu_tag_wait_array (

unsigned ntags,

starpu_tag_t ∗ id)

Similar to starpu_tag_wait() except that it blocks until all the ntags tags contained in the array id are terminated.
See Waiting For Tasks for more details.

57.9.3.13 starpu_tag_restart()

void starpu_tag_restart (

starpu_tag_t id)

Clear the already notified status of a tag which is not associated with a task. Before that, call-
ing starpu_tag_notify_from_apps() again will not notify the successors. After that, the next call to
starpu_tag_notify_from_apps() will notify the successors. See Tasks And Tags Dependencies for more details.

57.9.3.14 starpu_tag_remove()

void starpu_tag_remove (

starpu_tag_t id)

Release the resources associated to tag id. It can be called once the corresponding task has been executed and
when there is no other tag that depend on this tag anymore. See Tasks And Tags Dependencies for more details.

57.9.3.15 starpu_tag_notify_from_apps()

void starpu_tag_notify_from_apps (

starpu_tag_t id)

Explicitly unlock tag id. It may be useful in the case of applications which execute part of their computation outside
StarPU tasks (e.g. third-party libraries). It is also provided as a convenient tool for the programmer, for instance
to entirely construct the task DAG before actually giving StarPU the opportunity to execute the tasks. When called
several times on the same tag, notification will be done only on first call, thus implementing "OR" dependencies,
until the tag is restarted using starpu_tag_restart(). See Tasks And Tags Dependencies for more details.

57.9.3.16 starpu_tag_notify_restart_from_apps()

void starpu_tag_notify_restart_from_apps (

starpu_tag_t id)

Atomically call starpu_tag_notify_from_apps() and starpu_tag_restart() on tag id. This is useful with cyclic graphs,
when we want to safely trigger its startup. See Tasks And Tags Dependencies for more details.

57.9.3.17 starpu_tag_get_task()

struct starpu_task ∗ starpu_tag_get_task (

starpu_tag_t id)

Return the task associated to the tag id. See Tasks And Tags Dependencies for more details.

Generated by Doxygen

57.10 FFT Support 457

57.10 FFT Support

Functions

• void ∗ starpufft_malloc (size_t n)
• starpufft_plan starpufft_plan_dft_1d (int n, int sign, unsigned flags)
• starpufft_plan starpufft_plan_dft_2d (int n, int m, int sign, unsigned flags)
• struct starpu_task ∗ starpufft_start (starpufft_plan p, void ∗in, void ∗out)
• struct starpu_task ∗ starpufft_start_handle (starpufft_plan p, starpu_data_handle_t in, starpu_data_handle_t

out)
• int starpufft_execute (starpufft_plan p, void ∗in, void ∗out)
• int starpufft_execute_handle (starpufft_plan p, starpu_data_handle_t in, starpu_data_handle_t out)
• void starpufft_cleanup (starpufft_plan p)
• void starpufft_destroy_plan (starpufft_plan p)

57.10.1 Detailed Description

57.10.2 Function Documentation

57.10.2.1 starpufft_malloc()

void ∗ starpufft_malloc (

size_t n)

Allocate memory for n bytes. This is preferred over malloc(), since it allocates pinned memory, which allows
overlapped transfers.

57.10.2.2 starpufft_plan_dft_1d()

struct starpufft_plan ∗ starpufft_plan_dft_1d (

int n,

int sign,

unsigned flags)

Initialize a plan for 1D FFT of size n. sign can be STARPUFFT_FORWARD or STARPUFFT_INVERSE. flags
must be 0.

57.10.2.3 starpufft_plan_dft_2d()

struct starpufft_plan ∗ starpufft_plan_dft_2d (

int n,

int m,

int sign,

unsigned flags)

Initialize a plan for 2D FFT of size (n, m). sign can be STARPUFFT_FORWARD or STARPUFFT_INVERSE. flags
must be 0.

57.10.2.4 starpufft_start()

struct starpu_task ∗ starpufft_start (

starpufft_plan p,

void ∗ in,

void ∗ out)

Start an FFT previously planned as p, using in and out as input and output. This only submits the task and does
not wait for it. The application should call starpufft_cleanup() to unregister the

Generated by Doxygen

458 Module Documentation a.k.a StarPU’s API

57.10.2.5 starpufft_start_handle()

struct starpu_task ∗ starpufft_start_handle (

starpufft_plan p,

starpu_data_handle_t in,

starpu_data_handle_t out)

Start an FFT previously planned as p, using data handles in and out as input and output (assumed to be vectors
of elements of the expected types). This only submits the task and does not wait for it.

57.10.2.6 starpufft_execute()

void starpufft_execute (

starpufft_plan p,

void ∗ in,

void ∗ out)

Execute an FFT previously planned as p, using in and out as input and output. This submits and waits for the
task.

57.10.2.7 starpufft_execute_handle()

void starpufft_execute_handle (

starpufft_plan p,

starpu_data_handle_t in,

starpu_data_handle_t out)

Execute an FFT previously planned as p, using data handles in and out as input and output (assumed to be
vectors of elements of the expected types). This submits and waits for the task.

57.10.2.8 starpufft_cleanup()

void starpufft_cleanup (

starpufft_plan p)

Release data for plan p, in the starpufft_start() case.

57.10.2.9 starpufft_destroy_plan()

void starpufft_destroy_plan (

starpufft_plan p)

Destroy plan p, i.e. release all CPU (fftw) and GPU (cufft) resources.

Generated by Doxygen

57.11 Fortran Support 459

57.11 Fortran Support

Fortran API.

Namespaces

• module fstarpu_mod

Fortran API.

57.11.1 Detailed Description

Fortran API.

Generated by Doxygen

460 Module Documentation a.k.a StarPU’s API

57.12 FxT Support

Data Structures

• struct starpu_fxt_codelet_event
• struct starpu_fxt_mpi_offset
• struct starpu_fxt_options

Functions

• void starpu_fxt_options_init (struct starpu_fxt_options ∗options)
• void starpu_fxt_options_shutdown (struct starpu_fxt_options ∗options)
• void starpu_fxt_generate_trace (struct starpu_fxt_options ∗options)
• void starpu_fxt_autostart_profiling (int autostart)
• void starpu_fxt_start_profiling (void)
• void starpu_fxt_stop_profiling (void)
• void starpu_fxt_write_data_trace (char ∗filename_in)
• void starpu_fxt_write_data_trace_in_dir (char ∗filename_in, char ∗dir)
• int starpu_fxt_is_enabled (void)
• void starpu_fxt_trace_user_event (unsigned long code)
• void starpu_fxt_trace_user_event_string (const char ∗s)

57.12.1 Detailed Description

57.12.2 Data Structure Documentation

57.12.2.1 struct starpu_fxt_codelet_event

todo

Data Fields

char symbol[2048]

int workerid
char perfmodel_archname[256]

uint32_t hash
size_t size

float time

57.12.2.2 struct starpu_fxt_mpi_offset

Store information related to clock synchronizations: mainly the offset to apply to each time.

Data Fields

uint64_t local_time_start node time for the barrier at the beginning of the program

int64_t offset_start offset to apply to node time, computed at the beginning of the program

uint64_t local_time_end node time for the barrier at the end of the program (optional)

int64_t offset_end offset to apply to node time, computed at the end of the program (optional)

int nb_barriers number of barriers to synchronize clocks during the execution of the program
(can be 0, 1 or 2)

57.12.2.3 struct starpu_fxt_options

todo

Generated by Doxygen

57.12 FxT Support 461

Data Fields

unsigned per_task_colour

unsigned no_events

unsigned no_counter

unsigned no_bus

unsigned no_flops

unsigned ninputfiles

unsigned no_smooth

unsigned no_acquire

unsigned memory_states

unsigned internal

unsigned label_deps

unsigned use_task_color

char ∗ filenames[STARPU_FXT_MAX_FILES]

char ∗ out_paje_path

char ∗ distrib_time_path

char ∗ activity_path

char ∗ sched_tasks_path

char ∗ dag_path

char ∗ tasks_path

char ∗ data_path

char ∗ papi_path

char ∗ comms_path

char ∗ number_events_path

char ∗ anim_path

char ∗ states_path

char ∗ dir
char worker_names[STARPU_NMAXWORKERS][256]

int nworkers
struct starpu_perfmodel_arch worker_archtypes[STARPU_NMAXWORKERS]

char ∗ file_prefix In case we are going to gather
multiple traces (e.g in the case of
MPI processes), we may need to
prefix the name of the containers.

struct starpu_fxt_mpi_offset file_offset In case we are going to gather
multiple traces (e.g in the case of
MPI processes), we may need to
synchronize clocks and apply an
offset.

int file_rank In case we are going to gather
multiple traces (e.g in the case of
MPI processes), this variable
stores the MPI rank of the trace
file.

struct starpu_fxt_codelet_event
∗∗

dumped_codelets In case we want to dump the list of
codelets to an external tool

long dumped_codelets_count In case we want to dump the list of
codelets to an external tool,
number of dumped codelets.

Generated by Doxygen

462 Module Documentation a.k.a StarPU’s API

57.12.3 Function Documentation

57.12.3.1 starpu_fxt_autostart_profiling()

void starpu_fxt_autostart_profiling (

int autostart)

Determine whether profiling should be started by starpu_init(), or only when starpu_fxt_start_profiling() is called.
autostart should be 1 to do so, or 0 to prevent it. This function has to be called before starpu_init(). See
Limiting The Scope Of The Trace for more details.

57.12.3.2 starpu_fxt_start_profiling()

void starpu_fxt_start_profiling (

void)

Start recording the trace. The trace is by default started from starpu_init() call, but can be paused by using
starpu_fxt_stop_profiling(), in which case starpu_fxt_start_profiling() should be called to resume recording events.
See Limiting The Scope Of The Trace for more details.

57.12.3.3 starpu_fxt_stop_profiling()

void starpu_fxt_stop_profiling (

void)

Stop recording the trace. The trace is by default stopped when calling starpu_shutdown(). starpu_fxt_stop_profiling()
can however be used to stop it earlier. starpu_fxt_start_profiling() can then be called to start recording it again, etc.
See Limiting The Scope Of The Trace for more details.

57.12.3.4 starpu_fxt_is_enabled()

int starpu_fxt_is_enabled (

void)

Wrapper to get value of env variable STARPU_FXT_TRACE

57.12.3.5 starpu_fxt_trace_user_event()

void starpu_fxt_trace_user_event (

unsigned long code)

Add an event in the execution trace if FxT is enabled. See Creating a Gantt Diagram for more details.

57.12.3.6 starpu_fxt_trace_user_event_string()

void starpu_fxt_trace_user_event_string (

const char ∗ s)

Add a string event in the execution trace if FxT is enabled. See Creating a Gantt Diagram for more details.

Generated by Doxygen

57.13 Heteroprio Scheduler 463

57.13 Heteroprio Scheduler

This is the interface for the heteroprio scheduler.

Macros

• #define STARPU_HETEROPRIO_MAX_PREFETCH
• #define STARPU_AUTOHETEROPRIO_PRIORITY_ORDERING_POLICY_COUNT

Enumerations

• enum starpu_autoheteroprio_priority_ordering_policy {
STARPU_HETEROPRIO_NOD_TIME_COMBINATION , STARPU_HETEROPRIO_BEST_NODS_SCORE ,
STARPU_HETEROPRIO_BEST_NODS , STARPU_HETEROPRIO_URT_PURE ,
STARPU_HETEROPRIO_URT , STARPU_HETEROPRIO_URT_2 , STARPU_HETEROPRIO_URT_DOT←↩

_DIFF_PURE , STARPU_HETEROPRIO_URT_DOT_DIFF_PURE_2 ,
STARPU_HETEROPRIO_URT_DOT_REL_DIFF_PURE , STARPU_HETEROPRIO_URT_DOT_REL_←↩

DIFF_PURE_2 , STARPU_HETEROPRIO_URT_DOT_DIFF_2 , STARPU_HETEROPRIO_URT_DOT_←↩

DIFF_3 ,
STARPU_HETEROPRIO_URT_DOT_DIFF_4 , STARPU_HETEROPRIO_URT_DOT_DIFF_5 , STARPU_←↩

HETEROPRIO_URT_DOT_DIFF_6 , STARPU_HETEROPRIO_URT_DOT_DIFF_7 ,
STARPU_HETEROPRIO_URT_DOT_DIFF_8 , STARPU_HETEROPRIO_URT_DOT_DIFF_9 , STARPU_←↩

HETEROPRIO_URT_DOT_DIFF_10 , STARPU_HETEROPRIO_URT_DOT_DIFF_11 ,
STARPU_HETEROPRIO_URTS_PER_SECONDS , STARPU_HETEROPRIO_URTS_PER_SECONDS_2
, STARPU_HETEROPRIO_URTS_PER_SECONDS_DIFF , STARPU_HETEROPRIO_URTS_TIME_←↩

RELEASED_DIFF ,
STARPU_HETEROPRIO_URTS_TIME_COMBINATION , STARPU_HETEROPRIO_NODS_PER_←↩

SECOND , STARPU_HETEROPRIO_NODS_TIME_RELEASED , STARPU_HETEROPRIO_NODS_←↩

TIME_RELEASED_DIFF }

Functions

• void starpu_heteroprio_set_use_locality (unsigned sched_ctx_id, unsigned use_locality)
• void starpu_heteroprio_set_nb_prios (unsigned sched_ctx_id, enum starpu_worker_archtype arch, unsigned

max_prio)
• void starpu_heteroprio_set_mapping (unsigned sched_ctx_id, enum starpu_worker_archtype arch, unsigned

source_prio, unsigned dest_bucket_id)
• void starpu_heteroprio_set_faster_arch (unsigned sched_ctx_id, enum starpu_worker_archtype arch, un-

signed bucket_id)
• void starpu_heteroprio_set_arch_slow_factor (unsigned sched_ctx_id, enum starpu_worker_archtype arch,

unsigned bucket_id, float slow_factor)
• void starpu_heteroprio_map_wgroup_memory_nodes (unsigned sched_ctx_id)
• void starpu_heteroprio_print_wgroups (FILE ∗stream, unsigned sched_ctx_id)

Variables

• static const char starpu_autoheteroprio_priority_ordering_policy_names [STARPU_AUTOHETEROPRIO←↩

_PRIORITY_ORDERING_POLICY_COUNT][64]

57.13.1 Detailed Description

This is the interface for the heteroprio scheduler.

57.13.2 Enumeration Type Documentation

Generated by Doxygen

464 Module Documentation a.k.a StarPU’s API

57.13.2.1 starpu_autoheteroprio_priority_ordering_policy

enum starpu_autoheteroprio_priority_ordering_policy

todo

57.13.3 Function Documentation

57.13.3.1 starpu_heteroprio_set_use_locality()

void starpu_heteroprio_set_use_locality (

unsigned sched_ctx_id,

unsigned use_locality)

Set if heteroprio should use data locality or not

57.13.3.2 starpu_heteroprio_set_nb_prios()

void starpu_heteroprio_set_nb_prios (

unsigned sched_ctx_id,

enum starpu_worker_archtype arch,

unsigned max_prio)

Tell how many prio there are for a given arch

57.13.3.3 starpu_heteroprio_set_mapping()

void starpu_heteroprio_set_mapping (

unsigned sched_ctx_id,

enum starpu_worker_archtype arch,

unsigned source_prio,

unsigned dest_bucket_id)

Set the mapping for a given arch prio=>bucket

57.13.3.4 starpu_heteroprio_set_faster_arch()

void starpu_heteroprio_set_faster_arch (

unsigned sched_ctx_id,

enum starpu_worker_archtype arch,

unsigned bucket_id)

Tell which arch is the faster for the tasks of a bucket (optional)

57.13.3.5 starpu_heteroprio_set_arch_slow_factor()

void starpu_heteroprio_set_arch_slow_factor (

unsigned sched_ctx_id,

enum starpu_worker_archtype arch,

unsigned bucket_id,

float slow_factor)

Tell how slow is a arch for the tasks of a bucket (optional)

57.13.3.6 starpu_heteroprio_map_wgroup_memory_nodes()

void starpu_heteroprio_map_wgroup_memory_nodes (

unsigned sched_ctx_id)

One memory node will be one wgroup

Generated by Doxygen

57.13 Heteroprio Scheduler 465

57.13.3.7 starpu_heteroprio_print_wgroups()

void starpu_heteroprio_print_wgroups (

FILE ∗ stream,

unsigned sched_ctx_id)

Print the current setup groups

Generated by Doxygen

466 Module Documentation a.k.a StarPU’s API

57.14 HIP Extensions

Macros

• #define STARPU_USE_HIP
• #define STARPU_USE_HIPBLAS
• #define STARPU_MAXHIPDEVS
• #define STARPU_HIPBLAS_REPORT_ERROR(status)
• #define STARPU_HIP_REPORT_ERROR(status)

Functions

• void starpu_hipblas_report_error (const char ∗func, const char ∗file, int line, int status)
• void starpu_hip_report_error (const char ∗func, const char ∗file, int line, hipError_t status)
• hipStream_t starpu_hip_get_local_stream (void)
• const struct hipDeviceProp_t ∗ starpu_hip_get_device_properties (unsigned workerid)
• int starpu_hip_copy_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node, size←↩

_t ssize, hipStream_t stream, hipMemcpyKind kind)
• int starpu_hip_copy2d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, hipStream_t stream, hipMemcpyKind kind)
• int starpu_hip_copy3d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks_1, size_t ld1_src, size_t ld1_dst, size_t numblocks_2, size_t ld2_src,
size_t ld2_dst, hipStream_t stream, hipMemcpyKind kind)

• void starpu_hip_set_device (int devid)

57.14.1 Detailed Description

57.14.2 Macro Definition Documentation

57.14.2.1 STARPU_USE_HIP

#define STARPU_USE_HIP

Defined when StarPU has been installed with HIP support. It should be used in your code to detect the availability
of HIP.

57.14.2.2 STARPU_USE_HIPBLAS

#define STARPU_USE_HIPBLAS

Defined when StarPU has been installed with HIP BLAS support. It should be used in your code to detect the
availability of HIP BLAS.

57.14.2.3 STARPU_MAXHIPDEVS

#define STARPU_MAXHIPDEVS

Define the maximum number of HIP devices that are supported by StarPU.

57.14.2.4 STARPU_HIPBLAS_REPORT_ERROR

#define STARPU_HIPBLAS_REPORT_ERROR(

status)

Call starpu_hipblas_report_error(), passing the current function, file and line position.

57.14.2.5 STARPU_HIP_REPORT_ERROR

#define STARPU_HIP_REPORT_ERROR(

status)

Call starpu_hip_report_error(), passing the current function, file and line position.

Generated by Doxygen

57.14 HIP Extensions 467

57.14.3 Function Documentation

57.14.3.1 starpu_hipblas_report_error()

void starpu_hipblas_report_error (

const char ∗ func,

const char ∗ file,

int line,

int status)

Report a HIPBLAS error.

57.14.3.2 starpu_hip_report_error()

void starpu_hip_report_error (

const char ∗ func,

const char ∗ file,

int line,

hipError_t status)

Report a HIP error.

57.14.3.3 starpu_hip_get_local_stream()

hipStream_t starpu_hip_get_local_stream (

void)

Return the current worker’s HIP stream. StarPU provides a stream for every HIP device controlled by StarPU.
This function is only provided for convenience so that programmers can easily use asynchronous operations within
codelets without having to create a stream by hand. Note that the application is not forced to use the stream pro-
vided by starpu_hip_get_local_stream() and may also create its own streams. Synchronizing with hipDevice←↩

Synchronize() is allowed, but will reduce the likelihood of having all transfers overlapped.

57.14.3.4 starpu_hip_get_device_properties()

const struct hipDeviceProp_t ∗ starpu_hip_get_device_properties (

unsigned workerid)

Return a pointer to device properties for worker workerid (assumed to be a HIP worker).

57.14.3.5 starpu_hip_copy_async_sync()

int starpu_hip_copy_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

size_t ssize,

hipStream_t stream,

hipMemcpyKind kind)

Copy ssize bytes from the pointer src_ptr on src_node to the pointer dst_ptr on dst_node. The
function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or if
stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch
was successful. It returns 0 if the synchronous copy was successful, or fails otherwise.

57.14.3.6 starpu_hip_copy2d_async_sync()

int starpu_hip_copy2d_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

Generated by Doxygen

468 Module Documentation a.k.a StarPU’s API

size_t blocksize,

size_t numblocks,

size_t ld_src,

size_t ld_dst,

hipStream_t stream,

hipMemcpyKind kind)

Copy numblocks blocks of blocksize bytes from the pointer src_ptr on src_node to the pointer dst←↩

_ptr on dst_node.
The blocks start at addresses which are ld_src (resp. ld_dst) bytes apart in the source (resp. destination) interface.
The function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or
if stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch
was successful. It returns 0 if the synchronous copy was successful, or fails otherwise.

57.14.3.7 starpu_hip_copy3d_async_sync()

int starpu_hip_copy3d_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

size_t blocksize,

size_t numblocks_1,

size_t ld1_src,

size_t ld1_dst,

size_t numblocks_2,

size_t ld2_src,

size_t ld2_dst,

hipStream_t stream,

hipMemcpyKind kind)

Copy numblocks_1 ∗ numblocks_2 blocks of blocksize bytes from the pointer src_ptr on src_node
to the pointer dst_ptr on dst_node.
The blocks are grouped by numblocks_1 blocks whose start addresses are ld1_src (resp. ld1_dst) bytes apart
in the source (resp. destination) interface.
The function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or
if stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch
was successful. It returns 0 if the synchronous copy was successful, or fails otherwise.

57.14.3.8 starpu_hip_set_device()

void starpu_hip_set_device (

int devid)

Call hipSetDevice(devid).

Generated by Doxygen

57.15 Initialization and Termination 469

57.15 Initialization and Termination

Data Structures

• struct starpu_conf

Macros

• #define STARPU_THREAD_ACTIVE

Functions

• int starpu_conf_init (struct starpu_conf ∗conf)
• int starpu_conf_noworker (struct starpu_conf ∗conf)
• int starpu_init (struct starpu_conf ∗conf)
• int starpu_initialize (struct starpu_conf ∗user_conf, int ∗argc, char ∗∗∗argv)
• int starpu_is_initialized (void)
• void starpu_wait_initialized (void)
• void starpu_shutdown (void)
• void starpu_pause (void)
• void starpu_resume (void)
• int starpu_is_paused (void)
• unsigned starpu_get_next_bindid (unsigned flags, unsigned ∗preferred, unsigned npreferred)
• int starpu_bind_thread_on (int cpuid, unsigned flags, const char ∗name)
• void starpu_bind_thread_on_worker (unsigned workerid)
• void starpu_bind_thread_on_main (void)
• void starpu_bind_thread_on_cpu (int cpuid)
• int starpu_cpu_os_index (int cpuid)
• void starpu_topology_print (FILE ∗f)
• int starpu_asynchronous_copy_disabled (void)
• int starpu_asynchronous_cuda_copy_disabled (void)
• int starpu_asynchronous_hip_copy_disabled (void)
• int starpu_asynchronous_opencl_copy_disabled (void)
• int starpu_asynchronous_max_fpga_copy_disabled (void)
• int starpu_asynchronous_mpi_ms_copy_disabled (void)
• int starpu_asynchronous_tcpip_ms_copy_disabled (void)
• int starpu_asynchronous_copy_disabled_for (enum starpu_node_kind kind)
• int starpu_map_enabled (void)
• void starpu_display_stats (void)

57.15.1 Detailed Description

57.15.2 Data Structure Documentation

57.15.2.1 struct starpu_conf

Structure passed to the starpu_init() function to configure StarPU. It has to be initialized with starpu_conf_init().
When the default value is used, StarPU automatically selects the number of processing units and takes
the default scheduling policy. The environment variables overwrite the equivalent parameters unless
starpu_conf::precedence_over_environment_variables is set.

Generated by Doxygen

470 Module Documentation a.k.a StarPU’s API

Data Fields

• const char ∗ sched_policy_name
• struct starpu_sched_policy ∗ sched_policy
• void(∗ sched_policy_callback)(unsigned)
• int precedence_over_environment_variables
• int ncpus
• int reserve_ncpus
• int ncuda
• int nhip
• int nopencl
• int nmax_fpga
• int nmpi_ms
• int ntcpip_ms
• unsigned use_explicit_workers_bindid
• unsigned workers_bindid [STARPU_NMAXWORKERS]
• unsigned use_explicit_workers_cuda_gpuid
• unsigned workers_cuda_gpuid [STARPU_NMAXWORKERS]
• unsigned use_explicit_workers_hip_gpuid
• unsigned workers_hip_gpuid [STARPU_NMAXWORKERS]
• unsigned use_explicit_workers_opencl_gpuid
• unsigned workers_opencl_gpuid [STARPU_NMAXWORKERS]
• unsigned use_explicit_workers_max_fpga_deviceid
• unsigned workers_max_fpga_deviceid [STARPU_NMAXWORKERS]
• struct starpu_max_load ∗ max_fpga_load
• unsigned use_explicit_workers_mpi_ms_deviceid
• unsigned workers_mpi_ms_deviceid [STARPU_NMAXWORKERS]
• int bus_calibrate
• int calibrate
• int data_locality_enforce
• int single_combined_worker
• int disable_asynchronous_copy
• int disable_asynchronous_cuda_copy
• int disable_asynchronous_hip_copy
• int disable_asynchronous_opencl_copy
• int disable_asynchronous_mpi_ms_copy
• int disable_asynchronous_tcpip_ms_copy
• int disable_asynchronous_max_fpga_copy
• int enable_map
• unsigned ∗ cuda_opengl_interoperability
• unsigned n_cuda_opengl_interoperability
• struct starpu_driver ∗ not_launched_drivers
• unsigned n_not_launched_drivers
• uint64_t trace_buffer_size
• int global_sched_ctx_min_priority
• int global_sched_ctx_max_priority
• void(∗ callback_worker_going_to_sleep)(unsigned workerid)
• void(∗ callback_worker_waking_up)(unsigned workerid)
• int catch_signals
• unsigned start_perf_counter_collection
• unsigned driver_spinning_backoff_min
• unsigned driver_spinning_backoff_max
• int cuda_only_fast_alloc_other_memnodes

Generated by Doxygen

57.15 Initialization and Termination 471

Private Attributes

• int magic
• int will_use_mpi

57.15.2.1.1 Field Documentation

57.15.2.1.1.1 magic int starpu_conf::magic [private]

Will be initialized by starpu_conf_init(). Should not be set by hand.

57.15.2.1.1.2 will_use_mpi int starpu_conf::will_use_mpi [private]

Tell starpu_init() if MPI will be initialized later.

57.15.2.1.1.3 sched_policy_name const char∗ starpu_conf::sched_policy_name

Name of the scheduling policy. This can also be specified with the environment variable STARPU_SCHED. (default
= NULL).

57.15.2.1.1.4 sched_policy struct starpu_sched_policy∗ starpu_conf::sched_policy

Definition of the scheduling policy. This field is ignored if starpu_conf::sched_policy_name is set. (default = NULL)

57.15.2.1.1.5 sched_policy_callback void(∗ starpu_conf::sched_policy_callback) (unsigned)

Callback function that can later be used by the scheduler. The scheduler can retrieve this function by calling
starpu_sched_ctx_get_sched_policy_callback()

57.15.2.1.1.6 precedence_over_environment_variables int starpu_conf::precedence_over_environment←↩

_variables

For all parameters specified in this structure that can also be set with environment variables, by default, Star←↩

PU chooses the value of the environment variable against the value set in starpu_conf. Setting the parameter
starpu_conf::precedence_over_environment_variables to 1 allows to give precedence to the value set in the struc-
ture over the environment variable.

57.15.2.1.1.7 ncpus int starpu_conf::ncpus

Number of CPU cores that StarPU can use. This can also be specified with the environment variable
STARPU_NCPU. (default = -1)

57.15.2.1.1.8 reserve_ncpus int starpu_conf::reserve_ncpus

Number of CPU cores to that StarPU should leave aside. They can then be used by application threads, by calling
starpu_get_next_bindid() to get their ID, and starpu_bind_thread_on() to bind the current thread to them.

57.15.2.1.1.9 ncuda int starpu_conf::ncuda

Number of CUDA devices that StarPU can use. This can also be specified with the environment variable
STARPU_NCUDA. (default = -1)

57.15.2.1.1.10 nhip int starpu_conf::nhip

Number of HIP devices that StarPU can use. This can also be specified with the environment variable
STARPU_NHIP. (default = -1)

57.15.2.1.1.11 nopencl int starpu_conf::nopencl

Number of OpenCL devices that StarPU can use. This can also be specified with the environment variable
STARPU_NOPENCL. (default = -1)

57.15.2.1.1.12 nmax_fpga int starpu_conf::nmax_fpga

Number of Maxeler FPGA devices that StarPU can use. This can also be specified with the environment variable
STARPU_NMAX_FPGA. (default = -1)

Generated by Doxygen

472 Module Documentation a.k.a StarPU’s API

57.15.2.1.1.13 nmpi_ms int starpu_conf::nmpi_ms

Number of MPI Master Slave devices that StarPU can use. This can also be specified with the environment variable
STARPU_NMPI_MS. (default = -1)

57.15.2.1.1.14 ntcpip_ms int starpu_conf::ntcpip_ms

Number of TCP/IP Master Slave devices that StarPU can use. This can also be specified with the environment
variable STARPU_NTCPIP_MS. (default = -1)

57.15.2.1.1.15 use_explicit_workers_bindid unsigned starpu_conf::use_explicit_workers_bindid

If this flag is set, the starpu_conf::workers_bindid array indicates where the different workers are bound, otherwise
StarPU automatically selects where to bind the different workers. This can also be specified with the environment
variable STARPU_WORKERS_CPUID. (default = 0)

57.15.2.1.1.16 workers_bindid unsigned starpu_conf::workers_bindid[STARPU_NMAXWORKERS]

If the starpu_conf::use_explicit_workers_bindid flag is set, this array indicates where to bind the different workers.
The i-th entry of the starpu_conf::workers_bindid indicates the logical identifier of the processor which should exe-
cute the i-th worker. Note that the logical ordering of the CPUs is either determined by the OS, or provided by the
hwloc library in case it is available.

57.15.2.1.1.17 use_explicit_workers_cuda_gpuid unsigned starpu_conf::use_explicit_workers_cuda←↩

_gpuid

If this flag is set, the CUDA workers will be attached to the CUDA devices specified in the starpu_conf::workers_cuda_gpuid
array. Otherwise, StarPU affects the CUDA devices in a round-robin fashion. This can also be specified with the
environment variable STARPU_WORKERS_CUDAID. (default = 0)

57.15.2.1.1.18 workers_cuda_gpuid unsigned starpu_conf::workers_cuda_gpuid[STARPU_NMAXWORKERS]

If the starpu_conf::use_explicit_workers_cuda_gpuid flag is set, this array contains the logical identifiers of the
CUDA devices (as used by cudaGetDevice()).

57.15.2.1.1.19 use_explicit_workers_hip_gpuid unsigned starpu_conf::use_explicit_workers_hip_←↩

gpuid

If this flag is set, the HIP workers will be attached to the HIP devices specified in the starpu_conf::workers_hip_gpuid
array. Otherwise, StarPU affects the HIP devices in a round-robin fashion. This can also be specified with the
environment variable STARPU_WORKERS_HIPID. (default = 0)

57.15.2.1.1.20 workers_hip_gpuid unsigned starpu_conf::workers_hip_gpuid[STARPU_NMAXWORKERS]

If the starpu_conf::use_explicit_workers_hip_gpuid flag is set, this array contains the logical identifiers of the HIP
devices (as used by hipGetDevice()).

57.15.2.1.1.21 use_explicit_workers_opencl_gpuid unsigned starpu_conf::use_explicit_workers_←↩

opencl_gpuid

If this flag is set, the OpenCL workers will be attached to the OpenCL devices specified in the starpu_conf::workers_opencl_gpuid
array. Otherwise, StarPU affects the OpenCL devices in a round-robin fashion. This can also be specified with the
environment variable STARPU_WORKERS_OPENCLID. (default = 0)

57.15.2.1.1.22 workers_opencl_gpuid unsigned starpu_conf::workers_opencl_gpuid[STARPU_NMAXWORKERS]

If the starpu_conf::use_explicit_workers_opencl_gpuid flag is set, this array contains the logical identifiers of the
OpenCL devices to be used.

57.15.2.1.1.23 use_explicit_workers_max_fpga_deviceid unsigned starpu_conf::use_explicit_←↩

workers_max_fpga_deviceid

If this flag is set, the Maxeler FPGA workers will be attached to the Maxeler FPGA devices specified in the
starpu_conf::workers_max_fpga_deviceid array. Otherwise, StarPU affects the Maxeler FPGA devices in a round-
robin fashion. This can also be specified with the environment variable STARPU_WORKERS_MAX_FPGAID. (de-
fault = 0)

Generated by Doxygen

57.15 Initialization and Termination 473

57.15.2.1.1.24 workers_max_fpga_deviceid unsigned starpu_conf::workers_max_fpga_deviceid[STARPU_NMAXWORKERS]

If the starpu_conf::use_explicit_workers_max_fpga_deviceid flag is set, this array contains the logical identifiers of
the Maxeler FPGA devices to be used.

57.15.2.1.1.25 max_fpga_load struct starpu_max_load∗ starpu_conf::max_fpga_load

This allows to specify the Maxeler file(s) to be loaded on Maxeler FPGAs. This is an array of starpu_max_load, the
last of which shall have file set to NULL. In order to use all available devices, starpu_max_load::engine_id_pattern
can be set to "∗", but only the last non-NULL entry can be set so.
If this is not set, it is assumed that the basic static SLiC interface is used.

57.15.2.1.1.26 use_explicit_workers_mpi_ms_deviceid unsigned starpu_conf::use_explicit_workers←↩

_mpi_ms_deviceid

If this flag is set, the MPI Master Slave workers will be attached to the MPI Master Slave devices specified in
the array starpu_conf::workers_mpi_ms_deviceid. Otherwise, StarPU affects the MPI Master Slave devices in a
round-robin fashion. (default = 0)

57.15.2.1.1.27 workers_mpi_ms_deviceid unsigned starpu_conf::workers_mpi_ms_deviceid[STARPU_NMAXWORKERS]

If the flag starpu_conf::use_explicit_workers_mpi_ms_deviceid is set, the array contains the logical identifiers of the
MPI Master Slave devices to be used.

57.15.2.1.1.28 bus_calibrate int starpu_conf::bus_calibrate

If this flag is set, StarPU will recalibrate the bus. If this value is equal to -1, the default value is used. This can also
be specified with the environment variable STARPU_BUS_CALIBRATE. (default = 0)

57.15.2.1.1.29 calibrate int starpu_conf::calibrate

If this flag is set, StarPU will calibrate the performance models when executing tasks. If this value is equal to -
1, the default value is used. If the value is equal to 1, it will force continuing calibration. If the value is equal to
2, the existing performance models will be overwritten. This can also be specified with the environment variable
STARPU_CALIBRATE. (default = 0)

57.15.2.1.1.30 data_locality_enforce int starpu_conf::data_locality_enforce

This flag should be set to 1 to enforce data locality when choosing a worker to execute a task. This can also
be specified with the environment variable STARPU_DATA_LOCALITY_ENFORCE. This can also be specified at
compilation time by giving to the configure script the option --enable-data-locality-enforce. (default = 0)

57.15.2.1.1.31 single_combined_worker int starpu_conf::single_combined_worker

By default, StarPU executes parallel tasks concurrently. Some parallel libraries (e.g. most OpenMP implementa-
tions) however do not support concurrent calls to parallel code. In such case, setting this flag makes StarPU only
start one parallel task at a time (but other CPU and GPU tasks are not affected and can be run concurrently). The
parallel task scheduler will however still try varying combined worker sizes to look for the most efficient ones. This
can also be specified with the environment variable STARPU_SINGLE_COMBINED_WORKER. (default = 0)

57.15.2.1.1.32 disable_asynchronous_copy int starpu_conf::disable_asynchronous_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and all accelerators. The AMD im-
plementation of OpenCL is known to fail when copying data asynchronously. When using this implementation, it
is therefore necessary to disable asynchronous data transfers. This can also be specified with the environment
variable STARPU_DISABLE_ASYNCHRONOUS_COPY. This can also be specified at compilation time by giving
to the configure script the option --disable-asynchronous-copy. (default = 0)

57.15.2.1.1.33 disable_asynchronous_cuda_copy int starpu_conf::disable_asynchronous_cuda_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and CUDA accelerators. This can
also be specified with the environment variable STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY. This can
also be specified at compilation time by giving to the configure script the option --disable-asynchronous-cuda-copy.
(default = 0)

Generated by Doxygen

474 Module Documentation a.k.a StarPU’s API

57.15.2.1.1.34 disable_asynchronous_hip_copy int starpu_conf::disable_asynchronous_hip_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and HIP accelerators. This can also
be specified with the environment variable STARPU_DISABLE_ASYNCHRONOUS_HIP_COPY. This can also be
specified at compilation time by giving to the configure script the option --disable-asynchronous-hip-copy. (default =
0)

57.15.2.1.1.35 disable_asynchronous_opencl_copy int starpu_conf::disable_asynchronous_opencl←↩

_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and OpenCL accelerators. The AMD
implementation of OpenCL is known to fail when copying data asynchronously. When using this implementation,
it is therefore necessary to disable asynchronous data transfers. This can also be specified with the environment
variable STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY. This can also be specified at compilation time
by giving to the configure script the option --disable-asynchronous-opencl-copy. (default = 0)

57.15.2.1.1.36 disable_asynchronous_mpi_ms_copy int starpu_conf::disable_asynchronous_mpi_←↩

ms_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and MPI Master Slave devices. This can
also be specified with the environment variable STARPU_DISABLE_ASYNCHRONOUS_MPI_MS_COPY. This can
also be specified at compilation time by giving to the configure script the option --disable-asynchronous-mpi-master-slave-copy.
(default = 0).

57.15.2.1.1.37 disable_asynchronous_tcpip_ms_copy int starpu_conf::disable_asynchronous_←↩

tcpip_ms_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and TCP/IP Master Slave devices. This
can also be specified with the environment variable STARPU_DISABLE_ASYNCHRONOUS_TCPIP_MS_COPY.
This can also be specified at compilation time by giving to the configure script the option --disable-asynchronous-tcpip-master-slave-copy.
(default = 0).

57.15.2.1.1.38 disable_asynchronous_max_fpga_copy int starpu_conf::disable_asynchronous_max_←↩

fpga_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and Maxeler FPGA devices. This can
also be specified with the environment variable STARPU_DISABLE_ASYNCHRONOUS_MAX_FPGA_COPY. This
can also be specified at compilation time by giving to the configure script the option --disable-asynchronous-fpga-copy.
(default = 0).

57.15.2.1.1.39 enable_map int starpu_conf::enable_map

This flag should be set to 1 to disable memory mapping support between memory nodes. This can also be specified
with the environment variable STARPU_ENABLE_MAP.

57.15.2.1.1.40 cuda_opengl_interoperability unsigned∗ starpu_conf::cuda_opengl_interoperability

Enable CUDA/OpenGL interoperation on these CUDA devices. This can be set to an array of CUDA device identi-
fiers for which cudaGLSetGLDevice() should be called instead of cudaSetDevice(). Its size is specified
by the starpu_conf::n_cuda_opengl_interoperability field below (default = NULL)

57.15.2.1.1.41 n_cuda_opengl_interoperability unsigned starpu_conf::n_cuda_opengl_interoperability

Size of the array starpu_conf::cuda_opengl_interoperability

57.15.2.1.1.42 not_launched_drivers struct starpu_driver∗ starpu_conf::not_launched_drivers

Array of drivers that should not be launched by StarPU. The application will run in one of its own threads. (default =
NULL)

57.15.2.1.1.43 n_not_launched_drivers unsigned starpu_conf::n_not_launched_drivers

The number of StarPU drivers that should not be launched by StarPU, i.e number of elements of the array
starpu_conf::not_launched_drivers. (default = 0)

Generated by Doxygen

57.15 Initialization and Termination 475

57.15.2.1.1.44 trace_buffer_size uint64_t starpu_conf::trace_buffer_size

Specify the buffer size used for FxT tracing. Starting from FxT version 0.2.12, the buffer will automatically be flushed
when it fills in, but it may still be interesting to specify a bigger value to avoid any flushing (which would disturb the
trace).

57.15.2.1.1.45 global_sched_ctx_min_priority int starpu_conf::global_sched_ctx_min_priority

Set the minimum priority used by priorities-aware schedulers. This also can be specified with the environment
variable STARPU_MIN_PRIO

57.15.2.1.1.46 global_sched_ctx_max_priority int starpu_conf::global_sched_ctx_max_priority

Set the maximum priority used by priorities-aware schedulers. This also can be specified with the environment
variable STARPU_MAX_PRIO

57.15.2.1.1.47 catch_signals int starpu_conf::catch_signals

Specify if StarPU should catch SIGINT, SIGSEGV and SIGTRAP signals to make sure final actions (e.g dumping
FxT trace files) are done even though the application has crashed. By default (value = 1), signals are caught. It
should be disabled on systems which already catch these signals for their own needs (e.g JVM) This can also be
specified with the environment variable STARPU_CATCH_SIGNALS.

57.15.2.1.1.48 start_perf_counter_collection unsigned starpu_conf::start_perf_counter_collection

Specify whether StarPU should automatically start to collect performance counters after initialization

57.15.2.1.1.49 driver_spinning_backoff_min unsigned starpu_conf::driver_spinning_backoff_min

Minimum spinning backoff of drivers (default = 1)

57.15.2.1.1.50 driver_spinning_backoff_max unsigned starpu_conf::driver_spinning_backoff_max

Maximum spinning backoff of drivers. (default = 32)

57.15.2.1.1.51 cuda_only_fast_alloc_other_memnodes int starpu_conf::cuda_only_fast_alloc_←↩

other_memnodes

Specify if CUDA workers should do only fast allocations when running the datawizard progress of other memory
nodes. This will pass the interval value _STARPU_DATAWIZARD_ONLY_FAST_ALLOC to the allocation method.
Default value is 0, allowing CUDA workers to do slow allocations. This can also be specified with the environment
variable STARPU_CUDA_ONLY_FAST_ALLOC_OTHER_MEMNODES.

57.15.3 Macro Definition Documentation

57.15.3.1 STARPU_THREAD_ACTIVE

#define STARPU_THREAD_ACTIVE

Value to be passed to starpu_get_next_bindid() and starpu_bind_thread_on() when binding a thread which will
significantly eat CPU time, and should thus have its own dedicated CPU.

57.15.4 Function Documentation

57.15.4.1 starpu_conf_init()

int starpu_conf_init (

struct starpu_conf ∗ conf)

Initialize the conf structure with the default values. In case some configuration parameters are already specified
through environment variables, starpu_conf_init() initializes the fields of conf according to the environment vari-
ables. For instance if STARPU_CALIBRATE is set, its value is put in the field starpu_conf::calibrate of conf. Upon
successful completion, this function returns 0. Otherwise, -EINVAL indicates that the argument was NULL.

Generated by Doxygen

476 Module Documentation a.k.a StarPU’s API

57.15.4.2 starpu_conf_noworker()

int starpu_conf_noworker (

struct starpu_conf ∗ conf)

Set fields of conf so that no worker is enabled, i.e. set starpu_conf::ncpus = 0, starpu_conf::ncuda = 0, etc.
This allows to portably enable only a given type of worker:
starpu_conf_noworker(&conf);
conf.ncpus = -1;
See Configuration and Initialization for more details.

57.15.4.3 starpu_init()

int starpu_init (

struct starpu_conf ∗ conf)

StarPU initialization method, must be called prior to any other StarPU call. It is possible to specify StarPU’s config-
uration (e.g. scheduling policy, number of cores, ...) by passing a non-NULL conf. Default configuration is used if
conf is NULL. Upon successful completion, this function returns 0. Otherwise, -ENODEV indicates that no worker
was available (and thus StarPU was not initialized). See Submitting A Task for more details.

57.15.4.4 starpu_initialize()

int starpu_initialize (

struct starpu_conf ∗ user_conf,

int ∗ argc,

char ∗∗∗ argv)

Similar to starpu_init(), but also take the argc and argv as defined by the application, which is necessary when
running in Simgrid mode or MPI Master Slave mode. Do not call starpu_init() and starpu_initialize() in the same
program. See Submitting A Task for more details.

57.15.4.5 starpu_is_initialized()

int starpu_is_initialized (

void)

Return 1 if StarPU is already initialized. See Configuration and Initialization for more details.

57.15.4.6 starpu_wait_initialized()

void starpu_wait_initialized (

void)

Wait for starpu_init() call to finish. See Configuration and Initialization for more details.

57.15.4.7 starpu_shutdown()

void starpu_shutdown (

void)

StarPU termination method, must be called at the end of the application: statistics and other post-mortem debugging
information are not guaranteed to be available until this method has been called. See Submitting A Task for more
details.

57.15.4.8 starpu_pause()

void starpu_pause (

void)

Suspend the processing of new tasks by workers. It can be used in a program where StarPU is used dur-
ing only a part of the execution. Without this call, the workers continue to poll for new tasks in a tight loop,
wasting CPU time. The symmetric call to starpu_resume() should be used to unfreeze the workers. See
Kernel Threads Started by StarPU and Interleaving StarPU and non-StarPU code for more details.

Generated by Doxygen

57.15 Initialization and Termination 477

57.15.4.9 starpu_resume()

void starpu_resume (

void)

Symmetrical call to starpu_pause(), used to resume the workers polling for new tasks. This would
be typically called only once having submitted all tasks. See Kernel Threads Started by StarPU and
Interleaving StarPU and non-StarPU code for more details.

57.15.4.10 starpu_is_paused()

int starpu_is_paused (

void)

Return !0 if task processing by workers is currently paused, 0 otherwise. See StarPU permanently eats 100% of all CPUs
for more details.

57.15.4.11 starpu_get_next_bindid()

unsigned starpu_get_next_bindid (

unsigned flags,

unsigned ∗ preferred,

unsigned npreferred)

Return a PU binding ID which can be used to bind threads with starpu_bind_thread_on(). flags can be set
to STARPU_THREAD_ACTIVE or 0. When npreferred is set to non-zero, preferred is an array of size
npreferred in which a preference of PU binding IDs can be set. By default StarPU will return the first PU
available for binding. See Kernel Threads Started by StarPU and CPU Workers for more details.

57.15.4.12 starpu_bind_thread_on()

int starpu_bind_thread_on (

int cpuid,

unsigned flags,

const char ∗ name)

Bind the calling thread on the given cpuid (which should have been obtained with starpu_get_next_bindid()).
Return -1 if a thread was already bound to this PU (but binding will still have been done, and a warning will have
been printed), so the caller can tell the user how to avoid the issue.
name should be set to a unique string so that different calls with the same name for the same cpuid does not
produce a warning.
See Kernel Threads Started by StarPU and CPU Workers for more details.

57.15.4.13 starpu_bind_thread_on_worker()

void starpu_bind_thread_on_worker (

unsigned workerid)

Bind the calling thread on the cores corresponding to the workerid .
workerid can be a basic worker or a combined worker.
This can be used e.g. before initializing a library which records at initialization time the thread binding to be used
when running kernels.
See Kernel Threads Started by StarPU and CPU Workers for more details.

57.15.4.14 starpu_bind_thread_on_main()

void starpu_bind_thread_on_main (

void)

Bind the calling thread back to the core reserved for the main thread.
This can be used e.g. after initializing a library which records at initialization time the thread binding to be used
when running kernels.
See Kernel Threads Started by StarPU and CPU Workers for more details.

Generated by Doxygen

478 Module Documentation a.k.a StarPU’s API

57.15.4.15 starpu_bind_thread_on_cpu()

void starpu_bind_thread_on_cpu (

int cpuid)

Bind the calling thread on the given cpuid
This can be used e.g. after initializing a library which records at initialization time the thread binding to be used
when running kernels.
See Kernel Threads Started by StarPU and CPU Workers for more details.

57.15.4.16 starpu_cpu_os_index()

int starpu_cpu_os_index (

int cpuid)

Return the OS number of a given cpuid
StarPU uses logical numbering (as define by hwloc) all along, but in case interaction is needed with another binding
tool that uses numbering as defined by the OS, we need to convert from hwloc logical numbering to hwloc physical
numbering.

57.15.4.17 starpu_topology_print()

void starpu_topology_print (

FILE ∗ f)

Print a description of the topology on f. See Configuration and Initialization for more details.

57.15.4.18 starpu_asynchronous_copy_disabled()

int starpu_asynchronous_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and accelerators are disabled. See General Configuration
for more details.

57.15.4.19 starpu_asynchronous_cuda_copy_disabled()

int starpu_asynchronous_cuda_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and CUDA accelerators are disabled. See CUDA Workers
for more details.

57.15.4.20 starpu_asynchronous_hip_copy_disabled()

int starpu_asynchronous_hip_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and HIP accelerators are disabled. See HIP Workers for
more details.

57.15.4.21 starpu_asynchronous_opencl_copy_disabled()

int starpu_asynchronous_opencl_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and OpenCL accelerators are disabled. See
OpenCL Workers for more details.

57.15.4.22 starpu_asynchronous_max_fpga_copy_disabled()

int starpu_asynchronous_max_fpga_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and Maxeler FPGA devices are disabled. See
Maxeler FPGA Workers for more details.

Generated by Doxygen

57.15 Initialization and Termination 479

57.15.4.23 starpu_asynchronous_mpi_ms_copy_disabled()

int starpu_asynchronous_mpi_ms_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and MPI Slave devices are disabled. See
MPI Master Slave Workers for more details.

57.15.4.24 starpu_asynchronous_tcpip_ms_copy_disabled()

int starpu_asynchronous_tcpip_ms_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and TCP/IP Slave devices are disabled. See
TCP/IP Master Slave Workers for more details.

57.15.4.25 starpu_asynchronous_copy_disabled_for()

int starpu_asynchronous_copy_disabled_for (

enum starpu_node_kind kind)

Return 1 if asynchronous data transfers with a given kind of memory are disabled.

57.15.4.26 starpu_map_enabled()

int starpu_map_enabled (

void)

Return 1 if memory mapping support between memory nodes is enabled. See General Configuration for more
details.

57.15.4.27 starpu_display_stats()

void starpu_display_stats (

void)

Call starpu_profiling_bus_helper_display_summary() and starpu_profiling_worker_helper_display_summary(). See
Data Statistics for more details.

Generated by Doxygen

480 Module Documentation a.k.a StarPU’s API

57.16 Task Insert Utility

Data Structures

• struct starpu_codelet_pack_arg_data

Macros

• #define STARPU_MODE_SHIFT
• #define STARPU_VALUE
• #define STARPU_CALLBACK
• #define STARPU_CALLBACK_WITH_ARG
• #define STARPU_CALLBACK_ARG
• #define STARPU_PRIORITY
• #define STARPU_DATA_ARRAY
• #define STARPU_DATA_MODE_ARRAY
• #define STARPU_TAG
• #define STARPU_HYPERVISOR_TAG
• #define STARPU_FLOPS
• #define STARPU_SCHED_CTX
• #define STARPU_PROLOGUE_CALLBACK
• #define STARPU_PROLOGUE_CALLBACK_ARG
• #define STARPU_PROLOGUE_CALLBACK_POP
• #define STARPU_PROLOGUE_CALLBACK_POP_ARG
• #define STARPU_EXECUTE_ON_WORKER
• #define STARPU_EXECUTE_WHERE
• #define STARPU_TAG_ONLY
• #define STARPU_POSSIBLY_PARALLEL
• #define STARPU_WORKER_ORDER
• #define STARPU_NAME
• #define STARPU_CL_ARGS
• #define STARPU_CL_ARGS_NFREE
• #define STARPU_TASK_DEPS_ARRAY
• #define STARPU_TASK_COLOR
• #define STARPU_HANDLES_SEQUENTIAL_CONSISTENCY
• #define STARPU_TASK_SYNCHRONOUS
• #define STARPU_TASK_END_DEPS_ARRAY
• #define STARPU_TASK_END_DEP
• #define STARPU_TASK_WORKERIDS
• #define STARPU_SEQUENTIAL_CONSISTENCY
• #define STARPU_TASK_PROFILING_INFO
• #define STARPU_TASK_NO_SUBMITORDER
• #define STARPU_CALLBACK_ARG_NFREE
• #define STARPU_CALLBACK_WITH_ARG_NFREE
• #define STARPU_PROLOGUE_CALLBACK_ARG_NFREE
• #define STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE
• #define STARPU_TASK_SCHED_DATA
• #define STARPU_TRANSACTION
• #define STARPU_TASK_FILE
• #define STARPU_TASK_LINE
• #define STARPU_EPILOGUE_CALLBACK
• #define STARPU_EPILOGUE_CALLBACK_ARG
• #define STARPU_SHIFTED_MODE_MAX

Generated by Doxygen

57.16 Task Insert Utility 481

Functions

• int starpu_task_set (struct starpu_task ∗task, struct starpu_codelet ∗cl,...)
• struct starpu_task ∗ starpu_task_build (struct starpu_codelet ∗cl,...)
• int starpu_task_insert (struct starpu_codelet ∗cl,...)
• int starpu_insert_task (struct starpu_codelet ∗cl,...)
• void starpu_task_insert_data_make_room (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int current_buffer, int room)

• void starpu_task_insert_data_process_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int ∗current_buffer, int arg_type, starpu_data_handle_t handle)

• void starpu_task_insert_data_process_array_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int ∗current_buffer, int nb_handles, starpu_data_handle_t ∗handles)

• void starpu_task_insert_data_process_mode_array_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task,
int ∗allocated_buffers, int ∗current_buffer, int nb_descrs, struct starpu_data_descr ∗descrs)

• void starpu_codelet_pack_args (void ∗∗arg_buffer, size_t ∗arg_buffer_size,...)
• void starpu_codelet_pack_arg_init (struct starpu_codelet_pack_arg_data ∗state)
• void starpu_codelet_pack_arg (struct starpu_codelet_pack_arg_data ∗state, const void ∗ptr, size_t ptr_size)
• void starpu_codelet_pack_arg_fini (struct starpu_codelet_pack_arg_data ∗state, void ∗∗cl_arg, size_t ∗cl←↩

_arg_size)
• void starpu_codelet_unpack_args (void ∗cl_arg,...)
• void starpu_codelet_unpack_arg_init (struct starpu_codelet_pack_arg_data ∗state, void ∗cl_arg, size_t cl←↩

_arg_size)
• void starpu_codelet_unpack_arg (struct starpu_codelet_pack_arg_data ∗state, void ∗ptr, size_t size)
• void starpu_codelet_dup_arg (struct starpu_codelet_pack_arg_data ∗state, void ∗∗ptr, size_t ∗size)
• void starpu_codelet_pick_arg (struct starpu_codelet_pack_arg_data ∗state, void ∗∗ptr, size_t ∗size)
• void starpu_codelet_unpack_arg_fini (struct starpu_codelet_pack_arg_data ∗state)
• void starpu_codelet_unpack_discard_arg (struct starpu_codelet_pack_arg_data ∗state)
• void starpu_codelet_unpack_args_and_copyleft (void ∗cl_arg, void ∗buffer, size_t buffer_size,...)

57.16.1 Detailed Description

57.16.2 Data Structure Documentation

57.16.2.1 struct starpu_codelet_pack_arg_data

Structure to be used for starpu_codelet_pack_arg_init() & co, and starpu_codelet_unpack_arg_init() & co. The
contents is public, however users should not directly access it, but only use as a parameter to the appropriate
functions.

Data Fields

char ∗ arg_buffer

size_t arg_buffer_size

size_t arg_buffer_used

size_t current_offset
int nargs

57.16.3 Macro Definition Documentation

57.16.3.1 STARPU_VALUE

#define STARPU_VALUE

Used when calling starpu_task_insert(), must be followed by a pointer to a constant value and the size of the
constant

Generated by Doxygen

482 Module Documentation a.k.a StarPU’s API

57.16.3.2 STARPU_CALLBACK

#define STARPU_CALLBACK

Used when calling starpu_task_insert(), must be followed by a pointer to a callback function

57.16.3.3 STARPU_CALLBACK_WITH_ARG

#define STARPU_CALLBACK_WITH_ARG

Used when calling starpu_task_insert(), must be followed by two pointers: one to a callback function, and the other
to be given as an argument to the callback function; this is equivalent to using both STARPU_CALLBACK and
STARPU_CALLBACK_ARG.

57.16.3.4 STARPU_CALLBACK_ARG

#define STARPU_CALLBACK_ARG

Used when calling starpu_task_insert(), must be followed by a pointer to be given as an argument to the callback
function

57.16.3.5 STARPU_PRIORITY

#define STARPU_PRIORITY

Used when calling starpu_task_insert(), must be followed by a integer defining a priority level

57.16.3.6 STARPU_DATA_ARRAY

#define STARPU_DATA_ARRAY

Used when calling starpu_task_insert(), must be followed by an array of handles and the number of elements in the
array (as int). This is equivalent to passing the handles as separate parameters with STARPU_R, STARPU_W or
STARPU_RW.

57.16.3.7 STARPU_DATA_MODE_ARRAY

#define STARPU_DATA_MODE_ARRAY

Used when calling starpu_task_insert(), must be followed by an array of struct starpu_data_descr and the number
of elements in the array (as int). This is equivalent to passing the handles with the corresponding modes.

57.16.3.8 STARPU_TAG

#define STARPU_TAG

Used when calling starpu_task_insert(), must be followed by a tag.

57.16.3.9 STARPU_HYPERVISOR_TAG

#define STARPU_HYPERVISOR_TAG

Used when calling starpu_task_insert(), must be followed by a tag.

57.16.3.10 STARPU_FLOPS

#define STARPU_FLOPS

Used when calling starpu_task_insert(), must be followed by an amount of floating point operations, as a double.
Users MUST explicitly cast into double, otherwise parameter passing will not work.

57.16.3.11 STARPU_SCHED_CTX

#define STARPU_SCHED_CTX

Used when calling starpu_task_insert(), must be followed by the id of the scheduling context to which to submit the
task to.

Generated by Doxygen

57.16 Task Insert Utility 483

57.16.3.12 STARPU_PROLOGUE_CALLBACK

#define STARPU_PROLOGUE_CALLBACK

Used when calling starpu_task_insert(), must be followed by a pointer to a prologue callback function

57.16.3.13 STARPU_PROLOGUE_CALLBACK_ARG

#define STARPU_PROLOGUE_CALLBACK_ARG

Used when calling starpu_task_insert(), must be followed by a pointer to be given as an argument to the prologue
callback function

57.16.3.14 STARPU_PROLOGUE_CALLBACK_POP

#define STARPU_PROLOGUE_CALLBACK_POP

Used when calling starpu_task_insert(), must be followed by a pointer to a prologue callback pop function

57.16.3.15 STARPU_PROLOGUE_CALLBACK_POP_ARG

#define STARPU_PROLOGUE_CALLBACK_POP_ARG

Used when calling starpu_task_insert(), must be followed by a pointer to be given as an argument to the prologue
callback pop function

57.16.3.16 STARPU_EXECUTE_ON_WORKER

#define STARPU_EXECUTE_ON_WORKER

Used when calling starpu_task_insert(), must be followed by an integer value specifying the worker on which to
execute the task (as specified by starpu_task::execute_on_a_specific_worker)

57.16.3.17 STARPU_EXECUTE_WHERE

#define STARPU_EXECUTE_WHERE

Used when calling starpu_task_insert(), must be followed by an unsigned long long value specifying the mask of
worker on which to execute the task (as specified by starpu_task::where)

57.16.3.18 STARPU_TAG_ONLY

#define STARPU_TAG_ONLY

Used when calling starpu_task_insert(), must be followed by a tag stored in starpu_task::tag_id. Leave
starpu_task::use_tag as 0.

57.16.3.19 STARPU_POSSIBLY_PARALLEL

#define STARPU_POSSIBLY_PARALLEL

Used when calling starpu_task_insert(), must be followed by an unsigned stored in starpu_task::possibly_parallel.

57.16.3.20 STARPU_WORKER_ORDER

#define STARPU_WORKER_ORDER

used when calling starpu_task_insert(), must be followed by an integer value specifying the worker order in which
to execute the tasks (as specified by starpu_task::workerorder)

57.16.3.21 STARPU_NAME

#define STARPU_NAME

Used when calling starpu_task_insert(), must be followed by a char ∗ stored in starpu_task::name.

Generated by Doxygen

484 Module Documentation a.k.a StarPU’s API

57.16.3.22 STARPU_CL_ARGS

#define STARPU_CL_ARGS

Used when calling starpu_task_insert(), must be followed by a memory buffer containing the arguments to be
given to the task, and by the size of the arguments. The memory buffer should be the result of a previous call to
starpu_codelet_pack_args(), and will be freed (i.e. starpu_task::cl_arg_free will be set to 1)

57.16.3.23 STARPU_CL_ARGS_NFREE

#define STARPU_CL_ARGS_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_CL_ARGS, must be followed by a memory buffer
containing the arguments to be given to the task, and by the size of the arguments. The memory buffer should be
the result of a previous call to starpu_codelet_pack_args(), and will NOT be freed (i.e. starpu_task::cl_arg_free will
be set to 0)

57.16.3.24 STARPU_TASK_DEPS_ARRAY

#define STARPU_TASK_DEPS_ARRAY

Used when calling starpu_task_insert(), must be followed by a number of tasks as int, and an array containing these
tasks. The function starpu_task_declare_deps_array() will be called with the given values.

57.16.3.25 STARPU_TASK_COLOR

#define STARPU_TASK_COLOR

Used when calling starpu_task_insert(), must be followed by an integer representing a color

57.16.3.26 STARPU_HANDLES_SEQUENTIAL_CONSISTENCY

#define STARPU_HANDLES_SEQUENTIAL_CONSISTENCY

Used when calling starpu_task_insert(), must be followed by an array of characters representing the sequential
consistency for each buffer of the task.

57.16.3.27 STARPU_TASK_SYNCHRONOUS

#define STARPU_TASK_SYNCHRONOUS

Used when calling starpu_task_insert(), must be followed by an integer stating if the task is synchronous or not

57.16.3.28 STARPU_TASK_END_DEPS_ARRAY

#define STARPU_TASK_END_DEPS_ARRAY

Used when calling starpu_task_insert(), must be followed by a number of tasks as int, and an array containing these
tasks. The function starpu_task_declare_end_deps_array() will be called with the given values.

57.16.3.29 STARPU_TASK_END_DEP

#define STARPU_TASK_END_DEP

Used when calling starpu_task_insert(), must be followed by an integer which will be given to starpu_task_end_dep_add()

57.16.3.30 STARPU_TASK_WORKERIDS

#define STARPU_TASK_WORKERIDS

Used when calling starpu_task_insert(), must be followed by an unsigned being a number of workers, and an array
of bits which size is the number of workers, the array indicates the set of workers which are allowed to execute the
task.

57.16.3.31 STARPU_SEQUENTIAL_CONSISTENCY

#define STARPU_SEQUENTIAL_CONSISTENCY

Used when calling starpu_task_insert(), must be followed by an unsigned which sets the sequential consistency for
the data parameters of the task.

Generated by Doxygen

57.16 Task Insert Utility 485

57.16.3.32 STARPU_TASK_PROFILING_INFO

#define STARPU_TASK_PROFILING_INFO

Used when calling starpu_task_insert() and alike, must be followed by a pointer to a struct starpu_profiling_task_info

57.16.3.33 STARPU_TASK_NO_SUBMITORDER

#define STARPU_TASK_NO_SUBMITORDER

Used when calling starpu_task_insert() and alike, must be followed by an unsigned specifying not to allocate a
submitorder id for the task

57.16.3.34 STARPU_CALLBACK_ARG_NFREE

#define STARPU_CALLBACK_ARG_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_CALLBACK_ARG, must be followed by a pointer to
be given as an argument to the callback function, the argument will not be freed, i.e starpu_task::callback_arg_free
will be set to 0

57.16.3.35 STARPU_CALLBACK_WITH_ARG_NFREE

#define STARPU_CALLBACK_WITH_ARG_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_CALLBACK_WITH_ARG, must be followed by two
pointers: one to a callback function, and the other to be given as an argument to the callback function; this is
equivalent to using both STARPU_CALLBACK and STARPU_CALLBACK_ARG_NFREE.

57.16.3.36 STARPU_PROLOGUE_CALLBACK_ARG_NFREE

#define STARPU_PROLOGUE_CALLBACK_ARG_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_PROLOGUE_CALLBACK_ARG, must be followed
by a pointer to be given as an argument to the prologue callback function, the argument will not be freed, i.e
starpu_task::prologue_callback_arg_free will be set to 0

57.16.3.37 STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE

#define STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_PROLOGUE_CALLBACK_POP_ARG, must be fol-
lowed by a pointer to be given as an argument to the prologue callback pop function, the argument will not be freed,
i.e starpu_task::prologue_callback_pop_arg_free will be set to 0

57.16.3.38 STARPU_TASK_SCHED_DATA

#define STARPU_TASK_SCHED_DATA

Used when calling starpu_task_insert() and alike, must be followed by a void∗ specifying the value to be set in
starpu_task::sched_data

57.16.3.39 STARPU_TRANSACTION

#define STARPU_TRANSACTION

Used when calling starpu_task_insert() and alike, must be followed by a struct starpu_transaction ∗ specifying the
value to be set in the transaction field of the task.

57.16.3.40 STARPU_TASK_FILE

#define STARPU_TASK_FILE

Used when calling starpu_task_insert(), must be followed by a char ∗ stored in starpu_task::file.
This is automatically set when FXT is enabled.

Generated by Doxygen

486 Module Documentation a.k.a StarPU’s API

57.16.3.41 STARPU_TASK_LINE

#define STARPU_TASK_LINE

Used when calling starpu_task_insert(), must be followed by an int stored in starpu_task::line.
This is automatically set when FXT is enabled.

57.16.3.42 STARPU_EPILOGUE_CALLBACK

#define STARPU_EPILOGUE_CALLBACK

Used when calling starpu_task_insert(), must be followed by a pointer to a epilogue callback function

57.16.3.43 STARPU_EPILOGUE_CALLBACK_ARG

#define STARPU_EPILOGUE_CALLBACK_ARG

Used when calling starpu_task_insert(), must be followed by a pointer to be given as an argument to the epilogue
callback function

57.16.3.44 STARPU_SHIFTED_MODE_MAX

#define STARPU_SHIFTED_MODE_MAX

This has to be the last mode value plus 1

57.16.4 Function Documentation

57.16.4.1 starpu_task_set()

int starpu_task_set (

struct starpu_task ∗ task,

struct starpu_codelet ∗ cl,

...)

Set the given task corresponding to cl with the following arguments. The argument list must be zero-terminated.
The arguments following the codelet are the same as the ones for the function starpu_task_insert(). If some
arguments of type STARPU_VALUE are given, the parameter starpu_task::cl_arg_free will be set to 1. See
Other Task Utility Functions for more details.

57.16.4.2 starpu_task_build()

struct starpu_task ∗ starpu_task_build (

struct starpu_codelet ∗ cl,

...)

Create a task corresponding to cl with the following arguments. The argument list must be zero-terminated.
The arguments following the codelet are the same as the ones for the function starpu_task_insert(). If some
arguments of type STARPU_VALUE are given, the parameter starpu_task::cl_arg_free will be set to 1. See
Other Task Utility Functions for more details.

57.16.4.3 starpu_task_insert()

int starpu_task_insert (

struct starpu_codelet ∗ cl,

...)

Create and submit a task corresponding to cl with the following given arguments. The argument list must be
zero-terminated.
The arguments following the codelet can be of the following types:

• STARPU_R, STARPU_W, STARPU_RW, STARPU_SCRATCH, STARPU_REDUX an access mode followed
by a data handle;

• STARPU_DATA_ARRAY followed by an array of data handles and its number of elements;

Generated by Doxygen

57.16 Task Insert Utility 487

• STARPU_DATA_MODE_ARRAY followed by an array of struct starpu_data_descr, i.e data handles with their
associated access modes, and its number of elements;

• STARPU_EXECUTE_ON_WORKER, STARPU_WORKER_ORDER followed by an integer value specifying
the worker on which to execute the task (as specified by starpu_task::execute_on_a_specific_worker)

• the specific values STARPU_VALUE, STARPU_CALLBACK, STARPU_CALLBACK_ARG, STARPU_CALLBACK_WITH_ARG,
STARPU_PRIORITY, STARPU_TAG, STARPU_TAG_ONLY, STARPU_FLOPS, STARPU_SCHED_CTX,
STARPU_CL_ARGS, STARPU_CL_ARGS_NFREE, STARPU_TASK_DEPS_ARRAY, STARPU_TASK_COLOR,
STARPU_HANDLES_SEQUENTIAL_CONSISTENCY, STARPU_TASK_SYNCHRONOUS, STARPU_TASK_END_DEP
followed by the appropriated objects as defined elsewhere.

When using STARPU_DATA_ARRAY, the access mode of the data handles is not defined, it will be
taken from the codelet starpu_codelet::modes or starpu_codelet::dyn_modes field. One should use
STARPU_DATA_MODE_ARRAY to define the data handles along with the access modes.
Parameters to be passed to the codelet implementation are defined through the type STARPU_VALUE. The function
starpu_codelet_unpack_args() must be called within the codelet implementation to retrieve them.
See Insert Task Utility for more details.

57.16.4.4 starpu_insert_task()

int starpu_insert_task (

struct starpu_codelet ∗ cl,

...)

Identical to starpu_task_insert(). Kept to avoid breaking old codes.

57.16.4.5 starpu_task_insert_data_make_room()

void starpu_task_insert_data_make_room (

struct starpu_codelet ∗ cl,

struct starpu_task ∗ task,

int ∗ allocated_buffers,

int current_buffer,

int room)

Assuming that there are already current_buffer data handles passed to the task, and if ∗allocated_buffers is
not 0, the task->dyn_handles array has size ∗allocated_buffers, this function makes room for room
other data handles, allocating or reallocating task->dyn_handles as necessary and updating allocated←↩

_buffers accordingly. One can thus start with allocated_buffers equal to 0 and current_buffer equal to 0, then
make room by calling this function, then store handles with STARPU_TASK_SET_HANDLE(), make room again
with this function, store yet more handles, etc. See Other Task Utility Functions for more details.

57.16.4.6 starpu_task_insert_data_process_arg()

void starpu_task_insert_data_process_arg (

struct starpu_codelet ∗ cl,

struct starpu_task ∗ task,

int ∗ allocated_buffers,

int ∗ current_buffer,

int arg_type,

starpu_data_handle_t handle)

Store data handle handle into task task with mode arg_type, updating ∗allocated_buffers and
∗current_buffer accordingly. See Other Task Utility Functions for more details.

57.16.4.7 starpu_task_insert_data_process_array_arg()

void starpu_task_insert_data_process_array_arg (

struct starpu_codelet ∗ cl,

struct starpu_task ∗ task,

int ∗ allocated_buffers,

int ∗ current_buffer,

Generated by Doxygen

488 Module Documentation a.k.a StarPU’s API

int nb_handles,

starpu_data_handle_t ∗ handles)

Store nb_handles data handles handles into task task, updating ∗allocated_buffers and
∗current_buffer accordingly. See Other Task Utility Functions for more details.

57.16.4.8 starpu_task_insert_data_process_mode_array_arg()

void starpu_task_insert_data_process_mode_array_arg (

struct starpu_codelet ∗ cl,

struct starpu_task ∗ task,

int ∗ allocated_buffers,

int ∗ current_buffer,

int nb_descrs,

struct starpu_data_descr ∗ descrs)

Store nb_descrs data handles described by descrs into task task, updating ∗allocated_buffers and
∗current_buffer accordingly. See Other Task Utility Functions for more details.

57.16.4.9 starpu_codelet_pack_args()

void starpu_codelet_pack_args (

void ∗∗ arg_buffer,

size_t ∗ arg_buffer_size,

...)

Pack arguments of type STARPU_VALUE into a buffer which can be given to a codelet and later unpacked with the
function starpu_codelet_unpack_args().
Instead of calling starpu_codelet_pack_args(), one can also call starpu_codelet_pack_arg_init(), then
starpu_codelet_pack_arg() for each data, then starpu_codelet_pack_arg_fini().
See Insert Task Utility for more details.

57.16.4.10 starpu_codelet_pack_arg_init()

void starpu_codelet_pack_arg_init (

struct starpu_codelet_pack_arg_data ∗ state)

Initialize struct starpu_codelet_pack_arg before calling starpu_codelet_pack_arg() and starpu_codelet_pack_arg_fini().
This will simply initialize the content of the structure. See Insert Task Utility for more details.

57.16.4.11 starpu_codelet_pack_arg()

void starpu_codelet_pack_arg (

struct starpu_codelet_pack_arg_data ∗ state,

const void ∗ ptr,

size_t ptr_size)

Pack one argument into struct starpu_codelet_pack_arg state. That structure has to be initialized before with
starpu_codelet_pack_arg_init(), and after all starpu_codelet_pack_arg() calls performed, starpu_codelet_pack_arg_fini()
has to be used to get the cl_arg and cl_arg_size to be put in the task. See Insert Task Utility for more
details.

57.16.4.12 starpu_codelet_pack_arg_fini()

void starpu_codelet_pack_arg_fini (

struct starpu_codelet_pack_arg_data ∗ state,

void ∗∗ cl_arg,

size_t ∗ cl_arg_size)

Finish packing data, after calling starpu_codelet_pack_arg_init() once and starpu_codelet_pack_arg() several times.
See Insert Task Utility for more details.

57.16.4.13 starpu_codelet_unpack_args()

void starpu_codelet_unpack_args (

Generated by Doxygen

57.16 Task Insert Utility 489

void ∗ cl_arg,

...)

Retrieve the arguments of type STARPU_VALUE associated to a task automatically created using the function
starpu_task_insert(). If any parameter's value is 0, unpacking will stop there and ignore the remaining parameters.
See Insert Task Utility for more details.

57.16.4.14 starpu_codelet_unpack_arg_init()

void starpu_codelet_unpack_arg_init (

struct starpu_codelet_pack_arg_data ∗ state,

void ∗ cl_arg,

size_t cl_arg_size)

Initialize statewith cl_arg and cl_arg_size. This has to be called before calling starpu_codelet_unpack_arg().
See Insert Task Utility for more details.

57.16.4.15 starpu_codelet_unpack_arg()

void starpu_codelet_unpack_arg (

struct starpu_codelet_pack_arg_data ∗ state,

void ∗ ptr,

size_t size)

Unpack the next argument of size size from state into ptr with a copy. state has to be initialized before with
starpu_codelet_unpack_arg_init(). See Insert Task Utility for more details.

57.16.4.16 starpu_codelet_dup_arg()

void starpu_codelet_dup_arg (

struct starpu_codelet_pack_arg_data ∗ state,

void ∗∗ ptr,

size_t ∗ size)

Unpack the next argument of unknown size from state into ptr with a copy. ptr is allocated before copying
in it the value of the argument. The size of the argument is returned in size. has to be initialized before with
starpu_codelet_unpack_arg_init(). See Insert Task Utility for more details.

57.16.4.17 starpu_codelet_pick_arg()

void starpu_codelet_pick_arg (

struct starpu_codelet_pack_arg_data ∗ state,

void ∗∗ ptr,

size_t ∗ size)

Unpack the next argument of unknown size from state into ptr. ptr will be a pointer to the mem-
ory of the argument. The size of the argument is returned in size. has to be initialized before with
starpu_codelet_unpack_arg_init(). See Insert Task Utility for more details.

57.16.4.18 starpu_codelet_unpack_arg_fini()

void starpu_codelet_unpack_arg_fini (

struct starpu_codelet_pack_arg_data ∗ state)

Finish unpacking data, after calling starpu_codelet_unpack_arg_init() once and starpu_codelet_unpack_arg() or
starpu_codelet_dup_arg() or starpu_codelet_pick_arg() several times. See Insert Task Utility for more details.

57.16.4.19 starpu_codelet_unpack_discard_arg()

void starpu_codelet_unpack_discard_arg (

struct starpu_codelet_pack_arg_data ∗ state)

Call this function during unpacking to skip saving the argument in ptr. See Insert Task Utility for more details.

Generated by Doxygen

490 Module Documentation a.k.a StarPU’s API

57.16.4.20 starpu_codelet_unpack_args_and_copyleft()

void starpu_codelet_unpack_args_and_copyleft (

void ∗ cl_arg,

void ∗ buffer,

size_t buffer_size,

...)

Similar to starpu_codelet_unpack_args(), but if any parameter is 0, copy the part of cl_arg that has not been read
in buffer which can then be used in a later call to one of the unpack functions. See Insert Task Utility for more
details.

Generated by Doxygen

57.17 Interoperability Support 491

57.17 Interoperability Support

API to interoperate with other runtime systems.

Typedefs

• typedef int starpurm_drs_ret_t
• typedef void ∗ starpurm_drs_desc_t
• typedef void ∗ starpurm_drs_cbs_t
• typedef void(∗ starpurm_drs_cb_t) (void ∗)
• typedef void ∗ starpurm_block_cond_t
• typedef int(∗ starpurm_polling_t) (void ∗)

Enumerations

• enum e_starpurm_drs_ret { starpurm_DRS_SUCCESS , starpurm_DRS_DISABLD , starpurm_DRS_PERM
, starpurm_DRS_EINVAL }

Initialisation

• void starpurm_initialize_with_cpuset (hwloc_cpuset_t initially_owned_cpuset)
• void starpurm_initialize (void)
• void starpurm_shutdown (void)

Spawn

• void starpurm_spawn_kernel_on_cpus (void ∗data, void(∗f)(void ∗), void ∗args, hwloc_cpuset_t cpuset)
• void starpurm_spawn_kernel_on_cpus_callback (void ∗data, void(∗f)(void ∗), void ∗args, hwloc_cpuset_←↩

t cpuset, void(∗cb_f)(void ∗), void ∗cb_args)
• void starpurm_spawn_kernel_callback (void ∗data, void(∗f)(void ∗), void ∗args, void(∗cb_f)(void ∗), void
∗cb_args)

DynamicResourceSharing

• starpurm_drs_ret_t starpurm_set_drs_enable (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_set_drs_disable (starpurm_drs_desc_t ∗spd)
• int starpurm_drs_enabled_p (void)
• starpurm_drs_ret_t starpurm_set_max_parallelism (starpurm_drs_desc_t ∗spd, int max)
• starpurm_drs_ret_t starpurm_assign_cpu_to_starpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_assign_cpus_to_starpu (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_assign_cpu_mask_to_starpu (starpurm_drs_desc_t ∗spd, const hwloc_←↩

cpuset_t mask)
• starpurm_drs_ret_t starpurm_assign_all_cpus_to_starpu (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_withdraw_cpu_from_starpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_withdraw_cpus_from_starpu (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_withdraw_cpu_mask_from_starpu (starpurm_drs_desc_t ∗spd, const hwloc←↩

_cpuset_t mask)
• starpurm_drs_ret_t starpurm_withdraw_all_cpus_from_starpu (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_lend (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_lend_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_lend_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_lend_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_reclaim (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_reclaim_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_reclaim_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_reclaim_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)

Generated by Doxygen

492 Module Documentation a.k.a StarPU’s API

• starpurm_drs_ret_t starpurm_acquire (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_acquire_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_acquire_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_acquire_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_return_all (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_return_cpu (starpurm_drs_desc_t ∗spd, int cpuid)

Devices

• int starpurm_get_device_type_id (const char ∗type_str)
• const char ∗ starpurm_get_device_type_name (int type_id)
• int starpurm_get_nb_devices_by_type (int type_id)
• int starpurm_get_device_id (int type_id, int device_rank)
• starpurm_drs_ret_t starpurm_assign_device_to_starpu (starpurm_drs_desc_t ∗spd, int type_id, int unit_←↩

rank)
• starpurm_drs_ret_t starpurm_assign_devices_to_starpu (starpurm_drs_desc_t ∗spd, int type_id, int nde-

vices)
• starpurm_drs_ret_t starpurm_assign_device_mask_to_starpu (starpurm_drs_desc_t ∗spd, const hwloc_←↩

cpuset_t mask)
• starpurm_drs_ret_t starpurm_assign_all_devices_to_starpu (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_withdraw_device_from_starpu (starpurm_drs_desc_t ∗spd, int type_id, int

unit_rank)
• starpurm_drs_ret_t starpurm_withdraw_devices_from_starpu (starpurm_drs_desc_t ∗spd, int type_id, int

ndevices)
• starpurm_drs_ret_t starpurm_withdraw_device_mask_from_starpu (starpurm_drs_desc_t ∗spd, const

hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_withdraw_all_devices_from_starpu (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_lend_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_lend_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_lend_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_lend_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_reclaim_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_reclaim_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_reclaim_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_reclaim_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_acquire_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_acquire_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_acquire_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_acquire_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_return_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_return_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)

CpusetsQueries

• hwloc_cpuset_t starpurm_get_device_worker_cpuset (int type_id, int unit_rank)
• hwloc_cpuset_t starpurm_get_global_cpuset (void)
• hwloc_cpuset_t starpurm_get_selected_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_cpu_workers_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_device_workers_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_device_workers_cpuset_by_type (int typeid)

57.17.1 Detailed Description

API to interoperate with other runtime systems.

Generated by Doxygen

57.17 Interoperability Support 493

57.17.2 Enumeration Type Documentation

57.17.2.1 e_starpurm_drs_ret

enum e_starpurm_drs_ret

StarPU Resource Manager return type.

Enumerator

starpurm_DRS_SUCCESS Dynamic resource sharing operation succeeded.

starpurm_DRS_DISABLD Dynamic resource sharing is disabled.

starpurm_DRS_PERM Dynamic resource sharing operation is not authorized or implemented.

starpurm_DRS_EINVAL Dynamic resource sharing operation has been called with one or more invalid
parameters.

57.17.3 Function Documentation

57.17.3.1 starpurm_initialize_with_cpuset()

void starpurm_initialize_with_cpuset (

hwloc_cpuset_t initially_owned_cpuset)

Resource enforcement

57.17.3.2 starpurm_initialize()

void starpurm_initialize (

void)

Initialize StarPU and the StarPU-RM resource management module. The starpu_init() function should not have
been called before the call to starpurm_initialize(). The starpurm_initialize() function will take care of this

57.17.3.3 starpurm_shutdown()

void starpurm_shutdown (

void)

Shutdown StarPU-RM and StarPU. The starpu_shutdown() function should not be called before. The
starpurm_shutdown() function will take care of this.

57.17.3.4 starpurm_spawn_kernel_on_cpus()

void starpurm_spawn_kernel_on_cpus (

void ∗ data,

void(∗)(void ∗) f,

void ∗ args,

hwloc_cpuset_t cpuset)

Allocate a temporary context spanning the units selected in the cpuset bitmap, set it as the default context for the
current thread, and call user function f. Upon the return of user function f, the temporary context is freed and the
previous default context for the current thread is restored.

57.17.3.5 starpurm_spawn_kernel_on_cpus_callback()

void starpurm_spawn_kernel_on_cpus_callback (

void ∗ data,

void(∗)(void ∗) f,

void ∗ args,

Generated by Doxygen

494 Module Documentation a.k.a StarPU’s API

hwloc_cpuset_t cpuset,

void(∗)(void ∗) cb_f,

void ∗ cb_args)

Spawn a POSIX thread and returns immediately. The thread spawned will allocate a temporary context spanning
the units selected in the cpuset bitmap, set it as the default context for the current thread, and call user function
f. Upon the return of user function f, the temporary context will be freed and the previous default context for the
current thread restored. A user specified callback cb_f will be called just before the termination of the thread.

57.17.3.6 starpurm_set_drs_enable()

starpurm_drs_ret_t starpurm_set_drs_enable (

starpurm_drs_desc_t ∗ spd)

Turn-on dynamic resource sharing support.

57.17.3.7 starpurm_set_drs_disable()

starpurm_drs_ret_t starpurm_set_drs_disable (

starpurm_drs_desc_t ∗ spd)

Turn-off dynamic resource sharing support.

57.17.3.8 starpurm_drs_enabled_p()

int starpurm_drs_enabled_p (

void)

Return the state of the dynamic resource sharing support (=!0 enabled, =0 disabled).

57.17.3.9 starpurm_set_max_parallelism()

starpurm_drs_ret_t starpurm_set_max_parallelism (

starpurm_drs_desc_t ∗ spd,

int max)

Set the maximum number of CPU computing units available for StarPU computations to max. This number cannot
exceed the maximum number of StarPU's CPU worker allocated at start-up time.

57.17.3.10 starpurm_assign_cpu_to_starpu()

starpurm_drs_ret_t starpurm_assign_cpu_to_starpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Extend StarPU's default scheduling context to execute tasks on worker corresponding to logical unit cpuid. If
StarPU does not have a worker thread initialized for logical unit cpuid, do nothing.

57.17.3.11 starpurm_assign_cpus_to_starpu()

starpurm_drs_ret_t starpurm_assign_cpus_to_starpu (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Extend StarPU's default scheduling context to execute tasks on ncpus more workers, up to the number of StarPU
worker threads initialized.

57.17.3.12 starpurm_assign_cpu_mask_to_starpu()

starpurm_drs_ret_t starpurm_assign_cpu_mask_to_starpu (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Extend StarPU's default scheduling context to execute tasks on the additional logical units selected in mask. Logical
units of mask for which no StarPU worker is initialized are silently ignored.

Generated by Doxygen

57.17 Interoperability Support 495

57.17.3.13 starpurm_assign_all_cpus_to_starpu()

starpurm_drs_ret_t starpurm_assign_all_cpus_to_starpu (

starpurm_drs_desc_t ∗ spd)

Set StarPU's default scheduling context to execute tasks on all available logical units for which a StarPU worker has
been initialized.

57.17.3.14 starpurm_withdraw_cpu_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_cpu_from_starpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Shrink StarPU's default scheduling context so as to not execute tasks on worker corresponding to logical unit
cpuid. If StarPU does not have a worker thread initialized for logical unit cpuid, do nothing.

57.17.3.15 starpurm_withdraw_cpus_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_cpus_from_starpu (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Shrink StarPU's default scheduling context to execute tasks on ncpus less workers.

57.17.3.16 starpurm_withdraw_cpu_mask_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_cpu_mask_from_starpu (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Shrink StarPU's default scheduling context so as to not execute tasks on the logical units selected in mask. Logical
units of mask for which no StarPU worker is initialized are silently ignored.

57.17.3.17 starpurm_withdraw_all_cpus_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_all_cpus_from_starpu (

starpurm_drs_desc_t ∗ spd)

Shrink StarPU's default scheduling context so as to remove all logical units.

57.17.3.18 starpurm_lend()

starpurm_drs_ret_t starpurm_lend (

starpurm_drs_desc_t ∗ spd)

Synonym for starpurm_assign_all_cpus_to_starpu().

57.17.3.19 starpurm_lend_cpu()

starpurm_drs_ret_t starpurm_lend_cpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Synonym for starpurm_assign_cpu_to_starpu().

57.17.3.20 starpurm_lend_cpus()

starpurm_drs_ret_t starpurm_lend_cpus (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Synonym for starpurm_assign_cpus_to_starpu().

Generated by Doxygen

496 Module Documentation a.k.a StarPU’s API

57.17.3.21 starpurm_lend_cpu_mask()

starpurm_drs_ret_t starpurm_lend_cpu_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_assign_cpu_mask_to_starpu().

57.17.3.22 starpurm_reclaim()

starpurm_drs_ret_t starpurm_reclaim (

starpurm_drs_desc_t ∗ spd)

Synonym for starpurm_withdraw_all_cpus_from_starpu().

57.17.3.23 starpurm_reclaim_cpu()

starpurm_drs_ret_t starpurm_reclaim_cpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Synonym for starpurm_withdraw_cpu_from_starpu().

57.17.3.24 starpurm_reclaim_cpus()

starpurm_drs_ret_t starpurm_reclaim_cpus (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Synonym for starpurm_withdraw_cpus_from_starpu().

57.17.3.25 starpurm_reclaim_cpu_mask()

starpurm_drs_ret_t starpurm_reclaim_cpu_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_withdraw_cpu_mask_from_starpu().

57.17.3.26 starpurm_acquire()

starpurm_drs_ret_t starpurm_acquire (

starpurm_drs_desc_t ∗ spd)

Synonym for starpurm_withdraw_all_cpus_from_starpu().

57.17.3.27 starpurm_acquire_cpu()

starpurm_drs_ret_t starpurm_acquire_cpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Synonym for starpurm_withdraw_cpu_from_starpu().

57.17.3.28 starpurm_acquire_cpus()

starpurm_drs_ret_t starpurm_acquire_cpus (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Synonym for starpurm_withdraw_cpus_from_starpu().

57.17.3.29 starpurm_acquire_cpu_mask()

starpurm_drs_ret_t starpurm_acquire_cpu_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_withdraw_cpu_mask_from_starpu().

Generated by Doxygen

57.17 Interoperability Support 497

57.17.3.30 starpurm_return_all()

starpurm_drs_ret_t starpurm_return_all (

starpurm_drs_desc_t ∗ spd)

Synonym for starpurm_assign_all_cpus_to_starpu().

57.17.3.31 starpurm_return_cpu()

starpurm_drs_ret_t starpurm_return_cpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Synonym for starpurm_assign_cpu_to_starpu().

57.17.3.32 starpurm_get_device_type_id()

int starpurm_get_device_type_id (

const char ∗ type_str)

Return the device type ID constant associated to the device type name. Valid names for type_str are:

• "cpu": regular CPU unit;

• "opencl": OpenCL device unit;

• "cuda": nVidia CUDA device unit;

57.17.3.33 starpurm_get_device_type_name()

const char ∗ starpurm_get_device_type_name (

int type_id)

Return the device type name associated to the device type ID constant.

57.17.3.34 starpurm_get_nb_devices_by_type()

int starpurm_get_nb_devices_by_type (

int type_id)

Return the number of initialized StarPU worker for the device type type_id.

57.17.3.35 starpurm_get_device_id()

int starpurm_get_device_id (

int type_id,

int device_rank)

Return the unique ID assigned to the device_rank nth device of type type_id.

57.17.3.36 starpurm_assign_device_to_starpu()

starpurm_drs_ret_t starpurm_assign_device_to_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Extend StarPU's default scheduling context to use unit_rank nth device of type type_id.

57.17.3.37 starpurm_assign_devices_to_starpu()

starpurm_drs_ret_t starpurm_assign_devices_to_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Extend StarPU's default scheduling context to use ndevices more devices of type type_id, up to the number
of StarPU workers initialized for such device type.

Generated by Doxygen

498 Module Documentation a.k.a StarPU’s API

57.17.3.38 starpurm_assign_device_mask_to_starpu()

starpurm_drs_ret_t starpurm_assign_device_mask_to_starpu (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Extend StarPU's default scheduling context to use additional devices as designated by their corresponding StarPU
worker thread(s) CPU-set mask.

57.17.3.39 starpurm_assign_all_devices_to_starpu()

starpurm_drs_ret_t starpurm_assign_all_devices_to_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id)

Extend StarPU's default scheduling context to use all devices of type type_id for which it has a worker thread
initialized.

57.17.3.40 starpurm_withdraw_device_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_device_from_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Shrink StarPU's default scheduling context to not use unit_rank nth device of type type_id.

57.17.3.41 starpurm_withdraw_devices_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_devices_from_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Shrink StarPU's default scheduling context to use ndevices less devices of type type_id.

57.17.3.42 starpurm_withdraw_device_mask_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_device_mask_from_starpu (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Shrink StarPU's default scheduling context to not use devices designated by their corresponding StarPU worker
thread(s) CPU-set mask.

57.17.3.43 starpurm_withdraw_all_devices_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_all_devices_from_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id)

Shrink StarPU's default scheduling context to use no devices of type type_id.

57.17.3.44 starpurm_lend_device()

starpurm_drs_ret_t starpurm_lend_device (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Synonym for starpurm_assign_device_to_starpu().

57.17.3.45 starpurm_lend_devices()

starpurm_drs_ret_t starpurm_lend_devices (

starpurm_drs_desc_t ∗ spd,

Generated by Doxygen

57.17 Interoperability Support 499

int type_id,

int ndevices)

Synonym for starpurm_assign_devices_to_starpu().

57.17.3.46 starpurm_lend_device_mask()

starpurm_drs_ret_t starpurm_lend_device_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_assign_device_mask_to_starpu().

57.17.3.47 starpurm_lend_all_devices()

starpurm_drs_ret_t starpurm_lend_all_devices (

starpurm_drs_desc_t ∗ spd,

int type_id)

Synonym for starpurm_assign_all_devices_to_starpu().

57.17.3.48 starpurm_reclaim_device()

starpurm_drs_ret_t starpurm_reclaim_device (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Synonym for starpurm_withdraw_device_from_starpu().

57.17.3.49 starpurm_reclaim_devices()

starpurm_drs_ret_t starpurm_reclaim_devices (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Synonym for starpurm_withdraw_devices_from_starpu().

57.17.3.50 starpurm_reclaim_device_mask()

starpurm_drs_ret_t starpurm_reclaim_device_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_withdraw_device_mask_from_starpu().

57.17.3.51 starpurm_reclaim_all_devices()

starpurm_drs_ret_t starpurm_reclaim_all_devices (

starpurm_drs_desc_t ∗ spd,

int type_id)

Synonym for starpurm_withdraw_all_devices_from_starpu().

57.17.3.52 starpurm_acquire_device()

starpurm_drs_ret_t starpurm_acquire_device (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Synonym for starpurm_withdraw_device_from_starpu().

Generated by Doxygen

500 Module Documentation a.k.a StarPU’s API

57.17.3.53 starpurm_acquire_devices()

starpurm_drs_ret_t starpurm_acquire_devices (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Synonym for starpurm_withdraw_devices_from_starpu().

57.17.3.54 starpurm_acquire_device_mask()

starpurm_drs_ret_t starpurm_acquire_device_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_withdraw_device_mask_from_starpu().

57.17.3.55 starpurm_acquire_all_devices()

starpurm_drs_ret_t starpurm_acquire_all_devices (

starpurm_drs_desc_t ∗ spd,

int type_id)

Synonym for starpurm_withdraw_all_devices_from_starpu().

57.17.3.56 starpurm_return_all_devices()

starpurm_drs_ret_t starpurm_return_all_devices (

starpurm_drs_desc_t ∗ spd,

int type_id)

Synonym for starpurm_assign_all_devices_to_starpu().

57.17.3.57 starpurm_return_device()

starpurm_drs_ret_t starpurm_return_device (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Synonym for starpurm_assign_device_to_starpu().

57.17.3.58 starpurm_get_device_worker_cpuset()

hwloc_cpuset_t starpurm_get_device_worker_cpuset (

int type_id,

int unit_rank)

Return the CPU-set of the StarPU worker associated to the unit_rank nth unit of type type_id.

57.17.3.59 starpurm_get_global_cpuset()

hwloc_cpuset_t starpurm_get_global_cpuset (

void)

Return the cumulated CPU-set of all StarPU worker threads.

57.17.3.60 starpurm_get_selected_cpuset()

hwloc_cpuset_t starpurm_get_selected_cpuset (

void)

Return the CPU-set of the StarPU worker threads currently selected in the default StarPU's scheduling context.

57.17.3.61 starpurm_get_all_cpu_workers_cpuset()

hwloc_cpuset_t starpurm_get_all_cpu_workers_cpuset (

void)

Generated by Doxygen

57.17 Interoperability Support 501

Return the cumulated CPU-set of all CPU StarPU worker threads.

57.17.3.62 starpurm_get_all_device_workers_cpuset()

hwloc_cpuset_t starpurm_get_all_device_workers_cpuset (

void)

Return the cumulated CPU-set of all "non-CPU" StarPU worker threads.

57.17.3.63 starpurm_get_all_device_workers_cpuset_by_type()

hwloc_cpuset_t starpurm_get_all_device_workers_cpuset_by_type (

int typeid)

Return the cumulated CPU-set of all StarPU worker threads for devices of type typeid.

Generated by Doxygen

502 Module Documentation a.k.a StarPU’s API

57.18 Maxeler FPGA Extensions

Data Structures

• struct starpu_max_load

Macros

• #define STARPU_USE_MAX_FPGA
• #define STARPU_MAXMAXFPGADEVS

Functions

• max_engine_t ∗ starpu_max_fpga_get_local_engine (void)

57.18.1 Detailed Description

57.18.2 Data Structure Documentation

57.18.2.1 struct starpu_max_load

This specifies a Maxeler file to be loaded on some engines.

Data Fields

max_file_t ∗ file Provide the file to be loaded
const char ∗ engine_id_pattern Provide the engine(s) on which to be loaded, following the Maxeler engine

naming, i.e. typically "∗:0", "∗:1", etc. In an array of struct
starpu_max_load, only one can have the "∗" specification.

57.18.3 Macro Definition Documentation

57.18.3.1 STARPU_USE_MAX_FPGA

#define STARPU_USE_MAX_FPGA

Defined when StarPU has been installed with FPGA support. It should be used in your code to detect the availability
of FPGA.

57.18.3.2 STARPU_MAXMAXFPGADEVS

#define STARPU_MAXMAXFPGADEVS

Define the maximum number of Maxeler FPGA devices that are supported by StarPU.

57.18.4 Function Documentation

57.18.4.1 starpu_max_fpga_get_local_engine()

max_engine_t ∗ starpu_max_fpga_get_local_engine (

void)

Maxeler engine of the current worker. See StarPU/Maxeler FPGA Application for more details.

Generated by Doxygen

57.19 Miscellaneous Helpers 503

57.19 Miscellaneous Helpers

Macros

• #define STARPU_MIN(a, b)
• #define STARPU_MAX(a, b)
• #define STARPU_POISON_PTR
• #define starpu_getenv_string_var_default(s, ss, d)
• #define starpu_getenv_size_default(s, d)
• #define starpu_getenv_number(s)
• #define starpu_getenv_number_default(s, d)
• #define starpu_getenv_float_default(s, d)

Functions

• char ∗ starpu_getenv (const char ∗str)
• int starpu_get_env_string_var_default (const char ∗str, const char ∗strings[], int defvalue)
• int starpu_get_env_size_default (const char ∗str, int defval)
• static __starpu_inline int starpu_get_env_number (const char ∗str)
• static __starpu_inline int starpu_get_env_number_default (const char ∗str, int defval)
• static __starpu_inline float starpu_get_env_float_default (const char ∗str, float defval)
• void starpu_execute_on_each_worker (void(∗func)(void ∗), void ∗arg, uint32_t where)
• void starpu_execute_on_each_worker_ex (void(∗func)(void ∗), void ∗arg, uint32_t where, const char ∗name)
• void starpu_execute_on_specific_workers (void(∗func)(void ∗), void ∗arg, unsigned num_workers, unsigned
∗workers, const char ∗name)

• double starpu_timing_now (void)
• int starpu_data_cpy (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle, int asynchronous,

void(∗callback_func)(void ∗), void ∗callback_arg)
• int starpu_data_cpy_priority (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle, int asyn-

chronous, void(∗callback_func)(void ∗), void ∗callback_arg, int priority)
• int starpu_data_dup_ro (starpu_data_handle_t ∗dst_handle, starpu_data_handle_t src_handle, int asyn-

chronous)
• void starpu_display_bindings (void)
• int starpu_get_pu_os_index (unsigned logical_index)
• long starpu_get_memory_location_bitmap (void ∗ptr, size_t size)
• hwloc_topology_t starpu_get_hwloc_topology (void)

Variables

• int _starpu_silent

57.19.1 Detailed Description

57.19.2 Macro Definition Documentation

57.19.2.1 STARPU_MIN

#define STARPU_MIN(

a,

b)

Return the min of the two parameters.

Generated by Doxygen

504 Module Documentation a.k.a StarPU’s API

57.19.2.2 STARPU_MAX

#define STARPU_MAX(

a,

b)

Return the max of the two parameters.

57.19.2.3 STARPU_POISON_PTR

#define STARPU_POISON_PTR

Define a value which can be used to mark pointers as invalid values.

57.19.2.4 starpu_getenv_string_var_default

#define starpu_getenv_string_var_default(

s,

ss,

d)

Same as starpu_get_env_string_var_default()

57.19.2.5 starpu_getenv_size_default

#define starpu_getenv_size_default(

s,

d)

Same as starpu_get_env_size_default()

57.19.2.6 starpu_getenv_number

#define starpu_getenv_number(

s)

Same as starpu_get_env_number()

57.19.2.7 starpu_getenv_number_default

#define starpu_getenv_number_default(

s,

d)

Same as starpu_get_env_number_default()

57.19.2.8 starpu_getenv_float_default

#define starpu_getenv_float_default(

s,

d)

Same as starpu_get_env_float_default()

57.19.3 Function Documentation

57.19.3.1 starpu_getenv()

char ∗ starpu_getenv (

const char ∗ str)

Retrieve the value of an environment variable. See Execution Configuration Through Environment Variables for
more details.

Generated by Doxygen

57.19 Miscellaneous Helpers 505

57.19.3.2 starpu_get_env_string_var_default()

int starpu_get_env_string_var_default (

const char ∗ str,

const char ∗ strings[],

int defvalue)

If the environment variable str is defined and its value is contained in the array strings, return the array position.
Raise an error if the environment variable str is defined with a value not in strings Return defvalue if the
environment variable str is not defined. See Execution Configuration Through Environment Variables for more
details.

57.19.3.3 starpu_get_env_size_default()

int starpu_get_env_size_default (

const char ∗ str,

int defval)

If the environment variable str is defined with a well-defined size value, return the value as a size in bytes.
Expected size qualifiers are b, B, k, K, m, M, g, G. The default qualifier is K. If the environment variable str is not
defined or is empty, return defval Raise an error if the value of the environment variable str is not well-defined.
See Execution Configuration Through Environment Variables for more details.

57.19.3.4 starpu_get_env_number()

static __starpu_inline int starpu_get_env_number (

const char ∗ str) [static]

Return the integer value of the environment variable named str. Return 0 otherwise (the variable does not exist
or has a non-integer value).

57.19.3.5 starpu_execute_on_each_worker()

void starpu_execute_on_each_worker (

void(∗)(void ∗) func,

void ∗ arg,

uint32_t where)

Execute the given function func on a subset of workers. When calling this method, the offloaded function func
is executed by every StarPU worker that are eligible to execute the function. The argument arg is passed to
the offloaded function. The argument where specifies on which types of processing units the function should be
executed. Similarly to the field starpu_codelet::where, it is possible to specify that the function should be executed
on every CUDA device and every CPU by passing STARPU_CPU|STARPU_CUDA. This function blocks until func
has been executed on every appropriate processing units, and thus may not be called from a callback function for
instance. See How To Initialize A Computation Library Once For Each Worker? for more details.

57.19.3.6 starpu_execute_on_each_worker_ex()

void starpu_execute_on_each_worker_ex (

void(∗)(void ∗) func,

void ∗ arg,

uint32_t where,

const char ∗ name)

Same as starpu_execute_on_each_worker(), except that the task name is specified in the argument name. See
How To Initialize A Computation Library Once For Each Worker? for more details.

57.19.3.7 starpu_execute_on_specific_workers()

void starpu_execute_on_specific_workers (

void(∗)(void ∗) func,

void ∗ arg,

unsigned num_workers,

unsigned ∗ workers,

const char ∗ name)

Generated by Doxygen

506 Module Documentation a.k.a StarPU’s API

Call func(arg) on every worker in the workers array. num_workers indicates the number of workers in
this array. This function is synchronous, but the different workers may execute the function in parallel. See
How To Initialize A Computation Library Once For Each Worker? for more details.

57.19.3.8 starpu_timing_now()

double starpu_timing_now (

void)

Return the current date in micro-seconds. See Preparing Your Application For Simulation for more details.

57.19.3.9 starpu_data_cpy()

int starpu_data_cpy (

starpu_data_handle_t dst_handle,

starpu_data_handle_t src_handle,

int asynchronous,

void(∗)(void ∗) callback_func,

void ∗ callback_arg)

Copy the content of src_handle into dst_handle. The parameter asynchronous indicates whether the
function should block or not. In the case of an asynchronous call, it is possible to synchronize with the termination
of this operation either by the means of implicit dependencies (if enabled) or by calling starpu_task_wait_for_all(). If
callback_func is not NULL, this callback function is executed after the handle has been copied, and it is given
the pointer callback_arg as argument. See Data handles helpers for more details.

57.19.3.10 starpu_data_cpy_priority()

int starpu_data_cpy_priority (

starpu_data_handle_t dst_handle,

starpu_data_handle_t src_handle,

int asynchronous,

void(∗)(void ∗) callback_func,

void ∗ callback_arg,

int priority)

Like starpu_data_cpy(), copy the content of src_handle into dst_handle, but additionally take a priority
parameter to sort it among the whole task graph. See Data handles helpers for more details.

57.19.3.11 starpu_data_dup_ro()

int starpu_data_dup_ro (

starpu_data_handle_t ∗ dst_handle,

starpu_data_handle_t src_handle,

int asynchronous)

Create a copy of src_handle, and return a new handle in dst_handle, which is to be used only for read
accesses. This allows StarPU to optimize it by not actually copying the data whenever possible (e.g. it may possibly
simply return src_handle itself). The parameter asynchronous indicates whether the function should block or
not. In the case of an asynchronous call, it is possible to synchronize with the termination of this operation either by
the means of implicit dependencies (if enabled) or by calling starpu_task_wait_for_all(). If callback_func is not
NULL, this callback function is executed after the handle has been copied, and it is given the pointer callback←↩

_arg as argument. See Data handles helpers for more details.

57.19.3.12 starpu_display_bindings()

void starpu_display_bindings (

void)

Call hwloc-ps or lstopo to display binding of each process and thread running on the machine.
Use the environment variable STARPU_DISPLAY_BINDINGS to automatically call this function at the beginning of
the execution of StarPU. See Miscellaneous And Debug for more details.

Generated by Doxygen

57.19 Miscellaneous Helpers 507

57.19.3.13 starpu_get_pu_os_index()

int starpu_get_pu_os_index (

unsigned logical_index)

If hwloc is used, convert the given logical_index of a PU to the OS index of this PU. If hwloc is not used,
return logical_index. See Hardware Topology for more details.

57.19.3.14 starpu_get_memory_location_bitmap()

long starpu_get_memory_location_bitmap (

void ∗ ptr,

size_t size)

Return a bitmap representing logical indexes of NUMA nodes where the buffer targeted by ptr is allocated. An
error is notified by a negative result. See Hardware Topology for more details.

57.19.3.15 starpu_get_hwloc_topology()

hwloc_topology_t starpu_get_hwloc_topology (

void)

Get the hwloc topology used by StarPU. One can use this pointer to get information about topology, but not to
change settings related to topology. See Hardware Topology for more details.

Generated by Doxygen

508 Module Documentation a.k.a StarPU’s API

57.20 Modularized Scheduler Interface

Data Structures

• struct starpu_sched_component
• struct starpu_sched_tree
• struct starpu_sched_component_fifo_data
• struct starpu_sched_component_prio_data
• struct starpu_sched_component_mct_data
• struct starpu_sched_component_heteroprio_data
• struct starpu_sched_component_perfmodel_select_data
• struct starpu_sched_component_specs

Macros

• #define STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS(component)
• #define STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE(component)
• #define STARPU_COMPONENT_MUTEX_LOCK(m)
• #define STARPU_COMPONENT_MUTEX_TRYLOCK(m)
• #define STARPU_COMPONENT_MUTEX_UNLOCK(m)

Enumerations

• enum starpu_sched_component_properties { STARPU_SCHED_COMPONENT_HOMOGENEOUS ,
STARPU_SCHED_COMPONENT_SINGLE_MEMORY_NODE }

Generic Scheduling Component API

• typedef struct starpu_sched_component ∗(∗ starpu_sched_component_create_t) (struct starpu_sched_tree
∗tree, void ∗data)

• struct starpu_sched_component ∗ starpu_sched_component_create (struct starpu_sched_tree ∗tree, const
char ∗name) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_component_destroy (struct starpu_sched_component ∗component)
• void starpu_sched_component_destroy_rec (struct starpu_sched_component ∗component)
• void starpu_sched_component_add_child (struct starpu_sched_component ∗component, struct

starpu_sched_component ∗child)
• int starpu_sched_component_can_execute_task (struct starpu_sched_component ∗component, struct

starpu_task ∗task)
• int starpu_sched_component_execute_preds (struct starpu_sched_component ∗component, struct

starpu_task ∗task, double ∗length)
• double starpu_sched_component_transfer_length (struct starpu_sched_component ∗component, struct

starpu_task ∗task)
• void starpu_sched_component_prefetch_on_node (struct starpu_sched_component ∗component, struct

starpu_task ∗task)

Scheduling Tree API

• struct starpu_sched_tree ∗ starpu_sched_tree_create (unsigned sched_ctx_id) STARPU_ATTRIBUTE_MALLOC
• void starpu_sched_tree_destroy (struct starpu_sched_tree ∗tree)
• void starpu_sched_tree_deinitialize (unsigned sched_ctx_id)
• struct starpu_sched_tree ∗ starpu_sched_tree_get (unsigned sched_ctx_id)
• void starpu_sched_tree_update_workers (struct starpu_sched_tree ∗t)
• void starpu_sched_tree_update_workers_in_ctx (struct starpu_sched_tree ∗t)
• int starpu_sched_tree_push_task (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_sched_tree_pop_task (unsigned sched_ctx)
• int starpu_sched_component_push_task (struct starpu_sched_component ∗from, struct starpu_sched_component
∗to, struct starpu_task ∗task)

Generated by Doxygen

57.20 Modularized Scheduler Interface 509

• struct starpu_task ∗ starpu_sched_component_pull_task (struct starpu_sched_component ∗from, struct
starpu_sched_component ∗to)

• struct starpu_task ∗ starpu_sched_component_pump_to (struct starpu_sched_component ∗component,
struct starpu_sched_component ∗to, int ∗success)

• struct starpu_task ∗ starpu_sched_component_pump_downstream (struct starpu_sched_component
∗component, int ∗success)

• int starpu_sched_component_send_can_push_to_parents (struct starpu_sched_component ∗component)
• void starpu_sched_tree_add_workers (unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void starpu_sched_tree_remove_workers (unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void starpu_sched_tree_do_schedule (unsigned sched_ctx_id)
• void starpu_sched_component_connect (struct starpu_sched_component ∗parent, struct starpu_sched_component
∗child)

Worker Component API

• struct starpu_sched_component ∗ starpu_sched_component_worker_get (unsigned sched_ctx, int workerid)
• struct starpu_sched_component ∗ starpu_sched_component_worker_new (unsigned sched_ctx, int work-

erid)
• struct starpu_sched_component ∗ starpu_sched_component_parallel_worker_create (struct starpu_sched_tree
∗tree, unsigned nworkers, unsigned ∗workers)

• int starpu_sched_component_worker_get_workerid (struct starpu_sched_component ∗worker_component)
• int starpu_sched_component_is_worker (struct starpu_sched_component ∗component)
• int starpu_sched_component_is_simple_worker (struct starpu_sched_component ∗component)
• int starpu_sched_component_is_combined_worker (struct starpu_sched_component ∗component)
• void starpu_sched_component_worker_pre_exec_hook (struct starpu_task ∗task, unsigned sched_ctx_id)
• void starpu_sched_component_worker_post_exec_hook (struct starpu_task ∗task, unsigned sched_ctx_id)

Flow-control Fifo Component API

These can be used as methods of components. Note: they are not to be called directly, one should really call the
methods of the components.

• struct starpu_task ∗ starpu_sched_component_parents_pull_task (struct starpu_sched_component
∗component, struct starpu_sched_component ∗to)

• int starpu_sched_component_can_push (struct starpu_sched_component ∗component, struct starpu_sched_component
∗to)

• int starpu_sched_component_can_pull (struct starpu_sched_component ∗component)
• int starpu_sched_component_can_pull_all (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_load (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_end_min (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_end_min_add (struct starpu_sched_component ∗component,

double exp_len)
• double starpu_sched_component_estimated_end_average (struct starpu_sched_component ∗component)
• struct starpu_sched_component ∗ starpu_sched_component_fifo_create (struct starpu_sched_tree ∗tree,

struct starpu_sched_component_fifo_data ∗fifo_data) STARPU_ATTRIBUTE_MALLOC
• int starpu_sched_component_is_fifo (struct starpu_sched_component ∗component)

Flow-control Prio Component API

• struct starpu_sched_component ∗ starpu_sched_component_prio_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_prio_data ∗prio_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_prio (struct starpu_sched_component ∗component)

Resource-mapping Work-Stealing Component API

• struct starpu_sched_component ∗ starpu_sched_component_work_stealing_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_work_stealing (struct starpu_sched_component ∗component)
• int starpu_sched_tree_work_stealing_push_task (struct starpu_task ∗task)

Generated by Doxygen

510 Module Documentation a.k.a StarPU’s API

Resource-mapping Random Component API

• struct starpu_sched_component ∗ starpu_sched_component_random_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_random (struct starpu_sched_component ∗)

Resource-mapping Eager Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager (struct starpu_sched_component ∗)

Resource-mapping Eager Prio Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_prio_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager_prio (struct starpu_sched_component ∗)

Resource-mapping Eager-Calibration Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_calibration_create (struct
starpu_sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager_calibration (struct starpu_sched_component ∗)

Resource-mapping MCT Component API

• struct starpu_sched_component ∗ starpu_sched_component_mct_create (struct starpu_sched_tree ∗tree,
struct starpu_sched_component_mct_data ∗mct_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_mct (struct starpu_sched_component ∗component)

Resource-mapping Heft Component API

• struct starpu_sched_component ∗ starpu_sched_component_heft_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_mct_data ∗mct_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_heft (struct starpu_sched_component ∗component)

Resource-mapping Heteroprio Component API

• struct starpu_sched_component ∗ starpu_sched_component_heteroprio_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_heteroprio_data ∗params) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_heteroprio (struct starpu_sched_component ∗component)

Special-purpose Best_Implementation Component API

• struct starpu_sched_component ∗ starpu_sched_component_best_implementation_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

Special-purpose Perfmodel_Select Component API

• struct starpu_sched_component ∗ starpu_sched_component_perfmodel_select_create (struct
starpu_sched_tree ∗tree, struct starpu_sched_component_perfmodel_select_data ∗perfmodel_select_←↩

data) STARPU_ATTRIBUTE_MALLOC
• int starpu_sched_component_is_perfmodel_select (struct starpu_sched_component ∗component)

Staged pull Component API

• struct starpu_sched_component ∗ starpu_sched_component_stage_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_stage (struct starpu_sched_component ∗component)

Generated by Doxygen

57.20 Modularized Scheduler Interface 511

User-choice push Component API

• struct starpu_sched_component ∗ starpu_sched_component_userchoice_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_userchoice (struct starpu_sched_component ∗component)

Recipe Component API

• struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_create
(void) STARPU_ATTRIBUTE_MALLOC

• struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_create_singleton
(struct starpu_sched_component ∗(∗create_component)(struct starpu_sched_tree ∗tree, void ∗arg), void
∗arg) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_component_composed_recipe_add (struct starpu_sched_component_composed_recipe
∗recipe, struct starpu_sched_component ∗(∗create_component)(struct starpu_sched_tree ∗tree, void ∗arg),
void ∗arg)

• void starpu_sched_component_composed_recipe_destroy (struct starpu_sched_component_composed_←↩

recipe ∗)
• struct starpu_sched_component ∗ starpu_sched_component_composed_component_create (struct

starpu_sched_tree ∗tree, struct starpu_sched_component_composed_recipe ∗recipe) STARPU_ATTRIBUTE_MALLOC
• struct starpu_sched_tree ∗ starpu_sched_component_make_scheduler (unsigned sched_ctx_id, struct

starpu_sched_component_specs s)

Basic API

• void starpu_sched_component_initialize_simple_scheduler (starpu_sched_component_create_t create_←↩

decision_component, void ∗data, unsigned flags, unsigned sched_ctx_id)
• void starpu_sched_component_initialize_simple_schedulers (unsigned sched_ctx_id, unsigned ndeci-

sions,...)
• #define STARPU_SCHED_SIMPLE_DECIDE_MASK
• #define STARPU_SCHED_SIMPLE_DECIDE_WORKERS
• #define STARPU_SCHED_SIMPLE_DECIDE_MEMNODES
• #define STARPU_SCHED_SIMPLE_DECIDE_ARCHS
• #define STARPU_SCHED_SIMPLE_DECIDE_ALWAYS
• #define STARPU_SCHED_SIMPLE_PERFMODEL
• #define STARPU_SCHED_SIMPLE_IMPL
• #define STARPU_SCHED_SIMPLE_FIFO_ABOVE
• #define STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_NOLIMIT
• #define STARPU_SCHED_SIMPLE_WS_BELOW
• #define STARPU_SCHED_SIMPLE_COMBINED_WORKERS
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_EXP
• #define STARPU_SCHED_SIMPLE_PRE_DECISION

57.20.1 Detailed Description

57.20.2 Data Structure Documentation

57.20.2.1 struct starpu_sched_component

Structure for a scheduler module. A scheduler is a tree-like structure of them, some parts of scheduler can be
shared by several contexes to perform some local optimisations, so, for all components, a list of parent is de-
fined by sched_ctx_id. They embed there specialised method in a pseudo object-style, so calls are like
component->push_task(component,task)

Generated by Doxygen

512 Module Documentation a.k.a StarPU’s API

Data Fields

• struct starpu_sched_tree ∗ tree
• struct starpu_bitmap workers
• struct starpu_bitmap workers_in_ctx
• void ∗ data
• char ∗ name
• unsigned nchildren
• struct starpu_sched_component ∗∗ children
• unsigned nparents
• struct starpu_sched_component ∗∗ parents
• void(∗ add_child)(struct starpu_sched_component ∗component, struct starpu_sched_component ∗child)
• void(∗ remove_child)(struct starpu_sched_component ∗component, struct starpu_sched_component ∗child)
• void(∗ add_parent)(struct starpu_sched_component ∗component, struct starpu_sched_component
∗parent)

• void(∗ remove_parent)(struct starpu_sched_component ∗component, struct starpu_sched_component
∗parent)

• int(∗ push_task)(struct starpu_sched_component ∗, struct starpu_task ∗)
• struct starpu_task ∗(∗ pull_task)(struct starpu_sched_component ∗from, struct starpu_sched_component
∗to)

• int(∗ can_push)(struct starpu_sched_component ∗from, struct starpu_sched_component ∗to)
• int(∗ can_pull)(struct starpu_sched_component ∗component)
• void(∗ do_schedule)(struct starpu_sched_component ∗component)
• int(∗ notify)(struct starpu_sched_component ∗component, int message_ID, void ∗arg)
• double(∗ estimated_load)(struct starpu_sched_component ∗component)
• double(∗ estimated_end)(struct starpu_sched_component ∗component)
• void(∗ deinit_data)(struct starpu_sched_component ∗component)
• void(∗ notify_change_workers)(struct starpu_sched_component ∗component)
• int properties
• hwloc_obj_t obj

57.20.2.1.1 Field Documentation

57.20.2.1.1.1 tree struct starpu_sched_tree∗ starpu_sched_component::tree

The tree containing the component

57.20.2.1.1.2 workers struct starpu_bitmap starpu_sched_component::workers

set of underlying workers

57.20.2.1.1.3 workers_in_ctx struct starpu_bitmap starpu_sched_component::workers_in_ctx

subset of starpu_sched_component::workers that is currently available in the context The push method should take
this value into account, it is set with: component->workers UNION tree->workers UNION component->child[i]-
>workers_in_ctx iff exist x such as component->children[i]->parents[x] == component

57.20.2.1.1.4 data void∗ starpu_sched_component::data

private data

57.20.2.1.1.5 nchildren unsigned starpu_sched_component::nchildren

number of compoments's children

57.20.2.1.1.6 children struct starpu_sched_component∗∗ starpu_sched_component::children

vector of component's children

57.20.2.1.1.7 nparents unsigned starpu_sched_component::nparents

number of component's parents

Generated by Doxygen

57.20 Modularized Scheduler Interface 513

57.20.2.1.1.8 parents struct starpu_sched_component∗∗ starpu_sched_component::parents

vector of component's parents

57.20.2.1.1.9 add_child void(∗ starpu_sched_component::add_child) (struct starpu_sched_component

∗component, struct starpu_sched_component ∗child)
add a child to component

57.20.2.1.1.10 remove_child void(∗ starpu_sched_component::remove_child) (struct starpu_sched_component

∗component, struct starpu_sched_component ∗child)
remove a child from component

57.20.2.1.1.11 push_task int(∗ starpu_sched_component::push_task) (struct starpu_sched_component

∗, struct starpu_task ∗)
push a task in the scheduler module. this function is called to push a task on component subtree, this can either
perform a recursive call on a child or store the task in the component, then it will be returned by a further pull_task
call. the caller must ensure that component is able to execute task. This method must either return 0 if it the task
was properly stored or passed over to a child component, or return a value different from 0 if the task could not be
consumed (e.g. the queue is full).

57.20.2.1.1.12 pull_task struct starpu_task ∗(∗ starpu_sched_component::pull_task) (struct starpu_sched_component

∗from, struct starpu_sched_component ∗to)
pop a task from the scheduler module. this function is called by workers to get a task from their parents. this function
should first return a locally stored task or perform a recursive call on the parents. the task returned by this function
should be executable by the caller

57.20.2.1.1.13 can_push int(∗ starpu_sched_component::can_push) (struct starpu_sched_component

∗from, struct starpu_sched_component ∗to)
This function is called by a component which implements a queue, allowing it to signify to its parents that an empty
slot is available in its queue. This should return 1 if some tasks could be pushed The basic implementation of this
function is a recursive call to its parents, the user has to specify a personally-made function to catch those calls.

57.20.2.1.1.14 can_pull int(∗ starpu_sched_component::can_pull) (struct starpu_sched_component

∗component)
This function allow a component to wake up a worker. It is currently called by component which implements a
queue, to signify to its children that a task have been pushed in its local queue, and is available to be popped by
a worker, for example. This should return 1 if some some container or worker could (or will) pull some tasks. The
basic implementation of this function is a recursive call to its children, until at least one worker have been woken up.

57.20.2.1.1.15 do_schedule void(∗ starpu_sched_component::do_schedule) (struct starpu_sched_component

∗component)
This function is called when starpu_do_schedule() is called by the application.

57.20.2.1.1.16 estimated_load double(∗ starpu_sched_component::estimated_load) (struct starpu_sched_component

∗component)
heuristic to compute load of scheduler module. Basically the number of tasks divided by the sum of relatives
speedup of workers available in context. estimated_load(component) = sum(estimated_load(component_children))
+ nb_local_tasks / average(relative_speedup(underlying_worker))

57.20.2.1.1.17 estimated_end double(∗ starpu_sched_component::estimated_end) (struct starpu_sched_component

∗component)
return the time when a worker will enter in starvation. This function is relevant only if the task->predicted member
has been set.

Generated by Doxygen

514 Module Documentation a.k.a StarPU’s API

57.20.2.1.1.18 deinit_data void(∗ starpu_sched_component::deinit_data) (struct starpu_sched_component

∗component)
called by starpu_sched_component_destroy. Should free data allocated during creation

57.20.2.1.1.19 notify_change_workers void(∗ starpu_sched_component::notify_change_workers)

(struct starpu_sched_component ∗component)
this function is called for each component when workers are added or removed from a context

57.20.2.1.1.20 obj hwloc_obj_t starpu_sched_component::obj

the hwloc object associated to scheduler module. points to the part of topology that is binded to this component,
eg: a numa node for a ws component that would balance load between underlying sockets

57.20.2.2 struct starpu_sched_tree

The actual scheduler

Data Fields

struct starpu_sched_component ∗ root entry module of the scheduler

struct starpu_bitmap workers set of workers available in this context, this value is used
to mask workers in modules

unsigned sched_ctx_id context id of the scheduler

starpu_pthread_mutex_t lock lock used to protect the scheduler, it is taken in read
mode pushing a task and in write mode for adding or
removing workers

57.20.2.3 struct starpu_sched_component_fifo_data

todo

Data Fields

unsigned ntasks_threshold

double exp_len_threshold

int ready

int exp

57.20.2.4 struct starpu_sched_component_prio_data

todo

Data Fields

unsigned ntasks_threshold

double exp_len_threshold

int ready

int exp

57.20.2.5 struct starpu_sched_component_mct_data

todo

Generated by Doxygen

57.20 Modularized Scheduler Interface 515

Data Fields

double alpha

double beta
double _gamma

double idle_power

57.20.2.6 struct starpu_sched_component_heteroprio_data

todo

Data Fields

struct starpu_sched_component_mct_data ∗ mct

unsigned batch

57.20.2.7 struct starpu_sched_component_perfmodel_select_data

todo

Data Fields

struct starpu_sched_component ∗ calibrator_component

struct starpu_sched_component ∗ no_perfmodel_component

struct starpu_sched_component ∗ perfmodel_component

57.20.2.8 struct starpu_sched_component_specs

Define how build a scheduler according to topology. Each level (except for hwloc_machine_composed_sched_←↩

component) can be NULL, then the level is just skipped. Bugs everywhere, do not rely on.

Data Fields

• struct starpu_sched_component_composed_recipe ∗ hwloc_machine_composed_sched_component
• struct starpu_sched_component_composed_recipe ∗ hwloc_component_composed_sched_component
• struct starpu_sched_component_composed_recipe ∗ hwloc_socket_composed_sched_component
• struct starpu_sched_component_composed_recipe ∗ hwloc_cache_composed_sched_component
• struct starpu_sched_component_composed_recipe ∗(∗ worker_composed_sched_component)(enum

starpu_worker_archtype archtype)
• int mix_heterogeneous_workers

57.20.2.8.1 Field Documentation

57.20.2.8.1.1 hwloc_machine_composed_sched_component struct starpu_sched_component_composed←↩

_recipe∗ starpu_sched_component_specs::hwloc_machine_composed_sched_component

the composed component to put on the top of the scheduler this member must not be NULL as it is the root of the
topology

57.20.2.8.1.2 hwloc_component_composed_sched_component struct starpu_sched_component_←↩

composed_recipe∗ starpu_sched_component_specs::hwloc_component_composed_sched_component

the composed component to put for each memory component

Generated by Doxygen

516 Module Documentation a.k.a StarPU’s API

57.20.2.8.1.3 hwloc_socket_composed_sched_component struct starpu_sched_component_composed←↩

_recipe∗ starpu_sched_component_specs::hwloc_socket_composed_sched_component

the composed component to put for each socket

57.20.2.8.1.4 hwloc_cache_composed_sched_component struct starpu_sched_component_composed←↩

_recipe∗ starpu_sched_component_specs::hwloc_cache_composed_sched_component

the composed component to put for each cache

57.20.2.8.1.5 worker_composed_sched_component struct starpu_sched_component_composed_recipe

∗(∗ starpu_sched_component_specs::worker_composed_sched_component) (enum starpu_worker_archtype

archtype)

a function that return a starpu_sched_component_composed_recipe to put on top of a worker of type archtype.
NULL is a valid return value, then no component will be added on top

57.20.2.8.1.6 mix_heterogeneous_workers int starpu_sched_component_specs::mix_heterogeneous_←↩

workers

this flag is a dirty hack because of the poor expressivity of this interface. As example, if you want to build a heft
component with a fifo component per numa component, and you also have GPUs, if this flag is set, GPUs will share
those fifos. If this flag is not set, a new fifo will be built for each of them (if they have the same starpu_perf_arch and
the same numa component it will be shared. it indicates if heterogeneous workers should be brothers or cousins,
as example, if a gpu and a cpu should share or not there numa node

57.20.3 Macro Definition Documentation

57.20.3.1 STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS

#define STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS(

component)

indicate if component is homogeneous

57.20.3.2 STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE

#define STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE(

component)

indicate if all workers have the same memory component

57.20.3.3 STARPU_SCHED_SIMPLE_DECIDE_WORKERS

#define STARPU_SCHED_SIMPLE_DECIDE_WORKERS

Request to create downstream queues per worker, i.e. the scheduling decision-making component will choose
exactly which workers tasks should got to.

57.20.3.4 STARPU_SCHED_SIMPLE_DECIDE_MEMNODES

#define STARPU_SCHED_SIMPLE_DECIDE_MEMNODES

Request to create downstream queues per memory nodes, i.e. the scheduling decision-making component will
choose which memory node tasks will go to.

57.20.3.5 STARPU_SCHED_SIMPLE_DECIDE_ARCHS

#define STARPU_SCHED_SIMPLE_DECIDE_ARCHS

Request to create downstream queues per computation arch, i.e. the scheduling decision-making component will
choose whether tasks go to CPUs, or CUDA, or OpenCL, etc.

Generated by Doxygen

57.20 Modularized Scheduler Interface 517

57.20.3.6 STARPU_SCHED_SIMPLE_DECIDE_ALWAYS

#define STARPU_SCHED_SIMPLE_DECIDE_ALWAYS

Request to create the scheduling decision-making component even if there is only one available choice. This is
useful for instance when the decision-making component will store tasks itself (and not use STARPU_SCHED_←↩

SIMPLE_FIFO_ABOVE) to decide in which order tasks should be passed below.

57.20.3.7 STARPU_SCHED_SIMPLE_PERFMODEL

#define STARPU_SCHED_SIMPLE_PERFMODEL

Request to add a perfmodel selector above the scheduling decision-making component. That way, only tasks with
a calibrated performance model will be given to the component, other tasks will go to an eager branch that will
distributed tasks so that their performance models will get calibrated. In other words, this is needed when using a
component which needs performance models for tasks.

57.20.3.8 STARPU_SCHED_SIMPLE_IMPL

#define STARPU_SCHED_SIMPLE_IMPL

Request that a component be added just above workers, that chooses the best task implementation.

57.20.3.9 STARPU_SCHED_SIMPLE_FIFO_ABOVE

#define STARPU_SCHED_SIMPLE_FIFO_ABOVE

Request to create a fifo above the scheduling decision-making component, otherwise tasks will be pushed directly
to the component.
This is useful to store tasks if there is a fifo below which limits the number of tasks to be scheduld in advance. The
scheduling decision-making component can also store tasks itself, in which case this flag is not useful.

57.20.3.10 STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO

#define STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO

Request that the fifo above be sorted by priorities

57.20.3.11 STARPU_SCHED_SIMPLE_FIFOS_BELOW

#define STARPU_SCHED_SIMPLE_FIFOS_BELOW

Request to create fifos below the scheduling decision-making component, otherwise tasks will be pulled directly
from workers.
This is useful to be able to schedule a (tunable) small number of tasks in advance only.

57.20.3.12 STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO

#define STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO

Request that the fifos below be sorted by priorities

57.20.3.13 STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY

#define STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY

Request that the fifos below be pulled rather ready tasks

57.20.3.14 STARPU_SCHED_SIMPLE_FIFOS_BELOW_NOLIMIT

#define STARPU_SCHED_SIMPLE_FIFOS_BELOW_NOLIMIT

Request that the fifos below have no size limit

57.20.3.15 STARPU_SCHED_SIMPLE_WS_BELOW

#define STARPU_SCHED_SIMPLE_WS_BELOW

Request that work between workers using the same fifo below be distributed using a work stealing component.

Generated by Doxygen

518 Module Documentation a.k.a StarPU’s API

57.20.3.16 STARPU_SCHED_SIMPLE_COMBINED_WORKERS

#define STARPU_SCHED_SIMPLE_COMBINED_WORKERS

Request to not only choose between simple workers, but also choose between combined workers.

57.20.3.17 STARPU_SCHED_SIMPLE_FIFOS_BELOW_EXP

#define STARPU_SCHED_SIMPLE_FIFOS_BELOW_EXP

Request that the fifos below keep track of expected duration, start and end time of theirs elements

57.20.3.18 STARPU_SCHED_SIMPLE_PRE_DECISION

#define STARPU_SCHED_SIMPLE_PRE_DECISION

Request to prepend a component before the decision component. This should be used alone and followed by the
component creation function pointer and its data.

57.20.4 Enumeration Type Documentation

57.20.4.1 starpu_sched_component_properties

enum starpu_sched_component_properties

flags for starpu_sched_component::properties

Enumerator

STARPU_SCHED_COMPONENT_HOMOGENEOUS
indicate that all workers have the same
starpu_worker_archtype

STARPU_SCHED_COMPONENT_SINGLE_←↩

MEMORY_NODE
indicate that all workers have the same memory
component

57.20.5 Function Documentation

57.20.5.1 starpu_sched_tree_create()

struct starpu_sched_tree ∗ starpu_sched_tree_create (

unsigned sched_ctx_id)

create a empty initialized starpu_sched_tree. See Implementing a Modularized Scheduler for more details.

57.20.5.2 starpu_sched_tree_destroy()

void starpu_sched_tree_destroy (

struct starpu_sched_tree ∗ tree)

destroy tree and free all non shared component in it. See Implementing a Modularized Scheduler for more details.

57.20.5.3 starpu_sched_tree_deinitialize()

void starpu_sched_tree_deinitialize (

unsigned sched_ctx_id)

calls starpu_sched_tree_destroy, ready for use for starpu_sched_policy::deinit_sched field. See Implementing a Modularized Scheduler
for more details.

57.20.5.4 starpu_sched_tree_get()

struct starpu_sched_tree ∗ starpu_sched_tree_get (

unsigned sched_ctx_id)

Generated by Doxygen

57.20 Modularized Scheduler Interface 519

See Implementing a Modularized Scheduler for more details.

57.20.5.5 starpu_sched_tree_update_workers()

void starpu_sched_tree_update_workers (

struct starpu_sched_tree ∗ t)

recursively set all starpu_sched_component::workers, do not take into account shared parts (except workers). See
Implementing a Modularized Scheduler for more details.

57.20.5.6 starpu_sched_tree_update_workers_in_ctx()

void starpu_sched_tree_update_workers_in_ctx (

struct starpu_sched_tree ∗ t)

recursively set all starpu_sched_component::workers_in_ctx, do not take into account shared parts (except workers)
See Implementing a Modularized Scheduler for more details.

57.20.5.7 starpu_sched_tree_push_task()

int starpu_sched_tree_push_task (

struct starpu_task ∗ task)

compatibility with starpu_sched_policy interface. See Implementing a Modularized Scheduler for more details.

57.20.5.8 starpu_sched_tree_pop_task()

struct starpu_task ∗ starpu_sched_tree_pop_task (

unsigned sched_ctx)

compatibility with starpu_sched_policy interface. See Implementing a Modularized Scheduler for more details.

57.20.5.9 starpu_sched_component_push_task()

int starpu_sched_component_push_task (

struct starpu_sched_component ∗ from,

struct starpu_sched_component ∗ to,

struct starpu_task ∗ task)

Push a task to a component. This is a helper for component->push_task(component, task) plus
tracing.

57.20.5.10 starpu_sched_component_pull_task()

struct starpu_task ∗ starpu_sched_component_pull_task (

struct starpu_sched_component ∗ from,

struct starpu_sched_component ∗ to)

Pull a task from a component. This is a helper for component->pull_task(component) plus tracing.

57.20.5.11 starpu_sched_tree_add_workers()

void starpu_sched_tree_add_workers (

unsigned sched_ctx_id,

int ∗ workerids,

unsigned nworkers)

compatibility with starpu_sched_policy interface

57.20.5.12 starpu_sched_tree_remove_workers()

void starpu_sched_tree_remove_workers (

unsigned sched_ctx_id,

int ∗ workerids,

unsigned nworkers)

compatibility with starpu_sched_policy interface

Generated by Doxygen

520 Module Documentation a.k.a StarPU’s API

57.20.5.13 starpu_sched_tree_do_schedule()

void starpu_sched_tree_do_schedule (

unsigned sched_ctx_id)

Run the do_schedule method of the components. This is a helper for starpu_sched_policy::do_schedule.

57.20.5.14 starpu_sched_component_connect()

void starpu_sched_component_connect (

struct starpu_sched_component ∗ parent,

struct starpu_sched_component ∗ child)

Attach component child to parent parent. Some component may accept only one child, others accept several
(e.g. MCT)

57.20.5.15 starpu_sched_component_create()

struct starpu_sched_component ∗ starpu_sched_component_create (

struct starpu_sched_tree ∗ tree,

const char ∗ name)

allocate and initialize component field with defaults values : .pop_task make recursive call on father .estimated←↩

_load compute relative speedup and tasks in sub tree .estimated_end return the minimum of recursive call on
children .add_child is starpu_sched_component_add_child .remove_child is starpu_sched_component_remove_←↩

child .notify_change_workers does nothing .deinit_data does nothing

57.20.5.16 starpu_sched_component_destroy()

void starpu_sched_component_destroy (

struct starpu_sched_component ∗ component)

free data allocated by starpu_sched_component_create and call component->deinit_data(component) set to NULL
the member starpu_sched_component::fathers[sched_ctx_id] of all child if its equal to component

57.20.5.17 starpu_sched_component_destroy_rec()

void starpu_sched_component_destroy_rec (

struct starpu_sched_component ∗ component)

recursively destroy non shared parts of a component 's tree

57.20.5.18 starpu_sched_component_can_execute_task()

int starpu_sched_component_can_execute_task (

struct starpu_sched_component ∗ component,

struct starpu_task ∗ task)

return true iff component can execute task, this function take into account the workers available in the scheduling
context

57.20.5.19 starpu_sched_component_execute_preds()

int starpu_sched_component_execute_preds (

struct starpu_sched_component ∗ component,

struct starpu_task ∗ task,

double ∗ length)

return a non NULL value if component can execute task. write the execution prediction length for the best
implementation of the best worker available and write this at length address. this result is more relevant if
starpu_sched_component::is_homogeneous is non NULL. if a worker need to be calibrated for an implementation,
nan is set to length.

57.20.5.20 starpu_sched_component_transfer_length()

double starpu_sched_component_transfer_length (

struct starpu_sched_component ∗ component,

Generated by Doxygen

57.20 Modularized Scheduler Interface 521

struct starpu_task ∗ task)

return the average time to transfer task data to underlying component workers.

57.20.5.21 starpu_sched_component_worker_get()

struct starpu_sched_component ∗ starpu_sched_component_worker_get (

unsigned sched_ctx,

int workerid)

return the struct starpu_sched_component corresponding to workerid. Undefined if workerid is not a valid
workerid

57.20.5.22 starpu_sched_component_parallel_worker_create()

struct starpu_sched_component ∗ starpu_sched_component_parallel_worker_create (

struct starpu_sched_tree ∗ tree,

unsigned nworkers,

unsigned ∗ workers)

Create a combined worker that pushes tasks in parallel to workers workers (size nworkers).

57.20.5.23 starpu_sched_component_worker_get_workerid()

int starpu_sched_component_worker_get_workerid (

struct starpu_sched_component ∗ worker_component)

return the workerid of worker_component, undefined if starpu_sched_component_is_worker(worker_←↩

component) == 0

57.20.5.24 starpu_sched_component_is_worker()

int starpu_sched_component_is_worker (

struct starpu_sched_component ∗ component)

return true iff component is a worker component

57.20.5.25 starpu_sched_component_is_simple_worker()

int starpu_sched_component_is_simple_worker (

struct starpu_sched_component ∗ component)

return true iff component is a simple worker component

57.20.5.26 starpu_sched_component_is_combined_worker()

int starpu_sched_component_is_combined_worker (

struct starpu_sched_component ∗ component)

return true iff component is a combined worker component

57.20.5.27 starpu_sched_component_worker_pre_exec_hook()

void starpu_sched_component_worker_pre_exec_hook (

struct starpu_task ∗ task,

unsigned sched_ctx_id)

compatibility with starpu_sched_policy interface update predictions for workers

57.20.5.28 starpu_sched_component_worker_post_exec_hook()

void starpu_sched_component_worker_post_exec_hook (

struct starpu_task ∗ task,

unsigned sched_ctx_id)

compatibility with starpu_sched_policy interface

Generated by Doxygen

522 Module Documentation a.k.a StarPU’s API

57.20.5.29 starpu_sched_component_parents_pull_task()

struct starpu_task ∗ starpu_sched_component_parents_pull_task (

struct starpu_sched_component ∗ component,

struct starpu_sched_component ∗ to)

default function for the pull component method, just call pull of parents until one of them returns a task

57.20.5.30 starpu_sched_component_can_push()

int starpu_sched_component_can_push (

struct starpu_sched_component ∗ component,

struct starpu_sched_component ∗ to)

default function for the can_push component method, just call can_push of parents until one of them returns non-
zero

57.20.5.31 starpu_sched_component_can_pull()

int starpu_sched_component_can_pull (

struct starpu_sched_component ∗ component)

default function for the can_pull component method, just call can_pull of children until one of them returns non-zero

57.20.5.32 starpu_sched_component_can_pull_all()

int starpu_sched_component_can_pull_all (

struct starpu_sched_component ∗ component)

function for the can_pull component method, call can_pull of all children

57.20.5.33 starpu_sched_component_estimated_load()

double starpu_sched_component_estimated_load (

struct starpu_sched_component ∗ component)

default function for the estimated_load component method, just sum up the loads of the children of the component.

57.20.5.34 starpu_sched_component_estimated_end_min()

double starpu_sched_component_estimated_end_min (

struct starpu_sched_component ∗ component)

function that can be used for the estimated_end component method, compute the minimum completion time of the
children.

57.20.5.35 starpu_sched_component_estimated_end_min_add()

double starpu_sched_component_estimated_end_min_add (

struct starpu_sched_component ∗ component,

double exp_len)

function that can be used for the estimated_end component method, compute the minimum completion time of the
children, and add to it an estimation of how existing queued work, plus the exp_len work, can be completed. This is
typically used instead of starpu_sched_component_estimated_end_min when the component contains a queue of
tasks, which thus needs to be added to the estimations.

57.20.5.36 starpu_sched_component_estimated_end_average()

double starpu_sched_component_estimated_end_average (

struct starpu_sched_component ∗ component)

default function for the estimated_end component method, compute the average completion time of the children.

Generated by Doxygen

57.20 Modularized Scheduler Interface 523

57.20.5.37 starpu_sched_component_fifo_create()

struct starpu_sched_component ∗ starpu_sched_component_fifo_create (

struct starpu_sched_tree ∗ tree,

struct starpu_sched_component_fifo_data ∗ fifo_data)

Return a struct starpu_sched_component with a fifo. A stable sort is performed according to tasks priorities. A
push_task call on this component does not perform recursive calls, underlying components will have to call pop←↩

_task to get it. starpu_sched_component::estimated_end function compute the estimated length by dividing the
sequential length by the number of underlying workers.

57.20.5.38 starpu_sched_component_is_fifo()

int starpu_sched_component_is_fifo (

struct starpu_sched_component ∗ component)

return true iff component is a fifo component

57.20.5.39 starpu_sched_component_work_stealing_create()

struct starpu_sched_component ∗ starpu_sched_component_work_stealing_create (

struct starpu_sched_tree ∗ tree,

void ∗ arg)

return a component that perform a work stealing scheduling. Tasks are pushed in a round robin way. estimated_end
return the average of expected length of fifos, starting at the average of the expected_end of his children. When a
worker have to steal a task, it steal a task in a round robin way, and get the last pushed task of the higher priority.

57.20.5.40 starpu_sched_component_is_work_stealing()

int starpu_sched_component_is_work_stealing (

struct starpu_sched_component ∗ component)

return true iff component is a work stealing component

57.20.5.41 starpu_sched_tree_work_stealing_push_task()

int starpu_sched_tree_work_stealing_push_task (

struct starpu_task ∗ task)

undefined if there is no work stealing component in the scheduler. If any, task is pushed in a default way if the
caller is the application, and in the caller's fifo if its a worker.

57.20.5.42 starpu_sched_component_random_create()

struct starpu_sched_component ∗ starpu_sched_component_random_create (

struct starpu_sched_tree ∗ tree,

void ∗ arg)

create a component that perform a random scheduling

57.20.5.43 starpu_sched_component_is_random()

int starpu_sched_component_is_random (

struct starpu_sched_component ∗)

return true iff component is a random component

57.20.5.44 starpu_sched_component_mct_create()

struct starpu_sched_component ∗ starpu_sched_component_mct_create (

struct starpu_sched_tree ∗ tree,

struct starpu_sched_component_mct_data ∗ mct_data)

create a component with mct_data parameters. the mct component does not do anything but pushing tasks on
no_perf_model_component and calibrating_component

Generated by Doxygen

524 Module Documentation a.k.a StarPU’s API

57.20.5.45 starpu_sched_component_best_implementation_create()

struct starpu_sched_component ∗ starpu_sched_component_best_implementation_create (

struct starpu_sched_tree ∗ tree,

void ∗ arg)

Select the implementation that offer the shortest computation length for the first worker that can execute the task. Or
an implementation that need to be calibrated. Also set starpu_task::predicted and starpu_task::predicted_transfer
for memory component of the first suitable workerid. If starpu_sched_component::push method is called and
starpu_sched_component::nchild > 1 the result is undefined.

57.20.5.46 starpu_sched_component_composed_recipe_create()

struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_create

(

void)

return an empty recipe for a composed component, it should not be used without modification. See
Implementing a Modularized Scheduler for more details.

57.20.5.47 starpu_sched_component_composed_recipe_create_singleton()

struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_create←↩

_singleton (

struct starpu_sched_component ∗(∗)(struct starpu_sched_tree ∗tree, void ∗arg)
create_component,

void ∗ arg)

return a recipe to build a composed component with a create_component

57.20.5.48 starpu_sched_component_composed_recipe_add()

void starpu_sched_component_composed_recipe_add (

struct starpu_sched_component_composed_recipe ∗ recipe,

struct starpu_sched_component ∗(∗)(struct starpu_sched_tree ∗tree, void ∗arg)
create_component,

void ∗ arg)

add create_component under all previous components in recipe

57.20.5.49 starpu_sched_component_composed_recipe_destroy()

void starpu_sched_component_composed_recipe_destroy (

struct starpu_sched_component_composed_recipe ∗)

destroy composed_sched_component, this should be done after starpu_sched_component_composed_←↩

component_create was called

57.20.5.50 starpu_sched_component_composed_component_create()

struct starpu_sched_component ∗ starpu_sched_component_composed_component_create (

struct starpu_sched_tree ∗ tree,

struct starpu_sched_component_composed_recipe ∗ recipe)

create a component that behave as all component of recipe where linked. Except that you can not use starpu_←↩

sched_component_is_foo function if recipe contain a single create_foo arg_foo pair, create_foo(arg_foo) is returned
instead of a composed component

57.20.5.51 starpu_sched_component_make_scheduler()

struct starpu_sched_tree ∗ starpu_sched_component_make_scheduler (

unsigned sched_ctx_id,

struct starpu_sched_component_specs s)

build a scheduler for sched_ctx_id according to s and the hwloc topology of the machine.

Generated by Doxygen

57.20 Modularized Scheduler Interface 525

57.20.5.52 starpu_sched_component_initialize_simple_scheduler()

void starpu_sched_component_initialize_simple_scheduler (

starpu_sched_component_create_t create_decision_component,

void ∗ data,

unsigned flags,

unsigned sched_ctx_id)

Create a simple modular scheduler tree around a scheduling decision-making component component. The details
of what should be built around component is described by flags. The different STARPU_SCHED_SIMPL_←↩

DECIDE_∗ flags are mutually exclusive. data is passed to the create_decision_component function
when creating the decision component. See Implementing a Modularized Scheduler for more details.

57.20.5.53 starpu_sched_component_initialize_simple_schedulers()

void starpu_sched_component_initialize_simple_schedulers (

unsigned sched_ctx_id,

unsigned ndecisions,

...)

Create a simple modular scheduler tree around several scheduling decision-making components. The parameters
are similar to starpu_sched_component_initialize_simple_scheduler, but per scheduling decision, for instance:
starpu_sched_component_initialize_simple_schedulers(sched_ctx_id, 2, create1, data1, flags1, create2, data2,
flags2);
The different flags parameters must be coherent: same decision flags. They must not include the perfmodel flag
(not supported yet).

Generated by Doxygen

526 Module Documentation a.k.a StarPU’s API

57.21 MPI Fault Tolerance Support

Functions

• int starpu_mpi_checkpoint_init (void)
• int starpu_mpi_checkpoint_shutdown (void)
• int starpu_mpi_checkpoint_template_register (starpu_mpi_checkpoint_template_t ∗cp_template, int cp_id,

int cp_domain,...)
• int starpu_mpi_checkpoint_template_create (starpu_mpi_checkpoint_template_t ∗cp_template, int cp_id, int

cp_domain)
• int starpu_mpi_checkpoint_template_add_entry (starpu_mpi_checkpoint_template_t ∗cp_template,...)
• int starpu_mpi_checkpoint_template_freeze (starpu_mpi_checkpoint_template_t ∗cp_template)
• int starpu_mpi_checkpoint_template_submit (starpu_mpi_checkpoint_template_t cp_template, int prio)
• int starpu_mpi_checkpoint_template_print (starpu_mpi_checkpoint_template_t cp_template)

57.21.1 Detailed Description

57.21.2 Function Documentation

57.21.2.1 starpu_mpi_checkpoint_init()

int starpu_mpi_checkpoint_init (

void)

Initialise the checkpoint mechanism

57.21.2.2 starpu_mpi_checkpoint_shutdown()

int starpu_mpi_checkpoint_shutdown (

void)

Shutdown the checkpoint mechanism

57.21.2.3 starpu_mpi_checkpoint_template_register()

int starpu_mpi_checkpoint_template_register (

starpu_mpi_checkpoint_template_t ∗ cp_template,

int cp_id,

int cp_domain,

...)

Wrapped function to register a checkpoint template cp_template with the given arguments. It is then ready
to use with starpu_mpi_checkpoint_template_submit() during the program execution. This command executes
starpu_mpi_checkpoint_template_create(), adds the given checkpoint entry and freezes the checkpoint, and there-
fore can no longer be modified. A unique checkpoint id cp_id is requested from the user in order to create several
templates and to match with a corresponding ::starpu_mpi_init_from_checkpoint() (not implemented yet).
The arguments following the cp_template and the cp_id can be of the following types:

• STARPU_R followed by a data handle and the backup rank;

• STARPU_DATA_ARRAY followed by an array of data handles, its number of elements and a backup rank (non
functional);

• STARPU_VALUE followed by a pointer to the unregistered value, its size in bytes, a unique tag (as the ones
given for data handle registering) and the function giving the back up rank of the rank argument : int(backup←↩

_of)(int) .

• The argument list must be ended by the value 0.

Generated by Doxygen

57.21 MPI Fault Tolerance Support 527

57.21.2.4 starpu_mpi_checkpoint_template_create()

int starpu_mpi_checkpoint_template_create (

starpu_mpi_checkpoint_template_t ∗ cp_template,

int cp_id,

int cp_domain)

Create a new checkpoint template. A unique checkpoint id cp_id is requested from the user in order to cre-
ate several templates and to match with a corresponding ::starpu_mpi_init_from_checkpoint() (not implemented
yet). Note a template must be frozen with starpu_mpi_checkpoint_template_freeze() in order to use it with
starpu_mpi_checkpoint_template_submit().

57.21.2.5 starpu_mpi_checkpoint_template_add_entry()

int starpu_mpi_checkpoint_template_add_entry (

starpu_mpi_checkpoint_template_t ∗ cp_template,

...)

Add a single entry to a checkpoint template previously created with starpu_mpi_checkpoint_template_create().
As many entries can be added to a template with as many argument to a single function call, or with
as many calls to this function. Once all the entry added, the template must be frozen before using
starpu_mpi_checkpoint_template_submit().
The arguments following the cp_template can be of the following types:

• STARPU_R followed by a data handle and the backup rank;

• (non functional) STARPU_DATA_ARRAY followed by an array of data handles, its number of elements and a
backup rank (non functional);

• STARPU_VALUE followed by a pointer to the unregistered value, its size in bytes, a unique tag (as the ones
given for data handle registering) and the function giving the back up rank of the rank argument : int(backup←↩

_of)(int) .

• The argument list must be ended by the value 0.

57.21.2.6 starpu_mpi_checkpoint_template_freeze()

int starpu_mpi_checkpoint_template_freeze (

starpu_mpi_checkpoint_template_t ∗ cp_template)

Freeze the given template. A frozen template can no longer be modified with starpu_mpi_checkpoint_template_add_entry().
A template must be frozen before using starpu_mpi_checkpoint_template_submit().

57.21.2.7 starpu_mpi_checkpoint_template_submit()

int starpu_mpi_checkpoint_template_submit (

starpu_mpi_checkpoint_template_t cp_template,

int prio)

Submit the checkpoint to StarPU, and can be seen as a cut in the task graph. StarPU will save the data as currently
described in the submission. Note that the data external to StarPu (STARPU_VALUE) will be saved with the current
value at submission time (when starpu_mpi_checkpoint_template_submit() is called). The data internal to StarPU
(aka handles given with STARPU_R) will be saved with their value at execution time (when the task submitted before
the starpu_mpi_checkpoint_template_submit() have been executed, and before this data is modified by the tasks
submitted after the starpu_mpi_checkpoint_template_submit())

Generated by Doxygen

528 Module Documentation a.k.a StarPU’s API

57.22 MPI Support

Data Structures

• struct starpu_mpi_task_exchange_params

Macros

• #define STARPU_USE_MPI_MASTER_SLAVE
• #define STARPU_USE_MPI
• #define STARPU_FXT_MAX_FILES
• #define STARPU_EXECUTE_ON_NODE
• #define STARPU_EXECUTE_ON_DATA
• #define STARPU_NODE_SELECTION_POLICY

Variables

• int starpu_mpi_task_exchange_params::do_execute
• int starpu_mpi_task_exchange_params::xrank
• int starpu_mpi_task_exchange_params::priority

Communication

• typedef void ∗ starpu_mpi_req
• typedef int64_t starpu_mpi_tag_t
• typedef int(∗ starpu_mpi_datatype_allocate_func_t) (starpu_data_handle_t, MPI_Datatype ∗)
• typedef int(∗ starpu_mpi_datatype_node_allocate_func_t) (starpu_data_handle_t, unsigned node, MPI←↩

_Datatype ∗)
• typedef void(∗ starpu_mpi_datatype_free_func_t) (MPI_Datatype ∗)
• int starpu_mpi_isend (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, MPI_Comm comm)
• int starpu_mpi_isend_prio (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, int prio, MPI_Comm comm)
• int starpu_mpi_irecv (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int source, starpu_mpi_tag_t

data_tag, MPI_Comm comm)
• int starpu_mpi_send (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag, MPI_Comm

comm)
• int starpu_mpi_send_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag, int prio,

MPI_Comm comm)
• int starpu_mpi_recv (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag, MPI_Comm

comm, MPI_Status ∗status)
• int starpu_mpi_recv_prio (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag, int prio,

MPI_Comm comm, MPI_Status ∗status)
• int starpu_mpi_isend_detached (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag,

MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_isend_detached_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data←↩

_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_irecv_detached (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag,

MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_irecv_detached_prio (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t

data_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_irecv_detached_sequential_consistency (starpu_data_handle_t data_handle, int source,

starpu_mpi_tag_t data_tag, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg, int sequential_←↩

consistency)
• int starpu_mpi_issend (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, MPI_Comm comm)

Generated by Doxygen

57.22 MPI Support 529

• int starpu_mpi_issend_prio (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t
data_tag, int prio, MPI_Comm comm)

• int starpu_mpi_issend_detached (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag,
MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)

• int starpu_mpi_issend_detached_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data←↩

_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_wait (starpu_mpi_req ∗req, MPI_Status ∗status)
• int starpu_mpi_test (starpu_mpi_req ∗req, int ∗flag, MPI_Status ∗status)
• int starpu_mpi_barrier (MPI_Comm comm)
• int starpu_mpi_wait_for_all (MPI_Comm comm)
• int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t

data_tag, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_isend_detached_unlock_tag_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t

data_tag, int prio, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t

data_tag, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_isend_array_detached_unlock_tag (unsigned array_size, starpu_data_handle_t ∗data_←↩

handle, int ∗dest, starpu_mpi_tag_t ∗data_tag, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_isend_array_detached_unlock_tag_prio (unsigned array_size, starpu_data_handle_t ∗data←↩

_handle, int ∗dest, starpu_mpi_tag_t ∗data_tag, int ∗prio, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_irecv_array_detached_unlock_tag (unsigned array_size, starpu_data_handle_t ∗data_←↩

handle, int ∗source, starpu_mpi_tag_t ∗data_tag, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_datatype_register (starpu_data_handle_t handle, starpu_mpi_datatype_allocate_func_←↩

t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_interface_datatype_register (enum starpu_data_interface_id id, starpu_mpi_datatype_←↩

allocate_func_t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_datatype_node_register (starpu_data_handle_t handle, starpu_mpi_datatype_node_←↩

allocate_func_t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_interface_datatype_node_register (enum starpu_data_interface_id id, starpu_mpi_datatype←↩

_node_allocate_func_t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_datatype_unregister (starpu_data_handle_t handle)
• int starpu_mpi_interface_datatype_unregister (enum starpu_data_interface_id id)

Node Selection Policy

• typedef int(∗ starpu_mpi_select_node_policy_func_t) (int me, int nb_nodes, struct starpu_data_descr
∗descr, int nb_data)

• int starpu_mpi_node_selection_register_policy (starpu_mpi_select_node_policy_func_t policy_func)
• int starpu_mpi_node_selection_unregister_policy (int policy)
• int starpu_mpi_node_selection_get_current_policy (void)
• int starpu_mpi_node_selection_set_current_policy (int policy)
• #define STARPU_MPI_NODE_SELECTION_CURRENT_POLICY
• #define STARPU_MPI_NODE_SELECTION_MOST_R_DATA

Initialisation

• int starpu_mpi_init_conf (int ∗argc, char ∗∗∗argv, int initialize_mpi, MPI_Comm comm, struct starpu_conf
∗conf)

• int starpu_mpi_init_comm (int ∗argc, char ∗∗∗argv, int initialize_mpi, MPI_Comm comm)
• int starpu_mpi_init (int ∗argc, char ∗∗∗argv, int initialize_mpi)
• int starpu_mpi_initialize (void)
• int starpu_mpi_initialize_extended (int ∗rank, int ∗world_size)
• int starpu_mpi_shutdown (void)
• int starpu_mpi_shutdown_comm (MPI_Comm comm)
• int starpu_mpi_comm_register (MPI_Comm comm)
• int starpu_mpi_comm_size (MPI_Comm comm, int ∗size)

Generated by Doxygen

530 Module Documentation a.k.a StarPU’s API

• int starpu_mpi_comm_rank (MPI_Comm comm, int ∗rank)
• int starpu_mpi_world_rank (void)
• int starpu_mpi_world_size (void)
• int starpu_mpi_comm_get_attr (MPI_Comm comm, int keyval, void ∗attribute_val, int ∗flag)
• int starpu_mpi_get_thread_cpuid (void)
• int starpu_mpi_get_communication_tag (void)
• void starpu_mpi_set_communication_tag (int tag)
• #define STARPU_MPI_TAG_UB

Communication Cache

• int starpu_mpi_cache_is_enabled (void)
• int starpu_mpi_cache_set (int enabled)
• void starpu_mpi_cache_flush (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_cache_flush_all_data (MPI_Comm comm)
• int starpu_mpi_cached_receive (starpu_data_handle_t data_handle)
• int starpu_mpi_cached_receive_set (starpu_data_handle_t data)
• int starpu_mpi_cached_cp_receive_set (starpu_data_handle_t data_handle)
• void starpu_mpi_cached_receive_clear (starpu_data_handle_t data)
• int starpu_mpi_cached_send (starpu_data_handle_t data_handle, int dest)
• int starpu_mpi_cached_send_set (starpu_data_handle_t data, int dest)
• void starpu_mpi_cached_send_clear (starpu_data_handle_t data)

MPI Insert Task

• void starpu_mpi_data_register_comm (starpu_data_handle_t data_handle, starpu_mpi_tag_t data_tag, int
rank, MPI_Comm comm)

• void starpu_mpi_data_set_tag (starpu_data_handle_t handle, starpu_mpi_tag_t data_tag)
• void starpu_mpi_data_set_rank_comm (starpu_data_handle_t handle, int rank, MPI_Comm comm)
• int starpu_mpi_data_get_rank (starpu_data_handle_t handle)
• starpu_mpi_tag_t starpu_mpi_data_get_tag (starpu_data_handle_t handle)
• char ∗ starpu_mpi_data_get_redux_map (starpu_data_handle_t handle)
• int starpu_mpi_task_insert (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• int starpu_mpi_insert_task (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• struct starpu_task ∗ starpu_mpi_task_build (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• struct starpu_task ∗ starpu_mpi_task_build_v (MPI_Comm comm, struct starpu_codelet ∗codelet, va_list

varg_list)
• int starpu_mpi_task_post_build (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• int starpu_mpi_task_post_build_v (MPI_Comm comm, struct starpu_codelet ∗codelet, va_list varg_list)
• int starpu_mpi_task_exchange_data_before_execution (MPI_Comm comm, struct starpu_task ∗task, struct

starpu_data_descr ∗descrs, struct starpu_mpi_task_exchange_params ∗params)
• int starpu_mpi_task_exchange_data_after_execution (MPI_Comm comm, struct starpu_data_descr ∗descrs,

unsigned nb_data, struct starpu_mpi_task_exchange_params params)
• int starpu_mpi_get_data_on_node (MPI_Comm comm, starpu_data_handle_t data_handle, int node)
• int starpu_mpi_get_data_on_node_detached (MPI_Comm comm, starpu_data_handle_t data_handle, int

node, void(∗callback)(void ∗), void ∗arg)
• void starpu_mpi_get_data_on_all_nodes_detached (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_data_migrate (MPI_Comm comm, starpu_data_handle_t handle, int new_rank)
• #define STARPU_MPI_PER_NODE
• #define starpu_mpi_data_register(data_handle, data_tag, rank)
• #define starpu_data_set_tag
• #define starpu_mpi_data_set_rank(handle, rank)
• #define starpu_data_set_rank
• #define starpu_data_get_rank
• #define starpu_data_get_tag

Generated by Doxygen

57.22 MPI Support 531

Collective Operations

• int starpu_mpi_redux_data (MPI_Comm comm, starpu_data_handle_t data_handle)
• int starpu_mpi_redux_data_prio (MPI_Comm comm, starpu_data_handle_t data_handle, int prio)
• int starpu_mpi_redux_data_tree (MPI_Comm comm, starpu_data_handle_t data_handle, int arity)
• int starpu_mpi_redux_data_prio_tree (MPI_Comm comm, starpu_data_handle_t data_handle, int prio, int

arity)
• int starpu_mpi_scatter_detached (starpu_data_handle_t ∗data_handles, int count, int root, MPI_Comm

comm, void(∗scallback)(void ∗), void ∗sarg, void(∗rcallback)(void ∗), void ∗rarg)
• int starpu_mpi_gather_detached (starpu_data_handle_t ∗data_handles, int count, int root, MPI_Comm

comm, void(∗scallback)(void ∗), void ∗sarg, void(∗rcallback)(void ∗), void ∗rarg)

Dynamic Broadcasts

• void starpu_mpi_coop_sends_set_use (int use_coop_sends)
• int starpu_mpi_coop_sends_get_use (void)
• void starpu_mpi_coop_sends_data_handle_nb_sends (starpu_data_handle_t data_handle, int nb_sends)

Statistics

• void starpu_mpi_comm_stats_disable (void)
• void starpu_mpi_comm_stats_enable (void)
• void starpu_mpi_comm_stats_retrieve (size_t ∗comm_stats)

Miscellaneous

• int starpu_mpi_pre_submit_hook_register (void(∗f)(struct starpu_task ∗))
• int starpu_mpi_pre_submit_hook_unregister (void)
• int starpu_mpi_data_cpy (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle, MPI_Comm

comm, int asynchronous, void(∗callback_func)(void ∗), void ∗callback_arg)
• int starpu_mpi_data_cpy_priority (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle,

MPI_Comm comm, int asynchronous, void(∗callback_func)(void ∗), void ∗callback_arg, int priority)

Data Tags Management

• int64_t starpu_mpi_tags_allocate (int64_t nbtags)
• void starpu_mpi_tags_free (int64_t mintag)

57.22.1 Detailed Description

57.22.2 Data Structure Documentation

57.22.2.1 struct starpu_mpi_task_exchange_params

Structure used to pass data from starpu_mpi_task_exchange_data_before_execution() to starpu_mpi_task_exchange_data_after_execution()

Data Fields

int do_execute is the caller going to execute the task

int xrank node executing the task

int priority priority of the task being executed

57.22.3 Macro Definition Documentation

Generated by Doxygen

532 Module Documentation a.k.a StarPU’s API

57.22.3.1 STARPU_USE_MPI_MASTER_SLAVE

#define STARPU_USE_MPI_MASTER_SLAVE

Defined when StarPU has been installed with MPI Master Slave support. It should be used in your code to detect
the availability of MPI Master Slave.

57.22.3.2 STARPU_USE_MPI

#define STARPU_USE_MPI

Defined when StarPU has been installed with MPI support. It should be used in your code to detect the availability
of MPI.

57.22.3.3 STARPU_FXT_MAX_FILES

#define STARPU_FXT_MAX_FILES

Define the maximum number of fxt mpi files that can be read when generating traces. The default value is 64, it can
be changed by using the configure option --enable-fxt-max-files.

57.22.3.4 STARPU_EXECUTE_ON_NODE

#define STARPU_EXECUTE_ON_NODE

Used when calling starpu_mpi_task_insert(), must be followed by a integer value which specified the node on which
to execute the codelet.

57.22.3.5 STARPU_EXECUTE_ON_DATA

#define STARPU_EXECUTE_ON_DATA

Used when calling starpu_mpi_task_insert(), must be followed by a data handle to specify that the node owning the
given data will execute the codelet.

57.22.3.6 STARPU_NODE_SELECTION_POLICY

#define STARPU_NODE_SELECTION_POLICY

Used when calling starpu_mpi_task_insert(), must be followed by a identifier to a node selection policy. This is
needed when several nodes own data in STARPU_W mode.

57.22.3.7 STARPU_MPI_TAG_UB

#define STARPU_MPI_TAG_UB

When given to the function starpu_mpi_comm_get_attr(), retrieve the value for the upper bound for tag value.

57.22.3.8 STARPU_MPI_PER_NODE

#define STARPU_MPI_PER_NODE

Can be used as rank when calling starpu_mpi_data_register() and alike, to specify that the data is per-node: each
node will have its own value. Tasks writing to such data will be replicated on all nodes (and all parameters then have
to be per-node). Tasks not writing to such data will just take the node-local value without any MPI communication.

57.22.3.9 starpu_mpi_data_register

#define starpu_mpi_data_register(

data_handle,

data_tag,

rank)

Register to MPI a StarPU data handle with the given tag, rank and the MPI communicator MPI_COMM_WORLD. It
also automatically clears the MPI communication cache when unregistering the data.

57.22.3.10 starpu_data_set_tag

#define starpu_data_set_tag

Symbol kept for backward compatibility. Call function starpu_mpi_data_set_tag()

Generated by Doxygen

57.22 MPI Support 533

57.22.3.11 starpu_mpi_data_set_rank

#define starpu_mpi_data_set_rank(

handle,

rank)

Register to MPI a StarPU data handle with the given rank and the MPI communicator MPI_COMM_WORLD. No tag
will be defined. It also automatically clears the MPI communication cache when unregistering the data.

57.22.3.12 starpu_data_set_rank

#define starpu_data_set_rank

Symbol kept for backward compatibility. Call function starpu_mpi_data_set_rank()

57.22.3.13 starpu_data_get_rank

#define starpu_data_get_rank

Symbol kept for backward compatibility. Call function starpu_mpi_data_get_rank()

57.22.3.14 starpu_data_get_tag

#define starpu_data_get_tag

Symbol kept for backward compatibility. Call function starpu_mpi_data_get_tag()

57.22.3.15 STARPU_MPI_NODE_SELECTION_CURRENT_POLICY

#define STARPU_MPI_NODE_SELECTION_CURRENT_POLICY

Define the current policy

57.22.3.16 STARPU_MPI_NODE_SELECTION_MOST_R_DATA

#define STARPU_MPI_NODE_SELECTION_MOST_R_DATA

Define the policy in which the selected node is the one having the most data in STARPU_R mode

57.22.4 Typedef Documentation

57.22.4.1 starpu_mpi_req

typedef void∗ starpu_mpi_req

Opaque type for communication request

57.22.4.2 starpu_mpi_tag_t

typedef int64_t starpu_mpi_tag_t

Type of the message tag.

57.22.5 Function Documentation

57.22.5.1 starpu_mpi_init_conf()

int starpu_mpi_init_conf (

int ∗ argc,

char ∗∗∗ argv,

int initialize_mpi,

MPI_Comm comm,

struct starpu_conf ∗ conf)

Generated by Doxygen

534 Module Documentation a.k.a StarPU’s API

Initialize the StarPU library with the given conf, and initialize the StarPU-MPI library with the given MPI commu-
nicator comm. initialize_mpi indicates if MPI should be initialized or not by StarPU. StarPU-MPI takes the
opportunity to modify conf to either reserve a core for its MPI thread (by default), or execute MPI calls on the CPU
driver 0 between tasks.

57.22.5.2 starpu_mpi_init_comm()

int starpu_mpi_init_comm (

int ∗ argc,

char ∗∗∗ argv,

int initialize_mpi,

MPI_Comm comm)

Same as starpu_mpi_init_conf(), except that this does not initialize the StarPU library. The caller thus has to call
starpu_init() before this, and it can not reserve a core for the MPI communications.

57.22.5.3 starpu_mpi_init()

int starpu_mpi_init (

int ∗ argc,

char ∗∗∗ argv,

int initialize_mpi)

Call starpu_mpi_init_comm() with the MPI communicator MPI_COMM_WORLD.

57.22.5.4 starpu_mpi_initialize()

int starpu_mpi_initialize (

void)

Deprecated This function has been made deprecated. One should use instead the function starpu_mpi_init(). This
function does not call MPI_Init(), it should be called beforehand.

57.22.5.5 starpu_mpi_initialize_extended()

int starpu_mpi_initialize_extended (

int ∗ rank,

int ∗ world_size)

Deprecated This function has been made deprecated. One should use instead the function starpu_mpi_init(). MPI
will be initialized by starpumpi by calling MPI_Init_Thread(argc, argv, MPI_THREAD←↩

_SERIALIZED, ...).

57.22.5.6 starpu_mpi_shutdown()

int starpu_mpi_shutdown (

void)

Call starpu_mpi_shutdown_comm() with the MPI communicator MPI_COMM_WORLD

57.22.5.7 starpu_mpi_shutdown_comm()

int starpu_mpi_shutdown_comm (

MPI_Comm comm)

Clean the starpumpi library. This must be called after calling any starpu_mpi functions and before the
call to starpu_shutdown(), if any. MPI_Finalize() will be called if StarPU-MPI has been initialized by
starpu_mpi_init().

Generated by Doxygen

57.22 MPI Support 535

57.22.5.8 starpu_mpi_comm_register()

int starpu_mpi_comm_register (

MPI_Comm comm)

Register comm. The function is automatically called for the communicator given to starpu_mpi_init_comm().

57.22.5.9 starpu_mpi_comm_size()

int starpu_mpi_comm_size (

MPI_Comm comm,

int ∗ size)

Return in size the size of the communicator comm. The function will fail if starpu_mpi_comm_register() has not
been previously called with the given communicator.

57.22.5.10 starpu_mpi_comm_rank()

int starpu_mpi_comm_rank (

MPI_Comm comm,

int ∗ rank)

Return in rank the rank of the calling process in the communicator comm. The function will fail if
starpu_mpi_comm_register() has not been previously called with the given communicator.

57.22.5.11 starpu_mpi_world_rank()

int starpu_mpi_world_rank (

void)

Return the rank of the calling process in the communicator MPI_COMM_WORLD

57.22.5.12 starpu_mpi_world_size()

int starpu_mpi_world_size (

void)

Return the size of the communicator MPI_COMM_WORLD

57.22.5.13 starpu_mpi_comm_get_attr()

int starpu_mpi_comm_get_attr (

MPI_Comm comm,

int keyval,

void ∗ attribute_val,

int ∗ flag)

Retrieve an attribute value by key, similarly to the MPI function MPI_comm_get_attr(), except that the value
is a pointer to int64_t instead of int. If an attribute is attached on comm to keyval, then the call returns flag
equal to 1, and the attribute value in attribute_val. Otherwise, flag is set to \0.

57.22.5.14 starpu_mpi_get_thread_cpuid()

int starpu_mpi_get_thread_cpuid (

void)

Get the logical index of the core where the MPI thread is bound.

57.22.5.15 starpu_mpi_get_communication_tag()

int starpu_mpi_get_communication_tag (

void)

Get the tag used for MPI communications submitted by StarPU.

Generated by Doxygen

536 Module Documentation a.k.a StarPU’s API

57.22.5.16 starpu_mpi_set_communication_tag()

void starpu_mpi_set_communication_tag (

int tag)

Set the tag used for MPI communications submitted by StarPU.

57.22.5.17 starpu_mpi_isend()

int starpu_mpi_isend (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm)

Post a standard-mode, non blocking send of data_handle to the node dest using the message tag data_tag
within the communicator comm. After the call, the pointer to the request req can be used to test or to wait for the
completion of the communication.

57.22.5.18 starpu_mpi_isend_prio()

int starpu_mpi_isend_prio (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm)

Similar to starpu_mpi_isend(), but take a priority prio.

57.22.5.19 starpu_mpi_irecv()

int starpu_mpi_irecv (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm)

Post a nonblocking receive in data_handle from the node source using the message tag data_tag within
the communicator comm. After the call, the pointer to the request req can be used to test or to wait for the
completion of the communication.

57.22.5.20 starpu_mpi_send()

int starpu_mpi_send (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm)

Perform a standard-mode, blocking send of data_handle to the node dest using the message tag data_tag
within the communicator comm.

57.22.5.21 starpu_mpi_send_prio()

int starpu_mpi_send_prio (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm)

Similar to starpu_mpi_send(), but take a priority prio.

Generated by Doxygen

57.22 MPI Support 537

57.22.5.22 starpu_mpi_recv()

int starpu_mpi_recv (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

MPI_Status ∗ status)

Perform a standard-mode, blocking receive in data_handle from the node source using the message tag
data_tag within the communicator comm. The value of status cannot be NULL, use the predefined value
MPI_STATUS_IGNORE to ignore the status.

57.22.5.23 starpu_mpi_recv_prio()

int starpu_mpi_recv_prio (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm,

MPI_Status ∗ status)

Similar to starpu_mpi_recv(), but take a priority prio

57.22.5.24 starpu_mpi_isend_detached()

int starpu_mpi_isend_detached (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Post a standard-mode, non blocking send of data_handle to the node dest using the message tag data_tag
within the communicator comm. On completion, the callback function is called with the argument arg. Similarly
to the pthread detached functionality, when a detached communication completes, its resources are automatically
released back to the system, there is no need to test or to wait for the completion of the request.

57.22.5.25 starpu_mpi_isend_detached_prio()

int starpu_mpi_isend_detached_prio (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Similar to starpu_mpi_isend_detached(), but take a priority prio.

57.22.5.26 starpu_mpi_irecv_detached()

int starpu_mpi_irecv_detached (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Generated by Doxygen

538 Module Documentation a.k.a StarPU’s API

Post a nonblocking receive in data_handle from the node source using the message tag data_tag within
the communicator comm. On completion, the callback function is called with the argument arg. Similarly to
the pthread detached functionality, when a detached communication completes, its resources are automatically
released back to the system, there is no need to test or to wait for the completion of the request.

57.22.5.27 starpu_mpi_irecv_detached_prio()

int starpu_mpi_irecv_detached_prio (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Same of starpu_mpi_irecv_detached but with the prio parameter.

57.22.5.28 starpu_mpi_irecv_detached_sequential_consistency()

int starpu_mpi_irecv_detached_sequential_consistency (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg,

int sequential_consistency)

Post a nonblocking receive in data_handle from the node source using the message tag data_tag within
the communicator comm. On completion, the callback function is called with the argument arg. The parameter
sequential_consistency allows to enable or disable the sequential consistency for data handle (sequen-
tial consistency will be enabled or disabled based on the value of the parameter sequential_consistency
and the value of the sequential consistency defined for data_handle). Similarly to the pthread detached func-
tionality, when a detached communication completes, its resources are automatically released back to the system,
there is no need to test or to wait for the completion of the request.

57.22.5.29 starpu_mpi_issend()

int starpu_mpi_issend (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm)

Perform a synchronous-mode, non-blocking send of data_handle to the node dest using the message tag
data_tag within the communicator comm.

57.22.5.30 starpu_mpi_issend_prio()

int starpu_mpi_issend_prio (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm)

Similar to starpu_mpi_issend(), but take a priority prio.

Generated by Doxygen

57.22 MPI Support 539

57.22.5.31 starpu_mpi_issend_detached()

int starpu_mpi_issend_detached (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Perform a synchronous-mode, non-blocking send of data_handle to the node dest using the message tag
data_tag within the communicator comm. On completion, the callback function is called with the argument
arg. Similarly to the pthread detached functionality, when a detached communication completes, its resources are
automatically released back to the system, there is no need to test or to wait for the completion of the request.

57.22.5.32 starpu_mpi_issend_detached_prio()

int starpu_mpi_issend_detached_prio (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Similar to starpu_mpi_issend_detached(), but take a priority prio.

57.22.5.33 starpu_mpi_wait()

int starpu_mpi_wait (

starpu_mpi_req ∗ req,

MPI_Status ∗ status)

Return when the operation identified by request req is complete. The value of status cannot be NULL, use the
predefined value MPI_STATUS_IGNORE to ignore the status.

57.22.5.34 starpu_mpi_test()

int starpu_mpi_test (

starpu_mpi_req ∗ req,

int ∗ flag,

MPI_Status ∗ status)

If the operation identified by req is complete, set flag to

1. The status object is set to contain information on the completed operation.

57.22.5.35 starpu_mpi_barrier()

int starpu_mpi_barrier (

MPI_Comm comm)

Block the caller until all group members of the communicator comm have called it.

57.22.5.36 starpu_mpi_wait_for_all()

int starpu_mpi_wait_for_all (

MPI_Comm comm)

Wait until all StarPU tasks and communications for the given communicator are completed.

Generated by Doxygen

540 Module Documentation a.k.a StarPU’s API

57.22.5.37 starpu_mpi_isend_detached_unlock_tag()

int starpu_mpi_isend_detached_unlock_tag (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

starpu_tag_t tag)

Post a standard-mode, non blocking send of data_handle to the node dest using the message tag data_tag
within the communicator comm. On completion, tag is unlocked.

57.22.5.38 starpu_mpi_isend_detached_unlock_tag_prio()

int starpu_mpi_isend_detached_unlock_tag_prio (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm,

starpu_tag_t tag)

Similar to starpu_mpi_isend_detached_unlock_tag(), but take a priority prio.

57.22.5.39 starpu_mpi_irecv_detached_unlock_tag()

int starpu_mpi_irecv_detached_unlock_tag (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

starpu_tag_t tag)

Post a nonblocking receive in data_handle from the node source using the message tag data_tag within
the communicator comm. On completion, tag is unlocked.

57.22.5.40 starpu_mpi_isend_array_detached_unlock_tag()

int starpu_mpi_isend_array_detached_unlock_tag (

unsigned array_size,

starpu_data_handle_t ∗ data_handle,

int ∗ dest,

starpu_mpi_tag_t ∗ data_tag,

MPI_Comm ∗ comm,

starpu_tag_t tag)

Post array_size standard-mode, non blocking send. Each post sends the n-th data of the array data_handle
to the n-th node of the array dest using the n-th message tag of the array data_tag within the n-th communicator
of the array comm. On completion of the all the requests, tag is unlocked.

57.22.5.41 starpu_mpi_isend_array_detached_unlock_tag_prio()

int starpu_mpi_isend_array_detached_unlock_tag_prio (

unsigned array_size,

starpu_data_handle_t ∗ data_handle,

int ∗ dest,

starpu_mpi_tag_t ∗ data_tag,

int ∗ prio,

MPI_Comm ∗ comm,

starpu_tag_t tag)

Similar to starpu_mpi_isend_array_detached_unlock_tag(), but take a priority prio.

Generated by Doxygen

57.22 MPI Support 541

57.22.5.42 starpu_mpi_irecv_array_detached_unlock_tag()

int starpu_mpi_irecv_array_detached_unlock_tag (

unsigned array_size,

starpu_data_handle_t ∗ data_handle,

int ∗ source,

starpu_mpi_tag_t ∗ data_tag,

MPI_Comm ∗ comm,

starpu_tag_t tag)

Post array_size nonblocking receive. Each post receives in the n-th data of the array data_handle from the
n-th node of the array source using the n-th message tag of the array data_tag within the n-th communicator
of the array comm. On completion of the all the requests, tag is unlocked.

57.22.5.43 starpu_mpi_datatype_register()

int starpu_mpi_datatype_register (

starpu_data_handle_t handle,

starpu_mpi_datatype_allocate_func_t allocate_datatype_func,

starpu_mpi_datatype_free_func_t free_datatype_func)

Register functions to create and free a MPI datatype for the given handle. Similar to starpu_mpi_interface_datatype_register().
It is important that the function is called before any communication can take place for a data with the given handle.
See Exchanging User Defined Data Interface for an example.

57.22.5.44 starpu_mpi_interface_datatype_register()

int starpu_mpi_interface_datatype_register (

enum starpu_data_interface_id id,

starpu_mpi_datatype_allocate_func_t allocate_datatype_func,

starpu_mpi_datatype_free_func_t free_datatype_func)

Register functions to create and free a MPI datatype for the given interface id. Similar to starpu_mpi_datatype_register().
It is important that the function is called before any communication can take place for a data with the given handle.
See Exchanging User Defined Data Interface for an example.

57.22.5.45 starpu_mpi_datatype_node_register()

int starpu_mpi_datatype_node_register (

starpu_data_handle_t handle,

starpu_mpi_datatype_node_allocate_func_t allocate_datatype_func,

starpu_mpi_datatype_free_func_t free_datatype_func)

Register functions to create and free a MPI datatype for the given handle. Similar to starpu_mpi_interface_datatype_register().
It is important that the function is called before any communication can take place for a data with the given handle.
See Exchanging User Defined Data Interface for an example.

57.22.5.46 starpu_mpi_interface_datatype_node_register()

int starpu_mpi_interface_datatype_node_register (

enum starpu_data_interface_id id,

starpu_mpi_datatype_node_allocate_func_t allocate_datatype_func,

starpu_mpi_datatype_free_func_t free_datatype_func)

Register functions to create and free a MPI datatype for the given interface id. Similar to starpu_mpi_datatype_register().
It is important that the function is called before any communication can take place for a data with the given handle.
See Exchanging User Defined Data Interface for an example.

57.22.5.47 starpu_mpi_datatype_unregister()

int starpu_mpi_datatype_unregister (

starpu_data_handle_t handle)

Unregister the MPI datatype functions stored for the interface of the given handle.

Generated by Doxygen

542 Module Documentation a.k.a StarPU’s API

57.22.5.48 starpu_mpi_interface_datatype_unregister()

int starpu_mpi_interface_datatype_unregister (

enum starpu_data_interface_id id)

Unregister the MPI datatype functions stored for the interface of the given interface id. Similar to
starpu_mpi_datatype_unregister().

57.22.5.49 starpu_mpi_cache_is_enabled()

int starpu_mpi_cache_is_enabled (

void)

Return 1 if the communication cache is enabled, 0 otherwise

57.22.5.50 starpu_mpi_cache_set()

int starpu_mpi_cache_set (

int enabled)

If enabled is 1, enable the communication cache. Otherwise, clean the cache if it was enabled and disable it.

57.22.5.51 starpu_mpi_cache_flush()

void starpu_mpi_cache_flush (

MPI_Comm comm,

starpu_data_handle_t data_handle)

Clear the send and receive communication cache for the data data_handle and invalidate the value. The
function has to be called at the same point of task graph submission by all the MPI nodes on which the handle was
registered. The function does nothing if the cache mechanism is disabled (see STARPU_MPI_CACHE).

57.22.5.52 starpu_mpi_cache_flush_all_data()

void starpu_mpi_cache_flush_all_data (

MPI_Comm comm)

Clear the send and receive communication cache for all data and invalidate their values. The function has to be
called at the same point of task graph submission by all the MPI nodes. The function does nothing if the cache
mechanism is disabled (see STARPU_MPI_CACHE).

57.22.5.53 starpu_mpi_cached_receive()

int starpu_mpi_cached_receive (

starpu_data_handle_t data_handle)

Test whether data_handle is cached for reception, i.e. the value was previously received from the owner node,
and not flushed since then.

57.22.5.54 starpu_mpi_cached_receive_set()

int starpu_mpi_cached_receive_set (

starpu_data_handle_t data)

If data is already available in the reception cache, return 1 If data is NOT available in the reception cache, add it
to the cache and return 0 Return 0 if the communication cache is not enabled

57.22.5.55 starpu_mpi_cached_receive_clear()

void starpu_mpi_cached_receive_clear (

starpu_data_handle_t data)

Remove data from the reception cache

Generated by Doxygen

57.22 MPI Support 543

57.22.5.56 starpu_mpi_cached_send()

int starpu_mpi_cached_send (

starpu_data_handle_t data_handle,

int dest)

Test whether data_handle is cached for emission to node dest, i.e. the value was previously sent to dest,
and not flushed since then.

57.22.5.57 starpu_mpi_cached_send_set()

int starpu_mpi_cached_send_set (

starpu_data_handle_t data,

int dest)

If data is already available in the emission cache for node dest, return 1 If data is NOT available in the emission
cache for node dest, add it to the cache and return 0 Return 0 if the communication cache is not enabled

57.22.5.58 starpu_mpi_cached_send_clear()

void starpu_mpi_cached_send_clear (

starpu_data_handle_t data)

Remove data from the emission cache

57.22.5.59 starpu_mpi_data_register_comm()

void starpu_mpi_data_register_comm (

starpu_data_handle_t data_handle,

starpu_mpi_tag_t data_tag,

int rank,

MPI_Comm comm)

Register to MPI a StarPU data handle with the given tag, rank and MPI communicator. It also automatically clears
the MPI communication cache when unregistering the data.

57.22.5.60 starpu_mpi_data_set_tag()

void starpu_mpi_data_set_tag (

starpu_data_handle_t handle,

starpu_mpi_tag_t data_tag)

Register to MPI a StarPU data handle with the given tag. No rank will be defined. It also automatically clears the
MPI communication cache when unregistering the data.

57.22.5.61 starpu_mpi_data_set_rank_comm()

void starpu_mpi_data_set_rank_comm (

starpu_data_handle_t handle,

int rank,

MPI_Comm comm)

Register to MPI a StarPU data handle with the given rank and given communicator. No tag will be defined. It also
automatically clears the MPI communication cache when unregistering the data.

57.22.5.62 starpu_mpi_data_get_rank()

int starpu_mpi_data_get_rank (

starpu_data_handle_t handle)

Return the rank of the given data.

57.22.5.63 starpu_mpi_data_get_tag()

starpu_mpi_tag_t starpu_mpi_data_get_tag (

starpu_data_handle_t handle)

Return the tag of the given data.

Generated by Doxygen

544 Module Documentation a.k.a StarPU’s API

57.22.5.64 starpu_mpi_data_get_redux_map()

char ∗ starpu_mpi_data_get_redux_map (

starpu_data_handle_t handle)

Return the redux map of the given data.

57.22.5.65 starpu_mpi_task_insert()

int starpu_mpi_task_insert (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

...)

Create and submit a task corresponding to codelet with the following arguments. The argument list must be zero-
terminated. The arguments following the codelet are the same types as for the function starpu_task_insert(). Access
modes for data can also be set with STARPU_SSEND to specify the data has to be sent using a synchronous and
non-blocking mode (see starpu_mpi_issend()). The extra argument STARPU_EXECUTE_ON_NODE followed by
an integer allows to specify the MPI node to execute the codelet. It is also possible to specify that the node owning
a specific data will execute the codelet, by using STARPU_EXECUTE_ON_DATA followed by a data handle.
The internal algorithm is as follows:

1. Find out which MPI node is going to execute the codelet.

• If there is only one node owning data in STARPU_W mode, it will be selected;

• If there is several nodes owning data in STARPU_W mode, a node will be selected according to a given
node selection policy (see STARPU_NODE_SELECTION_POLICY or starpu_mpi_node_selection_set_current_policy())

• The argument STARPU_EXECUTE_ON_NODE followed by an integer can be used to specify the node;
Ignored if the node value is -1.

• The argument STARPU_EXECUTE_ON_DATA followed by a data handle can be used to specify that
the node owing the given data will execute the codelet.

2. Send and receive data as requested. Nodes owning data which need to be read by the task are sending them
to the MPI node which will execute it. The latter receives them.

3. Execute the codelet. This is done by the MPI node selected in the 1st step of the algorithm.

4. If several MPI nodes own data to be written to, send written data back to their owners.

The algorithm also includes a communication cache mechanism that allows not to send data twice to the same MPI
node, unless the data has been modified. The cache can be disabled (see STARPU_MPI_CACHE).

57.22.5.66 starpu_mpi_insert_task()

int starpu_mpi_insert_task (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

...)

Identical to starpu_mpi_task_insert(). Symbol kept for backward compatibility.

57.22.5.67 starpu_mpi_task_build()

struct starpu_task ∗ starpu_mpi_task_build (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

...)

Create a task corresponding to codelet with the following given arguments. The argument list must be zero-
terminated. The function performs the first two steps of the function starpu_mpi_task_insert(), i.e. submitting the
MPI communications needed before the execution of the task, and the creation of the task on one node. Only the
MPI node selected in the first step of the algorithm will return a valid task structure which can then be submitted,
others will return NULL. The function starpu_mpi_task_post_build() MUST be called after that on all nodes, and
after the submission of the task on the node which creates it, with the SAME list of arguments.

Generated by Doxygen

57.22 MPI Support 545

57.22.5.68 starpu_mpi_task_build_v()

struct starpu_task ∗ starpu_mpi_task_build_v (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

va_list varg_list)

Offer a va_list variant of starpu_mpi_task_build.

57.22.5.69 starpu_mpi_task_post_build()

int starpu_mpi_task_post_build (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

...)

MUST be called after a call to starpu_mpi_task_build(), with the SAME list of arguments. Perform the fourth – last
– step of the algorithm described in starpu_mpi_task_insert().

57.22.5.70 starpu_mpi_task_post_build_v()

int starpu_mpi_task_post_build_v (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

va_list varg_list)

Offer a va_list variant of starpu_mpi_task_post_build.

57.22.5.71 starpu_mpi_task_exchange_data_before_execution()

int starpu_mpi_task_exchange_data_before_execution (

MPI_Comm comm,

struct starpu_task ∗ task,

struct starpu_data_descr ∗ descrs,

struct starpu_mpi_task_exchange_params ∗ params)

Perform all necessary communications needed before the execution of the given task. The field priority
of params will be set with the rank of the node which is selected to submit task. After calling
this function, and the submission of the task for the selected node, all nodes MUST call the function
starpu_mpi_task_exchange_data_after_execution() with the parameters descrs and params.

57.22.5.72 starpu_mpi_task_exchange_data_after_execution()

int starpu_mpi_task_exchange_data_after_execution (

MPI_Comm comm,

struct starpu_data_descr ∗ descrs,

unsigned nb_data,

struct starpu_mpi_task_exchange_params params)

MUST be called after a call to starpu_mpi_task_exchange_data_before_execution() with the same arguments
descrs and params. nb_data is the number of data in descrs. Perform all the necessary commu-
nications needed after the execution of the task, i.e the fourth – last – step of the algorithm described in
starpu_mpi_task_insert().

57.22.5.73 starpu_mpi_get_data_on_node()

int starpu_mpi_get_data_on_node (

MPI_Comm comm,

starpu_data_handle_t data_handle,

int node)

Transfer data data_handle to MPI node node, sending it from its owner if needed. At least the target node and
the owner have to call the function. This waits for the transfer to be over.

Generated by Doxygen

546 Module Documentation a.k.a StarPU’s API

57.22.5.74 starpu_mpi_get_data_on_node_detached()

int starpu_mpi_get_data_on_node_detached (

MPI_Comm comm,

starpu_data_handle_t data_handle,

int node,

void(∗)(void ∗) callback,

void ∗ arg)

Transfer data data_handle to MPI node node, sending it from its owner if needed. At least the target node and
the owner have to call the function. On reception, the callback function is called with the argument arg.

57.22.5.75 starpu_mpi_get_data_on_all_nodes_detached()

void starpu_mpi_get_data_on_all_nodes_detached (

MPI_Comm comm,

starpu_data_handle_t data_handle)

Transfer data data_handle to all MPI nodes, sending it from its owner if needed. All nodes have to call the
function.

57.22.5.76 starpu_mpi_data_migrate()

void starpu_mpi_data_migrate (

MPI_Comm comm,

starpu_data_handle_t handle,

int new_rank)

Submit migration of the data onto the new_rank MPI node. This means both submitting the transfer of the data
to node new_rank if it hasn't been submitted already, and setting the home node of the data to the new node.
Further data transfers submitted by starpu_mpi_task_insert() will be done from that new node. This function thus
needs to be called on all nodes which have registered the data at the same point of tasks submissions. This also
flushes the cache for this data to avoid incoherencies.

57.22.5.77 starpu_mpi_node_selection_register_policy()

int starpu_mpi_node_selection_register_policy (

starpu_mpi_select_node_policy_func_t policy_func)

Register a new policy which can then be used when there is several nodes owning data in STARPU_W mode. Here
an example of function defining a node selection policy. The codelet will be executed on the node owing the first
data with a size bigger than 1M, or on the node 0 if no data fits the given size.
int my_node_selection_policy(int me, int nb_nodes, struct starpu_data_descr *descr, int nb_data)
{

// me is the current MPI rank
// nb_nodes is the number of MPI nodes
// descr is the description of the data specified when calling starpu_mpi_task_insert
// nb_data is the number of data in descr
int i;
for(i= 0 ; i<nb_data ; i++)
{

starpu_data_handle_t data = descr[i].handle;
enum starpu_data_access_mode mode = descr[i].mode;
if (mode & STARPU_R)
{

int rank = starpu_data_get_rank(data);
size_t size = starpu_data_get_size(data);
if (size > 1024*1024) return rank;

}
}
return 0;
}

57.22.5.78 starpu_mpi_node_selection_unregister_policy()

int starpu_mpi_node_selection_unregister_policy (

int policy)

Unregister a previously registered policy.

Generated by Doxygen

57.22 MPI Support 547

57.22.5.79 starpu_mpi_node_selection_get_current_policy()

int starpu_mpi_node_selection_get_current_policy (

void)

Return the current policy used to select the node which will execute the codelet

57.22.5.80 starpu_mpi_node_selection_set_current_policy()

int starpu_mpi_node_selection_set_current_policy (

int policy)

Set the current policy used to select the node which will execute the codelet. The policy STARPU_MPI_NODE_SELECTION_MOST_R_DATA
selects the node having the most data in STARPU_R mode so as to minimize the amount of data to be transferred.

57.22.5.81 starpu_mpi_redux_data()

int starpu_mpi_redux_data (

MPI_Comm comm,

starpu_data_handle_t data_handle)

Perform a reduction on the given data handle. All nodes send the data to its owner node which will perform a
reduction.

57.22.5.82 starpu_mpi_redux_data_prio()

int starpu_mpi_redux_data_prio (

MPI_Comm comm,

starpu_data_handle_t data_handle,

int prio)

Similar to starpu_mpi_redux_data(), but take a priority prio.

57.22.5.83 starpu_mpi_redux_data_tree()

int starpu_mpi_redux_data_tree (

MPI_Comm comm,

starpu_data_handle_t data_handle,

int arity)

Perform a reduction on the given data handle. Nodes perform the reduction through in a tree-based fashion. The
tree use is an arity - ary tree.

57.22.5.84 starpu_mpi_redux_data_prio_tree()

int starpu_mpi_redux_data_prio_tree (

MPI_Comm comm,

starpu_data_handle_t data_handle,

int prio,

int arity)

Similar to starpu_mpi_redux_data_tree(), but take a priority prio.

57.22.5.85 starpu_mpi_scatter_detached()

int starpu_mpi_scatter_detached (

starpu_data_handle_t ∗ data_handles,

int count,

int root,

MPI_Comm comm,

void(∗)(void ∗) scallback,

void ∗ sarg,

void(∗)(void ∗) rcallback,

void ∗ rarg)

Generated by Doxygen

548 Module Documentation a.k.a StarPU’s API

Scatter data among processes of the communicator based on the ownership of the data. For each data of the array
data_handles, the process root sends the data to the process owning this data. Processes receiving data
must have valid data handles to receive them. On completion of the collective communication, the scallback
function is called with the argument sarg on the process root, the rcallback function is called with the
argument rarg on any other process.

57.22.5.86 starpu_mpi_gather_detached()

int starpu_mpi_gather_detached (

starpu_data_handle_t ∗ data_handles,

int count,

int root,

MPI_Comm comm,

void(∗)(void ∗) scallback,

void ∗ sarg,

void(∗)(void ∗) rcallback,

void ∗ rarg)

Gather data from the different processes of the communicator onto the process root. Each process owning data
handle in the array data_handles will send them to the process root. The process root must have valid data
handles to receive the data. On completion of the collective communication, the rcallback function is called
with the argument rarg on the process root, the scallback function is called with the argument sarg on any
other process.

57.22.5.87 starpu_mpi_coop_sends_set_use()

void starpu_mpi_coop_sends_set_use (

int use_coop_sends)

Enable or disable coop sends.
Used for benchmark, not recommended for production: can cause problems if there are still communications while
disabling, or when shutting down StarPU.
This function must be called after the initialization of StarPU.

57.22.5.88 starpu_mpi_coop_sends_get_use()

int starpu_mpi_coop_sends_get_use (

void)

Return whether coop sends are enabled or not.

57.22.5.89 starpu_mpi_coop_sends_data_handle_nb_sends()

void starpu_mpi_coop_sends_data_handle_nb_sends (

starpu_data_handle_t data_handle,

int nb_sends)

Explicit the number of different sends of the data_handle. When the number of sends is reached, a collective
operation is triggered. If this function isn't called, StarPU will trigger a collective operation containing only posted
sends while the data wasn't available.

57.22.5.90 starpu_mpi_comm_stats_disable()

void starpu_mpi_comm_stats_disable (

void)

Disable the aggregation of communications statistics.

57.22.5.91 starpu_mpi_comm_stats_enable()

void starpu_mpi_comm_stats_enable (

void)

Enable the aggregation of communications statistics.

Generated by Doxygen

57.22 MPI Support 549

57.22.5.92 starpu_mpi_comm_stats_retrieve()

void starpu_mpi_comm_stats_retrieve (

size_t ∗ comm_stats)

Retrieve the current communications statistics from the current node in the array comm_stats which must have
a size greater or equal to the world size. Communications statistics must have been enabled, either through the
function starpu_mpi_comm_stats_enable() or through the environment variable STARPU_MPI_STATS.

57.22.5.93 starpu_mpi_data_cpy()

int starpu_mpi_data_cpy (

starpu_data_handle_t dst_handle,

starpu_data_handle_t src_handle,

MPI_Comm comm,

int asynchronous,

void(∗)(void ∗) callback_func,

void ∗ callback_arg)

Copy the content of src_handle into dst_handle. If both data are on the same node, the func-
tion starpu_data_cpy() is called, otherwise a MPI transfer is initiated between both nodes. The parameter
asynchronous indicates whether the function should block or not. If callback_func is not NULL, this
callback function is executed on the owner node of the data dst_handle after the handle has been received,
and it is given the pointer callback_arg as argument. See Other MPI Utility Functions for more details.

57.22.5.94 starpu_mpi_data_cpy_priority()

int starpu_mpi_data_cpy_priority (

starpu_data_handle_t dst_handle,

starpu_data_handle_t src_handle,

MPI_Comm comm,

int asynchronous,

void(∗)(void ∗) callback_func,

void ∗ callback_arg,

int priority)

Similar to starpu_mpi_data_cpy(), but take a priority prio.

57.22.5.95 starpu_mpi_tags_allocate()

int64_t starpu_mpi_tags_allocate (

int64_t nbtags)

Book a range of unique tags of size nbtags to be used to register StarPU data handles. This function returns the
minimal tag value available mintag to allow the registration of data with tags in the continuous range [[mintag,
mintag + nbtags]]
Note that this function must be called by all MPI processes involved in the computations with the same parameters
and in the exact same order to make sure the tags are identical from one node to another.

57.22.5.96 starpu_mpi_tags_free()

void starpu_mpi_tags_free (

int64_t mintag)

Release the range of tags starting by the given mintag value. The mintag value must be a value obtained through
a call to starpu_mpi_tags_allocate().
Note that this function must be called by all MPI processes involved in the computations with the same pa-
rameters and in the exact same order to make sure the tags are identical from one node to another as for
starpu_mpi_tags_allocate().

57.22.6 Variable Documentation

Generated by Doxygen

550 Module Documentation a.k.a StarPU’s API

57.22.6.1 do_execute

int starpu_mpi_task_exchange_params::do_execute

is the caller going to execute the task

57.22.6.2 xrank

int starpu_mpi_task_exchange_params::xrank

node executing the task

57.22.6.3 priority

int starpu_mpi_task_exchange_params::priority

priority of the task being executed

Generated by Doxygen

57.23 OpenCL Extensions 551

57.23 OpenCL Extensions

Data Structures

• struct starpu_opencl_program

Macros

• #define STARPU_USE_OPENCL
• #define STARPU_OPENCL_DATADIR
• #define STARPU_MAXOPENCLDEVS

Writing OpenCL kernels

• void starpu_opencl_get_context (int devid, cl_context ∗context)
• void starpu_opencl_get_device (int devid, cl_device_id ∗device)
• void starpu_opencl_get_queue (int devid, cl_command_queue ∗queue)
• void starpu_opencl_get_current_context (cl_context ∗context)
• void starpu_opencl_get_current_queue (cl_command_queue ∗queue)
• int starpu_opencl_set_kernel_args (cl_int ∗err, cl_kernel ∗kernel,...)

Compiling OpenCL kernels

Source codes for OpenCL kernels can be stored in a file or in a string. StarPU provides functions to build the
program executable for each available OpenCL device as a cl_program object. This program executable can then
be loaded within a specific queue as explained in the next section. These are only helpers, Applications can also fill
a starpu_opencl_program array by hand for more advanced use (e.g. different programs on the different OpenCL
devices, for relocation purpose for instance).

• void starpu_opencl_load_program_source (const char ∗source_file_name, char ∗located_file_name, char
∗located_dir_name, char ∗opencl_program_source)

• void starpu_opencl_load_program_source_malloc (const char ∗source_file_name, char ∗∗located_file_←↩

name, char ∗∗located_dir_name, char ∗∗opencl_program_source)
• int starpu_opencl_compile_opencl_from_file (const char ∗source_file_name, const char ∗build_options)
• int starpu_opencl_compile_opencl_from_string (const char ∗opencl_program_source, const char ∗file_name,

const char ∗build_options)
• int starpu_opencl_load_binary_opencl (const char ∗kernel_id, struct starpu_opencl_program ∗opencl_←↩

programs)
• int starpu_opencl_load_opencl_from_file (const char ∗source_file_name, struct starpu_opencl_program
∗opencl_programs, const char ∗build_options)

• int starpu_opencl_load_opencl_from_string (const char ∗opencl_program_source, struct starpu_opencl_program
∗opencl_programs, const char ∗build_options)

• int starpu_opencl_unload_opencl (struct starpu_opencl_program ∗opencl_programs)

Loading OpenCL kernels

• int starpu_opencl_load_kernel (cl_kernel ∗kernel, cl_command_queue ∗queue, struct starpu_opencl_program
∗opencl_programs, const char ∗kernel_name, int devid)

• int starpu_opencl_release_kernel (cl_kernel kernel)

OpenCL Statistics

• int starpu_opencl_collect_stats (cl_event event)

Generated by Doxygen

552 Module Documentation a.k.a StarPU’s API

OpenCL Utilities

• const char ∗ starpu_opencl_error_string (cl_int status)
• void starpu_opencl_display_error (const char ∗func, const char ∗file, int line, const char ∗msg, cl_int status)
• static __starpu_inline void starpu_opencl_report_error (const char ∗func, const char ∗file, int line, const char
∗msg, cl_int status)

• cl_int starpu_opencl_allocate_memory (int devid, cl_mem ∗addr, size_t size, cl_mem_flags flags)
• cl_int starpu_opencl_copy_ram_to_opencl (void ∗ptr, unsigned src_node, cl_mem buffer, unsigned dst_node,

size_t size, size_t offset, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_opencl_to_ram (cl_mem buffer, unsigned src_node, void ∗ptr, unsigned dst_node,

size_t size, size_t offset, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem src, unsigned src_node, size_t src_offset, cl_mem

dst, unsigned dst_node, size_t dst_offset, size_t size, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_async_sync (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst,

size_t dst_offset, unsigned dst_node, size_t size, cl_event ∗event)
• #define STARPU_OPENCL_DISPLAY_ERROR(status)
• #define STARPU_OPENCL_REPORT_ERROR(status)
• #define STARPU_OPENCL_REPORT_ERROR_WITH_MSG(msg, status)

57.23.1 Detailed Description

57.23.2 Data Structure Documentation

57.23.2.1 struct starpu_opencl_program

Store the OpenCL programs as compiled for the different OpenCL devices.

Data Fields

cl_program programs[STARPU_MAXOPENCLDEVS] Store each program for each OpenCL device.

57.23.3 Macro Definition Documentation

57.23.3.1 STARPU_USE_OPENCL

#define STARPU_USE_OPENCL

Defined when StarPU has been installed with OpenCL support. It should be used in your code to detect the
availability of OpenCL as shown in Full source code for the ’Scaling a Vector’ example.

57.23.3.2 STARPU_OPENCL_DATADIR

#define STARPU_OPENCL_DATADIR

Define the directory in which the OpenCL codelets of the applications provided with StarPU have been installed.

57.23.3.3 STARPU_MAXOPENCLDEVS

#define STARPU_MAXOPENCLDEVS

Define the maximum number of OpenCL devices that are supported by StarPU.

57.23.3.4 STARPU_OPENCL_DISPLAY_ERROR

#define STARPU_OPENCL_DISPLAY_ERROR(

status)

Call the function starpu_opencl_display_error() with the error status, the current function name, current file and
line number, and a empty message.

Generated by Doxygen

57.23 OpenCL Extensions 553

57.23.3.5 STARPU_OPENCL_REPORT_ERROR

#define STARPU_OPENCL_REPORT_ERROR(

status)

Call the function starpu_opencl_report_error() with the error status, the current function name, current file and
line number, and a empty message.

57.23.3.6 STARPU_OPENCL_REPORT_ERROR_WITH_MSG

#define STARPU_OPENCL_REPORT_ERROR_WITH_MSG(

msg,

status)

Call the function starpu_opencl_report_error() with msg and status, the current function name, current file and
line number.

57.23.4 Function Documentation

57.23.4.1 starpu_opencl_get_context()

void starpu_opencl_get_context (

int devid,

cl_context ∗ context)

Return the OpenCL context of the device designated by devid in context. See OpenCL Support for more
details.

57.23.4.2 starpu_opencl_get_device()

void starpu_opencl_get_device (

int devid,

cl_device_id ∗ device)

Return the cl_device_id corresponding to devid in device. See OpenCL Support for more details.

57.23.4.3 starpu_opencl_get_queue()

void starpu_opencl_get_queue (

int devid,

cl_command_queue ∗ queue)

Return the command queue of the device designated by devid into queue. See OpenCL Support for more
details.

57.23.4.4 starpu_opencl_get_current_context()

void starpu_opencl_get_current_context (

cl_context ∗ context)

Return the context of the current worker. See OpenCL Support for more details.

57.23.4.5 starpu_opencl_get_current_queue()

void starpu_opencl_get_current_queue (

cl_command_queue ∗ queue)

Return the computation kernel command queue of the current worker. See OpenCL Support for more details.

57.23.4.6 starpu_opencl_set_kernel_args()

int starpu_opencl_set_kernel_args (

cl_int ∗ err,

cl_kernel ∗ kernel,

...)

Generated by Doxygen

554 Module Documentation a.k.a StarPU’s API

Set the arguments of a given kernel. The list of arguments must be given as (size_t size_of_the_←↩

argument, cl_mem ∗ pointer_to_the_argument). The last argument must be 0. Return the number
of arguments that were successfully set. In case of failure, return the id of the argument that could not be set and
err is set to the error returned by OpenCL. Otherwise, return the number of arguments that were set.
Here an example:
int n;
cl_int err;
cl_kernel kernel;
n = starpu_opencl_set_kernel_args(&err, 2, &kernel, sizeof(foo), &foo, sizeof(bar), &bar, 0);
if (n != 2) fprintf(stderr, "Error : %d\n", err);

See OpenCL Support for more details.

57.23.4.7 starpu_opencl_load_program_source()

void starpu_opencl_load_program_source (

const char ∗ source_file_name,

char ∗ located_file_name,

char ∗ located_dir_name,

char ∗ opencl_program_source)

Store the contents of the file source_file_name in the buffer opencl_program_source. The file
source_file_name can be located in the current directory, or in the directory specified by the environment
variable STARPU_OPENCL_PROGRAM_DIR, or in the directory share/starpu/opencl of the installation
directory of StarPU, or in the source directory of StarPU. When the file is found, located_file_name is the
full name of the file as it has been located on the system, located_dir_name the directory where it has been
located. Otherwise, they are both set to the empty string. See OpenCL Support for more details.

57.23.4.8 starpu_opencl_load_program_source_malloc()

void starpu_opencl_load_program_source_malloc (

const char ∗ source_file_name,

char ∗∗ located_file_name,

char ∗∗ located_dir_name,

char ∗∗ opencl_program_source)

Similar to function starpu_opencl_load_program_source() but allocate the buffers located_file_name,
located_dir_name and opencl_program_source. See OpenCL Support for more details.

57.23.4.9 starpu_opencl_compile_opencl_from_file()

int starpu_opencl_compile_opencl_from_file (

const char ∗ source_file_name,

const char ∗ build_options)

Compile the OpenCL kernel stored in the file source_file_name with the given options build_options
and store the result in the directory $STARPU_HOME/.starpu/opencl with the same filename as source←↩

_file_name. The compilation is done for every OpenCL device, and the filename is suffixed with the vendor id
and the device id of the OpenCL device. See OpenCL Support for more details.

57.23.4.10 starpu_opencl_compile_opencl_from_string()

int starpu_opencl_compile_opencl_from_string (

const char ∗ opencl_program_source,

const char ∗ file_name,

const char ∗ build_options)

Compile the OpenCL kernel in the string opencl_program_source with the given options build_options
and store the result in the directory $STARPU_HOME/.starpu/opencl with the filename file_name. The
compilation is done for every OpenCL device, and the filename is suffixed with the vendor id and the device id of
the OpenCL device. See OpenCL Support for more details.

57.23.4.11 starpu_opencl_load_binary_opencl()

int starpu_opencl_load_binary_opencl (

const char ∗ kernel_id,

Generated by Doxygen

57.23 OpenCL Extensions 555

struct starpu_opencl_program ∗ opencl_programs)

Compile the binary OpenCL kernel identified with kernel_id. For every OpenCL device, the binary Open←↩

CL kernel will be loaded from the file $STARPU_HOME/.starpu/opencl/<kernel_id>.<device_←↩

type>.vendor_id_<vendor_id>device_id<device_id>. See OpenCL Support for more details.

57.23.4.12 starpu_opencl_load_opencl_from_file()

int starpu_opencl_load_opencl_from_file (

const char ∗ source_file_name,

struct starpu_opencl_program ∗ opencl_programs,

const char ∗ build_options)

Compile an OpenCL source code stored in a file. See OpenCL Support for more details.

57.23.4.13 starpu_opencl_load_opencl_from_string()

int starpu_opencl_load_opencl_from_string (

const char ∗ opencl_program_source,

struct starpu_opencl_program ∗ opencl_programs,

const char ∗ build_options)

Compile an OpenCL source code stored in a string. See OpenCL Support for more details.

57.23.4.14 starpu_opencl_unload_opencl()

int starpu_opencl_unload_opencl (

struct starpu_opencl_program ∗ opencl_programs)

Unload an OpenCL compiled code. See OpenCL Support for more details.

57.23.4.15 starpu_opencl_load_kernel()

int starpu_opencl_load_kernel (

cl_kernel ∗ kernel,

cl_command_queue ∗ queue,

struct starpu_opencl_program ∗ opencl_programs,

const char ∗ kernel_name,

int devid)

Create a kernel kernel for device devid, on its computation command queue returned in queue, using program
opencl_programs and name kernel_name. See OpenCL Support for more details.

57.23.4.16 starpu_opencl_release_kernel()

int starpu_opencl_release_kernel (

cl_kernel kernel)

Release the given kernel, to be called after kernel execution. See OpenCL Support for more details.

57.23.4.17 starpu_opencl_collect_stats()

int starpu_opencl_collect_stats (

cl_event event)

Collect statistics on a kernel execution. After termination of the kernels, the OpenCL codelet should call this function
with the event returned by clEnqueueNDRangeKernel(), to let StarPU collect statistics about the kernel
execution (used cycles, consumed energy). See OpenCL-specific Optimizations for more details.

57.23.4.18 starpu_opencl_error_string()

const char ∗ starpu_opencl_error_string (

cl_int status)

Return the error message in English corresponding to status, an OpenCL error code. See OpenCL Support for
more details.

Generated by Doxygen

556 Module Documentation a.k.a StarPU’s API

57.23.4.19 starpu_opencl_display_error()

void starpu_opencl_display_error (

const char ∗ func,

const char ∗ file,

int line,

const char ∗ msg,

cl_int status)

Given a valid error status, print the corresponding error message on stdout, along with the function name func,
the filename file, the line number line and the message msg. See OpenCL Support for more details.

57.23.4.20 starpu_opencl_report_error()

static __starpu_inline void starpu_opencl_report_error (

const char ∗ func,

const char ∗ file,

int line,

const char ∗ msg,

cl_int status) [static]

Call the function starpu_opencl_display_error() and abort.

57.23.4.21 starpu_opencl_allocate_memory()

cl_int starpu_opencl_allocate_memory (

int devid,

cl_mem ∗ addr,

size_t size,

cl_mem_flags flags)

Allocate size bytes of memory, stored in addr. flags must be a valid combination of cl_mem_flags values.
See Data allocation for more details.

57.23.4.22 starpu_opencl_copy_ram_to_opencl()

cl_int starpu_opencl_copy_ram_to_opencl (

void ∗ ptr,

unsigned src_node,

cl_mem buffer,

unsigned dst_node,

size_t size,

size_t offset,

cl_event ∗ event,

int ∗ ret)

Copy size bytes from the given ptr on RAM src_node to the given buffer on OpenCL dst_node. offset
is the offset, in bytes, in buffer. if event is NULL, the copy is synchronous, i.e the queue is synchronised before
returning. If not NULL, event can be used after the call to wait for this particular copy to complete. This function
returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code otherwise. The integer pointed to
by ret is set to -EAGAIN if the asynchronous launch was successful, or to 0 if event was NULL. See Data copy
for more details.

57.23.4.23 starpu_opencl_copy_opencl_to_ram()

cl_int starpu_opencl_copy_opencl_to_ram (

cl_mem buffer,

unsigned src_node,

void ∗ ptr,

unsigned dst_node,

size_t size,

size_t offset,

Generated by Doxygen

57.23 OpenCL Extensions 557

cl_event ∗ event,

int ∗ ret)

Copy size bytes asynchronously from the given buffer on OpenCL src_node to the given ptr on RAM
dst_node. offset is the offset, in bytes, in buffer. if event is NULL, the copy is synchronous, i.e the
queue is synchronised before returning. If not NULL, event can be used after the call to wait for this particular
copy to complete. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
otherwise. The integer pointed to by ret is set to -EAGAIN if the asynchronous launch was successful, or to 0 if
event was NULL. See Data copy for more details.

57.23.4.24 starpu_opencl_copy_opencl_to_opencl()

cl_int starpu_opencl_copy_opencl_to_opencl (

cl_mem src,

unsigned src_node,

size_t src_offset,

cl_mem dst,

unsigned dst_node,

size_t dst_offset,

size_t size,

cl_event ∗ event,

int ∗ ret)

Copy size bytes asynchronously from byte offset src_offset of src on OpenCL src_node to byte offset
dst_offset of dst on OpenCL dst_node. if event is NULL, the copy is synchronous, i.e. the queue is
synchronised before returning. If not NULL, event can be used after the call to wait for this particular copy to
complete. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code otherwise.
The integer pointed to by ret is set to -EAGAIN if the asynchronous launch was successful, or to 0 if event was
NULL. See Data copy for more details.

57.23.4.25 starpu_opencl_copy_async_sync()

cl_int starpu_opencl_copy_async_sync (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t size,

cl_event ∗ event)

Copy size bytes from byte offset src_offset of src on src_node to byte offset dst_offset of dst on
dst_node. if event is NULL, the copy is synchronous, i.e. the queue is synchronised before returning. If not
NULL, event can be used after the call to wait for this particular copy to complete. The function returns -EAGAIN
if the asynchronous launch was successful. It returns 0 if the synchronous copy was successful, or fails otherwise.
See Data copy for more details.

Generated by Doxygen

558 Module Documentation a.k.a StarPU’s API

57.24 OpenMP Runtime Support

API for implementing OpenMP runtimes on top of StarPU.

Data Structures

• struct starpu_omp_lock_t
• struct starpu_omp_nest_lock_t
• struct starpu_omp_parallel_region_attr
• struct starpu_omp_task_region_attr

Macros

• #define STARPU_OPENMP
• #define __STARPU_OMP_NOTHROW

Enumerations

• enum starpu_omp_sched_value {
starpu_omp_sched_undefined , starpu_omp_sched_static , starpu_omp_sched_dynamic , starpu_omp_sched_guided
,
starpu_omp_sched_auto , starpu_omp_sched_runtime }

• enum starpu_omp_proc_bind_value {
starpu_omp_proc_bind_undefined , starpu_omp_proc_bind_false , starpu_omp_proc_bind_true ,
starpu_omp_proc_bind_master ,
starpu_omp_proc_bind_close , starpu_omp_proc_bind_spread }

Initialisation

• int starpu_omp_init (void) __STARPU_OMP_NOTHROW
• void starpu_omp_shutdown (void) __STARPU_OMP_NOTHROW

Parallel

• void starpu_omp_parallel_region (const struct starpu_omp_parallel_region_attr ∗attr) __STARPU_OMP_←↩

NOTHROW
• void starpu_omp_master (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• int starpu_omp_master_inline (void) __STARPU_OMP_NOTHROW

Synchronization

• void starpu_omp_barrier (void) __STARPU_OMP_NOTHROW
• void starpu_omp_critical (void(∗f)(void ∗arg), void ∗arg, const char ∗name) __STARPU_OMP_NOTHROW
• void starpu_omp_critical_inline_begin (const char ∗name) __STARPU_OMP_NOTHROW
• void starpu_omp_critical_inline_end (const char ∗name) __STARPU_OMP_NOTHROW

Worksharing

• void starpu_omp_single (void(∗f)(void ∗arg), void ∗arg, int nowait) __STARPU_OMP_NOTHROW
• int starpu_omp_single_inline (void) __STARPU_OMP_NOTHROW
• void starpu_omp_single_copyprivate (void(∗f)(void ∗arg, void ∗data, unsigned long long data_size), void ∗arg,

void ∗data, unsigned long long data_size) __STARPU_OMP_NOTHROW
• void ∗ starpu_omp_single_copyprivate_inline_begin (void ∗data) __STARPU_OMP_NOTHROW
• void starpu_omp_single_copyprivate_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_for (void(∗f)(unsigned long long _first_i, unsigned long long _nb_i, void ∗arg), void ∗arg, un-

signed long long nb_iterations, unsigned long long chunk, int schedule, int ordered, int nowait) __STARPU←↩

_OMP_NOTHROW

Generated by Doxygen

57.24 OpenMP Runtime Support 559

• int starpu_omp_for_inline_first (unsigned long long nb_iterations, unsigned long long chunk, int schedule, int
ordered, unsigned long long ∗_first_i, unsigned long long ∗_nb_i) __STARPU_OMP_NOTHROW

• int starpu_omp_for_inline_next (unsigned long long nb_iterations, unsigned long long chunk, int schedule, int
ordered, unsigned long long ∗_first_i, unsigned long long ∗_nb_i) __STARPU_OMP_NOTHROW

• void starpu_omp_for_alt (void(∗f)(unsigned long long _begin_i, unsigned long long _end_i, void ∗arg), void
∗arg, unsigned long long nb_iterations, unsigned long long chunk, int schedule, int ordered, int nowait) __←↩

STARPU_OMP_NOTHROW
• int starpu_omp_for_inline_first_alt (unsigned long long nb_iterations, unsigned long long chunk, int schedule,

int ordered, unsigned long long ∗_begin_i, unsigned long long ∗_end_i) __STARPU_OMP_NOTHROW
• int starpu_omp_for_inline_next_alt (unsigned long long nb_iterations, unsigned long long chunk, int schedule,

int ordered, unsigned long long ∗_begin_i, unsigned long long ∗_end_i) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_sections (unsigned long long nb_sections, void(∗∗section_f)(void ∗arg), void ∗∗section_arg,

int nowait) __STARPU_OMP_NOTHROW
• void starpu_omp_sections_combined (unsigned long long nb_sections, void(∗section_f)(unsigned long long

section_num, void ∗arg), void ∗section_arg, int nowait) __STARPU_OMP_NOTHROW

Task

• void starpu_omp_task_region (const struct starpu_omp_task_region_attr ∗attr) __STARPU_OMP_←↩

NOTHROW
• void starpu_omp_taskwait (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskloop_inline_begin (struct starpu_omp_task_region_attr ∗attr) __STARPU_OMP_←↩

NOTHROW
• void starpu_omp_taskloop_inline_end (const struct starpu_omp_task_region_attr ∗attr) __STARPU_←↩

OMP_NOTHROW

API

• void starpu_omp_set_num_threads (int threads) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_threads (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_thread_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_threads (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_procs (void) __STARPU_OMP_NOTHROW
• int starpu_omp_in_parallel (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_dynamic (int dynamic_threads) __STARPU_OMP_NOTHROW
• int starpu_omp_get_dynamic (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_nested (int nested) __STARPU_OMP_NOTHROW
• int starpu_omp_get_nested (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_cancellation (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_schedule (enum starpu_omp_sched_value kind, int modifier) __STARPU_OMP_←↩

NOTHROW
• void starpu_omp_get_schedule (enum starpu_omp_sched_value ∗kind, int ∗modifier) __STARPU_OMP_←↩

NOTHROW
• int starpu_omp_get_thread_limit (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_max_active_levels (int max_levels) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_active_levels (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_level (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_ancestor_thread_num (int level) __STARPU_OMP_NOTHROW
• int starpu_omp_get_team_size (int level) __STARPU_OMP_NOTHROW
• int starpu_omp_get_active_level (void) __STARPU_OMP_NOTHROW

Generated by Doxygen

560 Module Documentation a.k.a StarPU’s API

• int starpu_omp_in_final (void) __STARPU_OMP_NOTHROW
• enum starpu_omp_proc_bind_value starpu_omp_get_proc_bind (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_places (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_place_num_procs (int place_num) __STARPU_OMP_NOTHROW
• void starpu_omp_get_place_proc_ids (int place_num, int ∗ids) __STARPU_OMP_NOTHROW
• int starpu_omp_get_place_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_partition_num_places (void) __STARPU_OMP_NOTHROW
• void starpu_omp_get_partition_place_nums (int ∗place_nums) __STARPU_OMP_NOTHROW
• void starpu_omp_set_default_device (int device_num) __STARPU_OMP_NOTHROW
• int starpu_omp_get_default_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_devices (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_teams (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_team_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_is_initial_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_initial_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_task_priority (void) __STARPU_OMP_NOTHROW
• void starpu_omp_init_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_destroy_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_set_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_unset_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• int starpu_omp_test_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_init_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_destroy_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_set_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_unset_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• int starpu_omp_test_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_atomic_fallback_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_atomic_fallback_inline_end (void) __STARPU_OMP_NOTHROW
• double starpu_omp_get_wtime (void) __STARPU_OMP_NOTHROW
• double starpu_omp_get_wtick (void) __STARPU_OMP_NOTHROW
• void starpu_omp_vector_annotate (starpu_data_handle_t handle, uint32_t slice_base) __STARPU_OMP_←↩

NOTHROW
• struct starpu_arbiter ∗ starpu_omp_get_default_arbiter (void) __STARPU_OMP_NOTHROW
• void starpu_omp_handle_register (starpu_data_handle_t handle) __STARPU_OMP_NOTHROW
• void starpu_omp_handle_unregister (starpu_data_handle_t handle) __STARPU_OMP_NOTHROW
• starpu_data_handle_t starpu_omp_data_lookup (const void ∗ptr) __STARPU_OMP_NOTHROW

57.24.1 Detailed Description

API for implementing OpenMP runtimes on top of StarPU.

57.24.2 Data Structure Documentation

57.24.2.1 struct starpu_omp_lock_t

Opaque Simple Lock object () for inter-task synchronization operations.

See also

starpu_omp_init_lock()

starpu_omp_destroy_lock()

starpu_omp_set_lock()

starpu_omp_unset_lock()

starpu_omp_test_lock()

Generated by Doxygen

57.24 OpenMP Runtime Support 561

Data Fields

void ∗ internal opaque pointer for internal use

57.24.2.2 struct starpu_omp_nest_lock_t

Opaque Nestable Lock object () for inter-task synchronization operations.

See also

starpu_omp_init_nest_lock()

starpu_omp_destroy_nest_lock()

starpu_omp_set_nest_lock()

starpu_omp_unset_nest_lock()

starpu_omp_test_nest_lock()

Data Fields

void ∗ internal opaque pointer for internal use

57.24.2.3 struct starpu_omp_parallel_region_attr

Set of attributes used for creating a new parallel region.

See also

starpu_omp_parallel_region()

Data Fields

struct starpu_codelet cl starpu_codelet (Codelet And Tasks) to use for the parallel region
implicit tasks. The codelet must provide a CPU implementation
function.

starpu_data_handle_t ∗ handles Array of zero or more starpu_data_handle_t data handle to be
passed to the parallel region implicit tasks.

void ∗ cl_arg Optional pointer to an inline argument to be passed to the region
implicit tasks.

size_t cl_arg_size Size of the optional inline argument to be passed to the region
implicit tasks, or 0 if unused.

unsigned cl_arg_free Boolean indicating whether the optional inline argument should be
automatically freed (true), or not (false).

int if_clause Boolean indicating whether the if clause of the corresponding
pragma omp parallel is true or false.

int num_threads Integer indicating the requested number of threads in the team of
the newly created parallel region, or 0 to let the runtime choose the
number of threads alone. This attribute may be ignored by the
runtime system if the requested number of threads is higher than
the number of threads that the runtime can create.

57.24.2.4 struct starpu_omp_task_region_attr

Set of attributes used for creating a new task region.

Generated by Doxygen

562 Module Documentation a.k.a StarPU’s API

See also

starpu_omp_task_region()

Data Fields

struct starpu_codelet cl starpu_codelet (Codelet And Tasks) to use for the task region
explicit task. The codelet must provide a CPU implementation
function or an accelerator implementation for offloaded target
regions.

starpu_data_handle_t ∗ handles Array of zero or more starpu_data_handle_t data handle to be
passed to the task region explicit tasks.

void ∗ cl_arg Optional pointer to an inline argument to be passed to the
region implicit tasks.

size_t cl_arg_size Size of the optional inline argument to be passed to the region
implicit tasks, or 0 if unused.

unsigned cl_arg_free Boolean indicating whether the optional inline argument
should be automatically freed (true), or not (false).

int priority

int if_clause Boolean indicating whether the if clause of the corresponding
pragma omp task is true or false.

int final_clause Boolean indicating whether the final clause of the
corresponding pragma omp task is true or false.

int untied_clause Boolean indicating whether the untied clause of the
corresponding pragma omp task is true or false.

int mergeable_clause Boolean indicating whether the mergeable clause of the
corresponding pragma omp task is true or false.

int is_loop taskloop attribute

int nogroup_clause

int collapse

int num_tasks
unsigned long long nb_iterations

unsigned long long grainsize

unsigned long long begin_i

unsigned long long end_i

unsigned long long chunk

57.24.3 Macro Definition Documentation

57.24.3.1 STARPU_OPENMP

#define STARPU_OPENMP

Defined when StarPU has been installed with OpenMP Runtime support. It should be used in your code to detect
the availability of the runtime support for OpenMP.

57.24.4 Enumeration Type Documentation

57.24.4.1 starpu_omp_sched_value

enum starpu_omp_sched_value

Generated by Doxygen

57.24 OpenMP Runtime Support 563

Set of constants for selecting the for loop iteration scheduling algorithm () as defined by the OpenMP specification.

See also

starpu_omp_for()

starpu_omp_for_inline_first()

starpu_omp_for_inline_next()

starpu_omp_for_alt()

starpu_omp_for_inline_first_alt()

starpu_omp_for_inline_next_alt()

Enumerator

starpu_omp_sched_undefined Undefined iteration scheduling algorithm.

starpu_omp_sched_static Static iteration scheduling algorithm.

starpu_omp_sched_dynamic Dynamic iteration scheduling algorithm.

starpu_omp_sched_guided Guided iteration scheduling algorithm.

starpu_omp_sched_auto Automatically chosen iteration scheduling algorithm.

starpu_omp_sched_runtime Choice of iteration scheduling algorithm deferred at runtime.

57.24.4.2 starpu_omp_proc_bind_value

enum starpu_omp_proc_bind_value

Set of constants for selecting the processor binding method, as defined in the OpenMP specification.

See also

starpu_omp_get_proc_bind()

Enumerator

starpu_omp_proc_bind_undefined Undefined processor binding method.

starpu_omp_proc_bind_false Team threads may be moved between places at any time.

starpu_omp_proc_bind_true Team threads may not be moved between places.

starpu_omp_proc_bind_master Assign every thread in the team to the same place as the master thread.

starpu_omp_proc_bind_close Assign every thread in the team to a place close to the parent thread.

starpu_omp_proc_bind_spread Assign team threads as a sparse distribution over the selected places.

57.24.5 Function Documentation

57.24.5.1 starpu_omp_init()

int starpu_omp_init (

void)

Initialize StarPU and its OpenMP Runtime support. See Initialization and Shutdown for more details.

57.24.5.2 starpu_omp_shutdown()

void starpu_omp_shutdown (

void)

Generated by Doxygen

564 Module Documentation a.k.a StarPU’s API

Shutdown StarPU and its OpenMP Runtime support. See Initialization and Shutdown for more details.

57.24.5.3 starpu_omp_parallel_region()

void starpu_omp_parallel_region (

const struct starpu_omp_parallel_region_attr ∗ attr)

Generate and launch an OpenMP parallel region and return after its completion. attr specifies the attributes for
the generated parallel region. If this function is called from inside another, generating, parallel region, the generated
parallel region is nested within the generating parallel region.
This function can be used to implement #pragma omp parallel. See Parallel Regions for more details.

57.24.5.4 starpu_omp_master()

void starpu_omp_master (

void(∗)(void ∗arg) f,

void ∗ arg)

Execute a function only on the master thread of the OpenMP parallel region it is called from. When called from a
thread that is not the master of the parallel region it is called from, this function does nothing. f is the function to be
called. arg is an argument passed to function f.
This function can be used to implement #pragma omp master. See Single for more details.

57.24.5.5 starpu_omp_master_inline()

int starpu_omp_master_inline (

void)

Determine whether the calling thread is the master of the OpenMP parallel region it is called from or not.
This function can be used to implement #pragma omp master without code outlining.

Returns

!0 if called by the region's master thread.

0 if not called by the region's master thread. See Single for more details.

57.24.5.6 starpu_omp_barrier()

void starpu_omp_barrier (

void)

Wait until each participating thread of the innermost OpenMP parallel region has reached the barrier and each
explicit OpenMP task bound to this region has completed its execution.
This function can be used to implement #pragma omp barrier. See Barriers for more details.

57.24.5.7 starpu_omp_critical()

void starpu_omp_critical (

void(∗)(void ∗arg) f,

void ∗ arg,

const char ∗ name)

Wait until no other thread is executing within the context of the selected critical section, then proceeds to the
exclusive execution of a function within the critical section. f is the function to be executed in the critical section.
arg is an argument passed to function f. name is the name of the selected critical section. If name == NULL,
the selected critical section is the unique anonymous critical section.
This function can be used to implement #pragma omp critical.
See Critical Sections for more details.

57.24.5.8 starpu_omp_critical_inline_begin()

void starpu_omp_critical_inline_begin (

const char ∗ name)

Generated by Doxygen

57.24 OpenMP Runtime Support 565

Wait until execution can proceed exclusively within the context of the selected critical section. name is the name
of the selected critical section. If name == NULL, the selected critical section is the unique anonymous critical
section.
This function together with starpu_omp_critical_inline_end can be used to implement #pragma omp critical
without code outlining.
See Critical Sections for more details.

57.24.5.9 starpu_omp_critical_inline_end()

void starpu_omp_critical_inline_end (

const char ∗ name)

End the exclusive execution within the context of the selected critical section. name is the name of the selected
critical section. If name==NULL, the selected critical section is the unique anonymous critical section.
This function together with starpu_omp_critical_inline_begin can be used to implement #pragma omp
critical without code outlining.
See Critical Sections for more details.

57.24.5.10 starpu_omp_single()

void starpu_omp_single (

void(∗)(void ∗arg) f,

void ∗ arg,

int nowait)

Ensure that a single participating thread of the innermost OpenMP parallel region executes a function. f is the
function to be executed by a single thread. arg is an argument passed to function f. nowait is a flag indicating
whether an implicit barrier is requested after the single section (nowait==0) or not (nowait==!0).
This function can be used to implement #pragma omp single. See Single for more details.

57.24.5.11 starpu_omp_single_inline()

int starpu_omp_single_inline (

void)

Decide whether the current thread is elected to run the following single section among the participating threads of
the innermost OpenMP parallel region.
This function can be used to implement #pragma omp single without code outlining.

Returns

!0 if the calling thread has won the election.

0 if the calling thread has lost the election. See Single for more details.

57.24.5.12 starpu_omp_single_copyprivate()

void starpu_omp_single_copyprivate (

void(∗)(void ∗arg, void ∗data, unsigned long long data_size) f,

void ∗ arg,

void ∗ data,

unsigned long long data_size)

Execute f on a single task of the current parallel region task, and then broadcast the contents of the memory block
pointed by the copyprivate pointer data and of size data_size to the corresponding data pointed memory
blocks of all the other participating region tasks. This function can be used to implement #pragma omp single
with a copyprivate clause.

See also

starpu_omp_single_copyprivate_inline

starpu_omp_single_copyprivate_inline_begin

starpu_omp_single_copyprivate_inline_end

See Single for more details.

Generated by Doxygen

566 Module Documentation a.k.a StarPU’s API

57.24.5.13 starpu_omp_single_copyprivate_inline_begin()

void ∗ starpu_omp_single_copyprivate_inline_begin (

void ∗ data)

Elect one task among the tasks of the current parallel region task to execute the following single section, and then
broadcast the copyprivate pointer data to all the other participating region tasks. This function can be used to
implement #pragma omp single with a copyprivate clause without code outlining.

See also

starpu_omp_single_copyprivate_inline

starpu_omp_single_copyprivate_inline_end

See Single for more details.

57.24.5.14 starpu_omp_single_copyprivate_inline_end()

void starpu_omp_single_copyprivate_inline_end (

void)

Complete the execution of a single section and return the broadcasted copyprivate pointer for tasks that lost the
election and NULL for the task that won the election. This function can be used to implement #pragma omp
single with a copyprivate clause without code outlining.
Return the copyprivate pointer for tasks that lost the election and therefore did not execute the code of the single
section. Return NULL for the task that won the election and executed the code of the single section.

See also

starpu_omp_single_copyprivate_inline

starpu_omp_single_copyprivate_inline_begin

See Single for more details.

57.24.5.15 starpu_omp_for()

void starpu_omp_for (

void(∗)(unsigned long long _first_i, unsigned long long _nb_i, void ∗arg) f,

void ∗ arg,

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

int nowait)

Execute a parallel loop together with the other threads participating to the innermost parallel region. f is the
function to be executed iteratively. arg is an argument passed to function f. nb_iterations is the number
of iterations to be performed by the parallel loop. chunk is the number of consecutive iterations that should be
affected to the same thread when scheduling the loop workshares, it follows the semantics of the modifier
argument in OpenMP #pragma omp for specification. schedule is the scheduling mode according to the
OpenMP specification. ordered is a flag indicating whether the loop region may contain an ordered section
(ordered==!0) or not (ordered==0). nowait is a flag indicating whether an implicit barrier is requested after
the for section (nowait==0) or not (nowait==!0).
The function f will be called with arguments _first_i, the first iteration to perform, _nb_i, the number of
consecutive iterations to perform before returning, arg, the free arg argument.
This function can be used to implement #pragma omp for. See Parallel For for more details.

57.24.5.16 starpu_omp_for_inline_first()

int starpu_omp_for_inline_first (

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

Generated by Doxygen

57.24 OpenMP Runtime Support 567

unsigned long long ∗ _first_i,

unsigned long long ∗ _nb_i)

Decide whether the current thread should start to execute a parallel loop section. See starpu_omp_for for the
argument description.
This function together with starpu_omp_for_inline_next can be used to implement #pragma omp for without
code outlining.

Returns

!0 if the calling thread participates to the loop region and should execute a first chunk of iterations. In that
case, ∗_first_i will be set to the first iteration of the chunk to perform and ∗_nb_i will be set to the
number of iterations of the chunk to perform.

0 if the calling thread does not participate to the loop region because all the available iterations have been
affected to the other threads of the parallel region.

See also

starpu_omp_for

See Parallel For for more details.

57.24.5.17 starpu_omp_for_inline_next()

int starpu_omp_for_inline_next (

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

unsigned long long ∗ _first_i,

unsigned long long ∗ _nb_i)

Decide whether the current thread should continue to execute a parallel loop section. See starpu_omp_for for the
argument description.
This function together with starpu_omp_for_inline_first can be used to implement #pragma omp for without
code outlining.

Returns

!0 if the calling thread should execute a next chunk of iterations. In that case, ∗_first_i will be set to
the first iteration of the chunk to perform and ∗_nb_i will be set to the number of iterations of the chunk to
perform.

0 if the calling thread does not participate anymore to the loop region because all the available iterations have
been affected to the other threads of the parallel region.

See also

starpu_omp_for

See Parallel For for more details.

57.24.5.18 starpu_omp_for_alt()

void starpu_omp_for_alt (

void(∗)(unsigned long long _begin_i, unsigned long long _end_i, void ∗arg) f,

void ∗ arg,

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

int nowait)

Alternative implementation of a parallel loop. Differ from starpu_omp_for in the expected arguments of the loop
function f.

Generated by Doxygen

568 Module Documentation a.k.a StarPU’s API

The function f will be called with arguments _begin_i, the first iteration to perform, _end_i, the first iteration
not to perform before returning, arg, the free arg argument.
This function can be used to implement #pragma omp for.

See also

starpu_omp_for

See Parallel For for more details.

57.24.5.19 starpu_omp_for_inline_first_alt()

int starpu_omp_for_inline_first_alt (

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

unsigned long long ∗ _begin_i,

unsigned long long ∗ _end_i)

Inline version of the alternative implementation of a parallel loop.
This function together with starpu_omp_for_inline_next_alt can be used to implement #pragma omp for with-
out code outlining.

See also

starpu_omp_for

starpu_omp_for_alt

starpu_omp_for_inline_first

See Parallel For for more details.

57.24.5.20 starpu_omp_for_inline_next_alt()

int starpu_omp_for_inline_next_alt (

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

unsigned long long ∗ _begin_i,

unsigned long long ∗ _end_i)

Inline version of the alternative implementation of a parallel loop.
This function together with starpu_omp_for_inline_first_alt can be used to implement #pragma omp for without
code outlining.

See also

starpu_omp_for

starpu_omp_for_alt

starpu_omp_for_inline_next

See Parallel For for more details.

57.24.5.21 starpu_omp_ordered()

void starpu_omp_ordered (

void(∗)(void ∗arg) f,

void ∗ arg)

Ensure that a function is sequentially executed once for each iteration in order within a parallel loop, by the thread
that own the iteration. f is the function to be executed by the thread that own the current iteration. arg is an
argument passed to function f.
This function can be used to implement #pragma omp ordered.
See Parallel For for more details.

Generated by Doxygen

57.24 OpenMP Runtime Support 569

57.24.5.22 starpu_omp_ordered_inline_begin()

void starpu_omp_ordered_inline_begin (

void)

Wait until all the iterations of a parallel loop below the iteration owned by the current thread have been executed.
This function together with starpu_omp_ordered_inline_end can be used to implement #pragma omp ordered
without code code outlining.
See Parallel For for more details.

57.24.5.23 starpu_omp_ordered_inline_end()

void starpu_omp_ordered_inline_end (

void)

Notify that the ordered section for the current iteration has been completed.
This function together with starpu_omp_ordered_inline_begin can be used to implement #pragma omp
ordered without code code outlining.
See Parallel For for more details.

57.24.5.24 starpu_omp_sections()

void starpu_omp_sections (

unsigned long long nb_sections,

void(∗∗)(void ∗arg) section_f,

void ∗∗ section_arg,

int nowait)

Ensure that each function of a given array of functions is executed by one and only one thread. nb_sections
is the number of functions in the array section_f. section_f is the array of functions to be executed as
sections. section_arg is an array of arguments to be passed to the corresponding function. nowait is a
flag indicating whether an implicit barrier is requested after the execution of all the sections (nowait==0) or not
(nowait==!0).
This function can be used to implement #pragma omp sections and #pragma omp section.
See Sections for more details.

57.24.5.25 starpu_omp_sections_combined()

void starpu_omp_sections_combined (

unsigned long long nb_sections,

void(∗)(unsigned long long section_num, void ∗arg) section_f,

void ∗ section_arg,

int nowait)

Alternative implementation of sections. Differ from starpu_omp_sections in that all the sections are combined within
a single function in this version. section_f is the function implementing the combined sections.
The function section_f will be called with arguments section_num, the section number to be executed, arg,
the entry of section_arg corresponding to this section.
This function can be used to implement #pragma omp sections and #pragma omp section.

See also

starpu_omp_sections

See Sections for more details.

57.24.5.26 starpu_omp_task_region()

void starpu_omp_task_region (

const struct starpu_omp_task_region_attr ∗ attr)

Generate an explicit child task. The execution of the generated task is asynchronous with respect to the calling
code unless specified otherwise. attr specifies the attributes for the generated task region.
This function can be used to implement #pragma omp task.
See Explicit Tasks for more details.

Generated by Doxygen

570 Module Documentation a.k.a StarPU’s API

57.24.5.27 starpu_omp_taskwait()

void starpu_omp_taskwait (

void)

Wait for the completion of the tasks generated by the current task. This function does not wait for the descendants
of the tasks generated by the current task.
This function can be used to implement #pragma omp taskwait.
See TaskWait and TaskGroup for more details.

57.24.5.28 starpu_omp_taskgroup()

void starpu_omp_taskgroup (

void(∗)(void ∗arg) f,

void ∗ arg)

Launch a function and wait for the completion of every descendant task generated during the execution of the
function.
This function can be used to implement #pragma omp taskgroup.

See also

starpu_omp_taskgroup_inline_begin

starpu_omp_taskgroup_inline_end

See TaskWait and TaskGroup for more details.

57.24.5.29 starpu_omp_taskgroup_inline_begin()

void starpu_omp_taskgroup_inline_begin (

void)

Launch a function and gets ready to wait for the completion of every descendant task generated during the dynamic
scope of the taskgroup.
This function can be used to implement #pragma omp taskgroup without code outlining.

See also

starpu_omp_taskgroup

starpu_omp_taskgroup_inline_end

See TaskWait and TaskGroup for more details.

57.24.5.30 starpu_omp_taskgroup_inline_end()

void starpu_omp_taskgroup_inline_end (

void)

Wait for the completion of every descendant task generated during the dynamic scope of the taskgroup.
This function can be used to implement #pragma omp taskgroup without code outlining.

See also

starpu_omp_taskgroup

starpu_omp_taskgroup_inline_begin

See TaskWait and TaskGroup for more details.

57.24.5.31 starpu_omp_set_num_threads()

void starpu_omp_set_num_threads (

int threads)

Set ICVS nthreads_var for the parallel regions to be created with the current region.
Note: The StarPU OpenMP runtime support currently ignores this setting for nested parallel regions.

Generated by Doxygen

57.24 OpenMP Runtime Support 571

See also

starpu_omp_get_num_threads

starpu_omp_get_thread_num

starpu_omp_get_max_threads

starpu_omp_get_num_procs

See OpenMP Standard Functions in StarPU for more details.

57.24.5.32 starpu_omp_get_num_threads()

int starpu_omp_get_num_threads (

void)

Return the number of threads of the current region.

Returns

the number of threads of the current region.

See also

starpu_omp_set_num_threads

starpu_omp_get_thread_num

starpu_omp_get_max_threads

starpu_omp_get_num_procs

See OpenMP Standard Functions in StarPU for more details.

57.24.5.33 starpu_omp_get_thread_num()

int starpu_omp_get_thread_num (

void)

Return the rank of the current thread among the threads of the current region.

Returns

the rank of the current thread in the current region.

See also

starpu_omp_set_num_threads

starpu_omp_get_num_threads

starpu_omp_get_max_threads

starpu_omp_get_num_procs

See OpenMP Standard Functions in StarPU for more details.

57.24.5.34 starpu_omp_get_max_threads()

int starpu_omp_get_max_threads (

void)

Return the maximum number of threads that can be used to create a region from the current region.

Returns

the maximum number of threads that can be used to create a region from the current region.

See also

starpu_omp_set_num_threads

starpu_omp_get_num_threads

starpu_omp_get_thread_num

starpu_omp_get_num_procs

See OpenMP Standard Functions in StarPU for more details.

Generated by Doxygen

572 Module Documentation a.k.a StarPU’s API

57.24.5.35 starpu_omp_get_num_procs()

int starpu_omp_get_num_procs (

void)

Return the number of StarPU CPU workers.

Returns

the number of StarPU CPU workers.

See also

starpu_omp_set_num_threads

starpu_omp_get_num_threads

starpu_omp_get_thread_num

starpu_omp_get_max_threads

See OpenMP Standard Functions in StarPU for more details.

57.24.5.36 starpu_omp_in_parallel()

int starpu_omp_in_parallel (

void)

Return whether it is called from the scope of a parallel region or not.

Returns

!0 if called from a parallel region scope.

0 otherwise.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.37 starpu_omp_set_dynamic()

void starpu_omp_set_dynamic (

int dynamic_threads)

Enable (1) or disable (0) dynamically adjusting the number of parallel threads.
Note: The StarPU OpenMP runtime support currently ignores the argument of this function.

See also

starpu_omp_get_dynamic

See OpenMP Standard Functions in StarPU for more details.

57.24.5.38 starpu_omp_get_dynamic()

int starpu_omp_get_dynamic (

void)

Return the state of dynamic thread number adjustment.

Returns

!0 if dynamic thread number adjustment is enabled.

0 otherwise.

See also

starpu_omp_set_dynamic

See OpenMP Standard Functions in StarPU for more details.

Generated by Doxygen

57.24 OpenMP Runtime Support 573

57.24.5.39 starpu_omp_set_nested()

void starpu_omp_set_nested (

int nested)

Enable (1) or disable (0) nested parallel regions.
Note: The StarPU OpenMP runtime support currently ignores the argument of this function.

See also

starpu_omp_get_nested

starpu_omp_get_max_active_levels

starpu_omp_set_max_active_levels

starpu_omp_get_level

starpu_omp_get_active_level

See OpenMP Standard Functions in StarPU for more details.

57.24.5.40 starpu_omp_get_nested()

int starpu_omp_get_nested (

void)

Return whether nested parallel sections are enabled or not.

Returns

!0 if nested parallel sections are enabled.

0 otherwise.

See also

starpu_omp_set_nested

starpu_omp_get_max_active_levels

starpu_omp_set_max_active_levels

starpu_omp_get_level

starpu_omp_get_active_level

See OpenMP Standard Functions in StarPU for more details.

57.24.5.41 starpu_omp_get_cancellation()

int starpu_omp_get_cancellation (

void)

Return the state of the cancel ICVS var.
See OpenMP Standard Functions in StarPU for more details.

57.24.5.42 starpu_omp_set_schedule()

void starpu_omp_set_schedule (

enum starpu_omp_sched_value kind,

int modifier)

Set the default scheduling kind for upcoming loops within the current parallel section. kind is the scheduler
kind, modifier complements the scheduler kind with information such as the chunk size, in accordance with the
OpenMP specification.

See also

starpu_omp_get_schedule

See Parallel For for more details.

Generated by Doxygen

574 Module Documentation a.k.a StarPU’s API

57.24.5.43 starpu_omp_get_schedule()

void starpu_omp_get_schedule (

enum starpu_omp_sched_value ∗ kind,

int ∗ modifier)

Return the kind and the modifier of the current default loop scheduler.

See also

starpu_omp_set_schedule

See OpenMP Standard Functions in StarPU for more details.

57.24.5.44 starpu_omp_get_thread_limit()

int starpu_omp_get_thread_limit (

void)

Return the number of StarPU CPU workers.

Returns

the number of StarPU CPU workers.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.45 starpu_omp_set_max_active_levels()

void starpu_omp_set_max_active_levels (

int max_levels)

Set the maximum number of allowed active parallel section levels.
Note: The StarPU OpenMP runtime support currently ignores the argument of this function and assume max_←↩

levels equals 1 instead.

See also

starpu_omp_set_nested

starpu_omp_get_nested

starpu_omp_get_max_active_levels

starpu_omp_get_level

starpu_omp_get_active_level

See OpenMP Standard Functions in StarPU for more details.

57.24.5.46 starpu_omp_get_max_active_levels()

int starpu_omp_get_max_active_levels (

void)

Return the current maximum number of allowed active parallel section levels

Returns

the current maximum number of allowed active parallel section levels.

See also

starpu_omp_set_nested

starpu_omp_get_nested

starpu_omp_set_max_active_levels

starpu_omp_get_level

starpu_omp_get_active_level

See OpenMP Standard Functions in StarPU for more details.

Generated by Doxygen

57.24 OpenMP Runtime Support 575

57.24.5.47 starpu_omp_get_level()

int starpu_omp_get_level (

void)

Return the nesting level of the current parallel section.

Returns

the nesting level of the current parallel section.

See also

starpu_omp_set_nested

starpu_omp_get_nested

starpu_omp_get_max_active_levels

starpu_omp_set_max_active_levels

starpu_omp_get_active_level

See OpenMP Standard Functions in StarPU for more details.

57.24.5.48 starpu_omp_get_ancestor_thread_num()

int starpu_omp_get_ancestor_thread_num (

int level)

Return the number of the ancestor of the current parallel section.

Returns

the number of the ancestor of the current parallel section.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.49 starpu_omp_get_team_size()

int starpu_omp_get_team_size (

int level)

Return the size of the team of the current parallel section.

Returns

the size of the team of the current parallel section.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.50 starpu_omp_get_active_level()

int starpu_omp_get_active_level (

void)

Return the nestinglevel of the current innermost active parallel section.

Returns

the nestinglevel of the current innermost active parallel section.

See also

starpu_omp_set_nested

starpu_omp_get_nested

starpu_omp_get_max_active_levels

starpu_omp_set_max_active_levels

starpu_omp_get_level

See OpenMP Standard Functions in StarPU for more details.

Generated by Doxygen

576 Module Documentation a.k.a StarPU’s API

57.24.5.51 starpu_omp_in_final()

int starpu_omp_in_final (

void)

Check whether the current task is final or not.

Returns

!0 if called from a final task.

0 otherwise.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.52 starpu_omp_get_proc_bind()

enum starpu_omp_proc_bind_value starpu_omp_get_proc_bind (

void)

Return the proc_bind setting of the current parallel region.

Returns

the proc_bind setting of the current parallel region.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.53 starpu_omp_get_num_places()

int starpu_omp_get_num_places (

void)

Return the number of places available to the execution environment in the place list.

Returns

the number of places available to the execution environment in the place list.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.54 starpu_omp_get_place_num_procs()

int starpu_omp_get_place_num_procs (

int place_num)

Return the number of processors available to the execution environment in the specified place.

Returns

the number of processors available to the execution environment in the specified place.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.55 starpu_omp_get_place_proc_ids()

void starpu_omp_get_place_proc_ids (

int place_num,

int ∗ ids)

Return the numerical identifiers of the processors available to the execution environment in the specified place.
See OpenMP Standard Functions in StarPU for more details.

57.24.5.56 starpu_omp_get_place_num()

int starpu_omp_get_place_num (

void)

Return the place number of the place to which the encountering thread is bound.

Returns

the place number of the place to which the encountering thread is bound.

See OpenMP Standard Functions in StarPU for more details.

Generated by Doxygen

57.24 OpenMP Runtime Support 577

57.24.5.57 starpu_omp_get_partition_num_places()

int starpu_omp_get_partition_num_places (

void)

Return the number of places in the place partition of the innermost implicit task.

Returns

the number of places in the place partition of the innermost implicit task.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.58 starpu_omp_get_partition_place_nums()

void starpu_omp_get_partition_place_nums (

int ∗ place_nums)

Return the list of place numbers corresponding to the places in the place-partition-var ICV of the innermost implicit
task.
See OpenMP Standard Functions in StarPU for more details.

57.24.5.59 starpu_omp_set_default_device()

void starpu_omp_set_default_device (

int device_num)

Set the number of the device to use as default.
Note: The StarPU OpenMP runtime support currently ignores the argument of this function.

See also

starpu_omp_get_default_device

starpu_omp_is_initial_device

See OpenMP Standard Functions in StarPU for more details.

57.24.5.60 starpu_omp_get_default_device()

int starpu_omp_get_default_device (

void)

Return the number of the device used as default.

Returns

the number of the device used as default.

See also

starpu_omp_set_default_device

starpu_omp_is_initial_device

See OpenMP Standard Functions in StarPU for more details.

57.24.5.61 starpu_omp_get_num_devices()

int starpu_omp_get_num_devices (

void)

Return the number of the devices.

Returns

the number of the devices.

See OpenMP Standard Functions in StarPU for more details.

Generated by Doxygen

578 Module Documentation a.k.a StarPU’s API

57.24.5.62 starpu_omp_get_num_teams()

int starpu_omp_get_num_teams (

void)

Return the number of teams in the current teams region.

Returns

the number of teams in the current teams region.

See also

starpu_omp_get_num_teams

See OpenMP Standard Functions in StarPU for more details.

57.24.5.63 starpu_omp_get_team_num()

int starpu_omp_get_team_num (

void)

Return the team number of the calling thread.

Returns

the team number of the calling thread.

See also

starpu_omp_get_num_teams

See OpenMP Standard Functions in StarPU for more details.

57.24.5.64 starpu_omp_is_initial_device()

int starpu_omp_is_initial_device (

void)

Check whether the current device is the initial device or not.
See OpenMP Standard Functions in StarPU for more details.

57.24.5.65 starpu_omp_get_initial_device()

int starpu_omp_get_initial_device (

void)

Return a device number that represents the host device.

Returns

a device number that represents the host device.

See OpenMP Standard Functions in StarPU for more details.

57.24.5.66 starpu_omp_get_max_task_priority()

int starpu_omp_get_max_task_priority (

void)

Return the maximum value that can be specified in the priority clause.

Returns

!0 if called from the host device.

0 otherwise.

See also

starpu_omp_set_default_device

starpu_omp_get_default_device

See OpenMP Standard Functions in StarPU for more details.

Generated by Doxygen

57.24 OpenMP Runtime Support 579

57.24.5.67 starpu_omp_init_lock()

void starpu_omp_init_lock (

starpu_omp_lock_t ∗ lock)

Initialize an opaque lock object.

See also

starpu_omp_destroy_lock

starpu_omp_set_lock

starpu_omp_unset_lock

starpu_omp_test_lock

See Simple Locks for more details.

57.24.5.68 starpu_omp_destroy_lock()

void starpu_omp_destroy_lock (

starpu_omp_lock_t ∗ lock)

Destroy an opaque lock object.

See also

starpu_omp_init_lock

starpu_omp_set_lock

starpu_omp_unset_lock

starpu_omp_test_lock

See Simple Locks for more details.

57.24.5.69 starpu_omp_set_lock()

void starpu_omp_set_lock (

starpu_omp_lock_t ∗ lock)

Lock an opaque lock object. If the lock is already locked, the function will block until it succeeds in exclusively
acquiring the lock.

See also

starpu_omp_init_lock

starpu_omp_destroy_lock

starpu_omp_unset_lock

starpu_omp_test_lock

See Simple Locks for more details.

57.24.5.70 starpu_omp_unset_lock()

void starpu_omp_unset_lock (

starpu_omp_lock_t ∗ lock)

Unlock a previously locked lock object. The behaviour of this function is unspecified if it is called on an unlocked
lock object.

See also

starpu_omp_init_lock

starpu_omp_destroy_lock

starpu_omp_set_lock

starpu_omp_test_lock

See Simple Locks for more details.

Generated by Doxygen

580 Module Documentation a.k.a StarPU’s API

57.24.5.71 starpu_omp_test_lock()

int starpu_omp_test_lock (

starpu_omp_lock_t ∗ lock)

Unblockingly attempt to lock a lock object and return whether it succeeded or not.

Returns

!0 if the function succeeded in acquiring the lock.

0 if the lock was already locked.

See also

starpu_omp_init_lock

starpu_omp_destroy_lock

starpu_omp_set_lock

starpu_omp_unset_lock

See Simple Locks for more details.

57.24.5.72 starpu_omp_init_nest_lock()

void starpu_omp_init_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Initialize an opaque lock object supporting nested locking operations.

See also

starpu_omp_destroy_nest_lock

starpu_omp_set_nest_lock

starpu_omp_unset_nest_lock

starpu_omp_test_nest_lock

See Nestable Locks for more details.

57.24.5.73 starpu_omp_destroy_nest_lock()

void starpu_omp_destroy_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Destroy an opaque lock object supporting nested locking operations.

See also

starpu_omp_init_nest_lock

starpu_omp_set_nest_lock

starpu_omp_unset_nest_lock

starpu_omp_test_nest_lock

See Nestable Locks for more details.

57.24.5.74 starpu_omp_set_nest_lock()

void starpu_omp_set_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Lock an opaque lock object supporting nested locking operations. If the lock is already locked by another task, the
function will block until it succeeds in exclusively acquiring the lock. If the lock is already taken by the current task,
the function will increase the nested locking level of the lock object.

Generated by Doxygen

57.24 OpenMP Runtime Support 581

See also

starpu_omp_init_nest_lock

starpu_omp_destroy_nest_lock

starpu_omp_unset_nest_lock

starpu_omp_test_nest_lock

See Nestable Locks for more details.

57.24.5.75 starpu_omp_unset_nest_lock()

void starpu_omp_unset_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Unlock a previously locked lock object supporting nested locking operations. If the lock has been locked multiple
times in nested fashion, the nested locking level is decreased and the lock remains locked. Otherwise, if the lock
has only been locked once, it becomes unlocked. The behaviour of this function is unspecified if it is called on an
unlocked lock object. The behaviour of this function is unspecified if it is called from a different task than the one
that locked the lock object.

See also

starpu_omp_init_nest_lock

starpu_omp_destroy_nest_lock

starpu_omp_set_nest_lock

starpu_omp_test_nest_lock

See Nestable Locks for more details.

57.24.5.76 starpu_omp_test_nest_lock()

int starpu_omp_test_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Unblocking attempt to lock an opaque lock object supporting nested locking operations and returns whether it
succeeded or not. If the lock is already locked by another task, the function will return without having acquired the
lock. If the lock is already taken by the current task, the function will increase the nested locking level of the lock
object.

Returns

!0 if the function succeeded in acquiring the lock.

0 if the lock was already locked.

See also

starpu_omp_init_nest_lock

starpu_omp_destroy_nest_lock

starpu_omp_set_nest_lock

starpu_omp_unset_nest_lock

See Nestable Locks for more details.

57.24.5.77 starpu_omp_atomic_fallback_inline_begin()

void starpu_omp_atomic_fallback_inline_begin (

void)

Implement the entry point of a fallback global atomic region. Block until it succeeds in acquiring exclusive access to
the global atomic region.

See also

starpu_omp_atomic_fallback_inline_end

Generated by Doxygen

582 Module Documentation a.k.a StarPU’s API

57.24.5.78 starpu_omp_atomic_fallback_inline_end()

void starpu_omp_atomic_fallback_inline_end (

void)

Implement the exit point of a fallback global atomic region. Release the exclusive access to the global atomic region.

See also

starpu_omp_atomic_fallback_inline_begin

57.24.5.79 starpu_omp_get_wtime()

double starpu_omp_get_wtime (

void)

Return the elapsed wallclock time in seconds.

Returns

the elapsed wallclock time in seconds.

See also

starpu_omp_get_wtick

See OpenMP Standard Functions in StarPU for more details.

57.24.5.80 starpu_omp_get_wtick()

double starpu_omp_get_wtick (

void)

Return the precision of the time used by starpu_omp_get_wtime().

Returns

the precision of the time used by starpu_omp_get_wtime().

See also

starpu_omp_get_wtime

See OpenMP Standard Functions in StarPU for more details.

57.24.5.81 starpu_omp_vector_annotate()

void starpu_omp_vector_annotate (

starpu_data_handle_t handle,

uint32_t slice_base)

Enable setting additional vector metadata needed by the OpenMP Runtime Support.
handle is vector data handle. slice_base is the base of an array slice, expressed in number of vector elements
from the array base.

See also

STARPU_VECTOR_GET_SLICE_BASE

57.24.5.82 starpu_omp_get_default_arbiter()

struct starpu_arbiter ∗ starpu_omp_get_default_arbiter (

void)

Only use internally by StarPU.

Generated by Doxygen

57.24 OpenMP Runtime Support 583

57.24.5.83 starpu_omp_handle_register()

void starpu_omp_handle_register (

starpu_data_handle_t handle)

Register a handle for ptr->handle data lookup.

See also

starpu_omp_handle_unregister

starpu_omp_data_lookup

See Data Dependencies for more details.

57.24.5.84 starpu_omp_handle_unregister()

void starpu_omp_handle_unregister (

starpu_data_handle_t handle)

Unregister a handle from ptr->handle data lookup.

See also

starpu_omp_handle_register

starpu_omp_data_lookup

See Data Dependencies for more details.

57.24.5.85 starpu_omp_data_lookup()

starpu_data_handle_t starpu_omp_data_lookup (

const void ∗ ptr)

Return the handle corresponding to the data pointed to by the ptr host pointer.

Returns

the handle or NULL if not found.

See Data Dependencies for more details.

Generated by Doxygen

584 Module Documentation a.k.a StarPU’s API

57.25 Out Of Core

Data Structures

• struct starpu_disk_ops

Macros

• #define STARPU_DISK_SIZE_MIN

Functions

• void starpu_disk_close (unsigned node, void ∗obj, size_t size)
• void ∗ starpu_disk_open (unsigned node, void ∗pos, size_t size)
• int starpu_disk_register (struct starpu_disk_ops ∗func, void ∗parameter, starpu_ssize_t size)

Variables

• struct starpu_disk_ops starpu_disk_stdio_ops
• struct starpu_disk_ops starpu_disk_hdf5_ops
• struct starpu_disk_ops starpu_disk_unistd_ops
• struct starpu_disk_ops starpu_disk_unistd_o_direct_ops
• struct starpu_disk_ops starpu_disk_leveldb_ops
• int starpu_disk_swap_node

57.25.1 Detailed Description

57.25.2 Data Structure Documentation

57.25.2.1 struct starpu_disk_ops

Set of functions to manipulate data on disk. See Disk functions for more details.

Data Fields

• void ∗(∗ plug)(void ∗parameter, starpu_ssize_t size)
• void(∗ unplug)(void ∗base)
• int(∗ bandwidth)(unsigned node, void ∗base)
• void ∗(∗ alloc)(void ∗base, size_t size)
• void(∗ free)(void ∗base, void ∗obj, size_t size)
• void ∗(∗ open)(void ∗base, void ∗pos, size_t size)
• void(∗ close)(void ∗base, void ∗obj, size_t size)
• int(∗ read)(void ∗base, void ∗obj, void ∗buf, off_t offset, size_t size)
• int(∗ write)(void ∗base, void ∗obj, const void ∗buf, off_t offset, size_t size)
• int(∗ full_read)(void ∗base, void ∗obj, void ∗∗ptr, size_t ∗size, unsigned dst_node)
• int(∗ full_write)(void ∗base, void ∗obj, void ∗ptr, size_t size)
• void ∗(∗ async_write)(void ∗base, void ∗obj, void ∗buf, off_t offset, size_t size)
• void ∗(∗ async_read)(void ∗base, void ∗obj, void ∗buf, off_t offset, size_t size)
• void ∗(∗ async_full_read)(void ∗base, void ∗obj, void ∗∗ptr, size_t ∗size, unsigned dst_node)
• void ∗(∗ async_full_write)(void ∗base, void ∗obj, void ∗ptr, size_t size)
• void ∗(∗ copy)(void ∗base_src, void ∗obj_src, off_t offset_src, void ∗base_dst, void ∗obj_dst, off_t offset_dst,

size_t size)
• void(∗ wait_request)(void ∗async_channel)
• int(∗ test_request)(void ∗async_channel)
• void(∗ free_request)(void ∗async_channel)

57.25.2.1.1 Field Documentation

Generated by Doxygen

57.25 Out Of Core 585

57.25.2.1.1.1 plug void ∗(∗ starpu_disk_ops::plug) (void ∗parameter, starpu_ssize_t size)

Connect a disk memory at location parameter with size size, and return a base as void∗, which will be passed
by StarPU to all other methods.

57.25.2.1.1.2 unplug void(∗ starpu_disk_ops::unplug) (void ∗base)
Disconnect a disk memory base.

57.25.2.1.1.3 bandwidth int(∗ starpu_disk_ops::bandwidth) (unsigned node, void ∗base)
Measure the bandwidth and the latency for the disk node and save it. Returns 1 if it could measure it.

57.25.2.1.1.4 alloc void ∗(∗ starpu_disk_ops::alloc) (void ∗base, size_t size)

Create a new location for data of size size. Return an opaque object pointer.

57.25.2.1.1.5 free void(∗ starpu_disk_ops::free) (void ∗base, void ∗obj, size_t size)

Free a data obj previously allocated with starpu_disk_ops::alloc.

57.25.2.1.1.6 open void ∗(∗ starpu_disk_ops::open) (void ∗base, void ∗pos, size_t size)

Open an existing location of data, at a specific position pos dependent on the backend.

57.25.2.1.1.7 close void(∗ starpu_disk_ops::close) (void ∗base, void ∗obj, size_t size)

Close, without deleting it, a location of data obj.

57.25.2.1.1.8 read int(∗ starpu_disk_ops::read) (void ∗base, void ∗obj, void ∗buf, off_t offset,

size_t size)

Read size bytes of data from obj in base, at offset offset, and put into buf. Return the actual number of
read bytes.

57.25.2.1.1.9 write int(∗ starpu_disk_ops::write) (void ∗base, void ∗obj, const void ∗buf, off←↩

_t offset, size_t size)

Write size bytes of data to obj in base, at offset offset, from buf. Return 0 on success.

57.25.2.1.1.10 full_read int(∗ starpu_disk_ops::full_read) (void ∗base, void ∗obj, void ∗∗ptr,
size_t ∗size, unsigned dst_node)

Read all data from obj of base, from offset 0. Returns it in an allocated buffer ptr, of size size

57.25.2.1.1.11 full_write int(∗ starpu_disk_ops::full_write) (void ∗base, void ∗obj, void ∗ptr,
size_t size)

Write data in ptr to obj of base, from offset 0, and truncate obj to size, so that a full_read will get it.

57.25.2.1.1.12 async_write void ∗(∗ starpu_disk_ops::async_write) (void ∗base, void ∗obj, void

∗buf, off_t offset, size_t size)

Asynchronously write size bytes of data to obj in base, at offset offset, from buf. Return a void∗ pointer
that StarPU will pass to xxx_request methods for testing for the completion.

57.25.2.1.1.13 async_read void ∗(∗ starpu_disk_ops::async_read) (void ∗base, void ∗obj, void

∗buf, off_t offset, size_t size)

Asynchronously read size bytes of data from obj in base, at offset offset, and put into buf. Return a void∗
pointer that StarPU will pass to xxx_request methods for testing for the completion.

57.25.2.1.1.14 async_full_read void ∗(∗ starpu_disk_ops::async_full_read) (void ∗base, void

∗obj, void ∗∗ptr, size_t ∗size, unsigned dst_node)

Read all data from obj of base, from offset 0. Return it in an allocated buffer ptr, of size size

Generated by Doxygen

586 Module Documentation a.k.a StarPU’s API

57.25.2.1.1.15 async_full_write void ∗(∗ starpu_disk_ops::async_full_write) (void ∗base, void

∗obj, void ∗ptr, size_t size)

Write data in ptr to obj of base, from offset 0, and truncate obj to size, so that a starpu_disk_ops::full_read
will get it.

57.25.2.1.1.16 copy void ∗(∗ starpu_disk_ops::copy) (void ∗base_src, void ∗obj_src, off_←↩

t offset_src, void ∗base_dst, void ∗obj_dst, off_t offset_dst, size_t size)

Copy from offset offset_src of disk object obj_src in base_src to offset offset_dst of disk object
obj_dst in base_dst. Return a void∗ pointer that StarPU will pass to xxx_request methods for testing for
the completion.

57.25.2.1.1.17 wait_request void(∗ starpu_disk_ops::wait_request) (void ∗async_channel)
Wait for completion of request async_channel returned by a previous asynchronous read, write or copy.

57.25.2.1.1.18 test_request int(∗ starpu_disk_ops::test_request) (void ∗async_channel)
Test for completion of request async_channel returned by a previous asynchronous read, write or copy. Return
1 on completion, 0 otherwise.

57.25.2.1.1.19 free_request void(∗ starpu_disk_ops::free_request) (void ∗async_channel)
Free the request allocated by a previous asynchronous read, write or copy.

57.25.3 Macro Definition Documentation

57.25.3.1 STARPU_DISK_SIZE_MIN

#define STARPU_DISK_SIZE_MIN

Minimum size of a registered disk. The size of a disk is the last parameter of the function starpu_disk_register().

57.25.4 Function Documentation

57.25.4.1 starpu_disk_close()

void starpu_disk_close (

unsigned node,

void ∗ obj,

size_t size)

Close an existing data opened with starpu_disk_open(). See Introduction for more details.

57.25.4.2 starpu_disk_open()

void ∗ starpu_disk_open (

unsigned node,

void ∗ pos,

size_t size)

Open an existing file memory in a disk node. size is the size of the file. pos is the specific position dependent on
the backend, given to the open method of the disk operations. Return an opaque object pointer. See Introduction
for more details.

57.25.4.3 starpu_disk_register()

int starpu_disk_register (

struct starpu_disk_ops ∗ func,

void ∗ parameter,

starpu_ssize_t size)

Generated by Doxygen

57.25 Out Of Core 587

Register a disk memory node with a set of functions to manipulate data. The plug member of func will be passed
parameter, and return a base which will be passed to all func methods.
SUCCESS: return the disk node.
FAIL: return an error code.
size must be at least STARPU_DISK_SIZE_MIN bytes ! size being negative means infinite size.
See Introduction for more details.

57.25.5 Variable Documentation

57.25.5.1 starpu_disk_stdio_ops

struct starpu_disk_ops starpu_disk_stdio_ops [extern]

Use the stdio library (fwrite, fread...) to read/write on disk.
Warning: It creates one file per allocation !
Do not support asynchronous transfers.

57.25.5.2 starpu_disk_hdf5_ops

struct starpu_disk_ops starpu_disk_hdf5_ops [extern]

Use the HDF5 library.
It doesn't support multiple opening from different processes.
You may only allow one process to write in the HDF5 file.
If HDF5 library is not compiled with –thread-safe you can't open more than one HDF5 file at the same time.

57.25.5.3 starpu_disk_unistd_ops

struct starpu_disk_ops starpu_disk_unistd_ops [extern]

Use the unistd library (write, read...) to read/write on disk.
Warning: It creates one file per allocation !

57.25.5.4 starpu_disk_unistd_o_direct_ops

struct starpu_disk_ops starpu_disk_unistd_o_direct_ops [extern]

Use the unistd library (write, read...) to read/write on disk with the O_DIRECT flag.
Warning: It creates one file per allocation !
Only available on Linux systems.

57.25.5.5 starpu_disk_leveldb_ops

struct starpu_disk_ops starpu_disk_leveldb_ops [extern]

Use the leveldb created by Google. More information at https://code.google.com/p/leveldb/ Do
not support asynchronous transfers.

57.25.5.6 starpu_disk_swap_node

int starpu_disk_swap_node [extern]

Contain the node number of the disk swap, if set up through the STARPU_DISK_SWAP variable.

Generated by Doxygen

https://code.google.com/p/leveldb/

588 Module Documentation a.k.a StarPU’s API

57.26 Parallel Tasks

Functions

• unsigned starpu_combined_worker_get_count (void)
• unsigned starpu_worker_is_combined_worker (int id)
• int starpu_combined_worker_get_id (void)
• int starpu_combined_worker_get_size (void)
• int starpu_combined_worker_get_rank (void)
• int starpu_combined_worker_assign_workerid (int nworkers, int workerid_array[])
• int starpu_combined_worker_get_description (int workerid, int ∗worker_size, int ∗∗combined_workerid)
• int starpu_combined_worker_can_execute_task (unsigned workerid, struct starpu_task ∗task, unsigned

nimpl)
• void starpu_parallel_task_barrier_init (struct starpu_task ∗task, int workerid)
• void starpu_parallel_task_barrier_init_n (struct starpu_task ∗task, int worker_size)

57.26.1 Detailed Description

57.26.2 Function Documentation

57.26.2.1 starpu_combined_worker_get_count()

unsigned starpu_combined_worker_get_count (

void)

Return the number of different combined workers. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.26.2.2 starpu_worker_is_combined_worker()

unsigned starpu_worker_is_combined_worker (

int id)

See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.26.2.3 starpu_combined_worker_get_id()

int starpu_combined_worker_get_id (

void)

Return the identifier of the current combined worker. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.26.2.4 starpu_combined_worker_get_size()

int starpu_combined_worker_get_size (

void)

Return the size of the current combined worker, i.e. the total number of CPUS running the same task in the
case of STARPU_SPMD parallel tasks, or the total number of threads that the task is allowed to start in the case
of STARPU_FORKJOIN parallel tasks. See Fork-mode Parallel Tasks and SPMD-mode Parallel Tasks for more
details.

57.26.2.5 starpu_combined_worker_get_rank()

int starpu_combined_worker_get_rank (

void)

Return the rank of the current thread within the combined worker. Can only be used in STARPU_SPMD parallel
tasks, to know which part of the task to work on. See SPMD-mode Parallel Tasks for more details.

Generated by Doxygen

57.26 Parallel Tasks 589

57.26.2.6 starpu_combined_worker_assign_workerid()

int starpu_combined_worker_assign_workerid (

int nworkers,

int workerid_array[])

Register a new combined worker and get its identifier. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.26.2.7 starpu_combined_worker_get_description()

int starpu_combined_worker_get_description (

int workerid,

int ∗ worker_size,

int ∗∗ combined_workerid)

Get the description of a combined worker. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.
workerid is the requested combined worker id, worker_size returns the number of workers in the combined
worker, combined_workerid returns the list for worker ids in the combined worker.

57.26.2.8 starpu_combined_worker_can_execute_task()

int starpu_combined_worker_can_execute_task (

unsigned workerid,

struct starpu_task ∗ task,

unsigned nimpl)

Variant of starpu_worker_can_execute_task() compatible with combined workers. See Defining A New Basic Scheduling Policy
for more details.

57.26.2.9 starpu_parallel_task_barrier_init()

void starpu_parallel_task_barrier_init (

struct starpu_task ∗ task,

int workerid)

Initialise the barrier for the parallel task, and dispatch the task between the different workers of the given combined
worker. See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.26.2.10 starpu_parallel_task_barrier_init_n()

void starpu_parallel_task_barrier_init_n (

struct starpu_task ∗ task,

int worker_size)

Initialise the barrier for the parallel task, to be pushed to worker_size workers (without having to explicit a given
combined worker). See Helper functions for defining a scheduling policy (Basic or modular) for more details.

Generated by Doxygen

590 Module Documentation a.k.a StarPU’s API

57.27 Parallel Workers

Macros

• #define STARPU_PARALLEL_WORKER_MIN_NB
• #define STARPU_PARALLEL_WORKER_MAX_NB
• #define STARPU_PARALLEL_WORKER_NB
• #define STARPU_PARALLEL_WORKER_PREFERE_MIN
• #define STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS
• #define STARPU_PARALLEL_WORKER_POLICY_NAME
• #define STARPU_PARALLEL_WORKER_POLICY_STRUCT
• #define STARPU_PARALLEL_WORKER_CREATE_FUNC
• #define STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG
• #define STARPU_PARALLEL_WORKER_TYPE
• #define STARPU_PARALLEL_WORKER_AWAKE_WORKERS
• #define STARPU_PARALLEL_WORKER_PARTITION_ONE
• #define STARPU_PARALLEL_WORKER_NEW
• #define STARPU_PARALLEL_WORKER_NCORES
• #define starpu_parallel_worker_intel_openmp_mkl_prologue
• #define STARPU_CLUSTER_MIN_NB
• #define STARPU_CLUSTER_MAX_NB
• #define STARPU_CLUSTER_NB
• #define STARPU_CLUSTER_PREFERE_MIN
• #define STARPU_CLUSTER_KEEP_HOMOGENEOUS
• #define STARPU_CLUSTER_POLICY_NAME
• #define STARPU_CLUSTER_POLICY_STRUCT
• #define STARPU_CLUSTER_CREATE_FUNC
• #define STARPU_CLUSTER_CREATE_FUNC_ARG
• #define STARPU_CLUSTER_TYPE
• #define STARPU_CLUSTER_AWAKE_WORKERS
• #define STARPU_CLUSTER_PARTITION_ONE
• #define STARPU_CLUSTER_NEW
• #define STARPU_CLUSTER_NCORES

Enumerations

• enum starpu_parallel_worker_types { STARPU_PARALLEL_WORKER_OPENMP , STARPU_PARALLEL_WORKER_INTEL_OPENMP_MKL
, STARPU_PARALLEL_WORKER_GNU_OPENMP_MKL }

• enum starpu_cluster_types { STARPU_CLUSTER_OPENMP , STARPU_CLUSTER_INTEL_OPENMP_MKL
, STARPU_CLUSTER_GNU_OPENMP_MKL }

Functions

• struct starpu_parallel_worker_config ∗ starpu_parallel_worker_init (hwloc_obj_type_t parallel_worker_←↩

level,...)
• int starpu_parallel_worker_shutdown (struct starpu_parallel_worker_config ∗parallel_workers)
• int starpu_parallel_worker_print (struct starpu_parallel_worker_config ∗parallel_workers)
• void starpu_parallel_worker_openmp_prologue (void ∗)
• void starpu_parallel_worker_gnu_openmp_mkl_prologue (void ∗)
• struct starpu_cluster_machine ∗ starpu_cluster_machine (hwloc_obj_type_t cluster_level,...)
• int starpu_uncluster_machine (struct starpu_cluster_machine ∗clusters)
• int starpu_cluster_print (struct starpu_cluster_machine ∗clusters)

57.27.1 Detailed Description

57.27.2 Macro Definition Documentation

Generated by Doxygen

57.27 Parallel Workers 591

57.27.2.1 STARPU_PARALLEL_WORKER_MIN_NB

#define STARPU_PARALLEL_WORKER_MIN_NB

Used when calling starpu_parallel_worker_init()

57.27.2.2 STARPU_PARALLEL_WORKER_MAX_NB

#define STARPU_PARALLEL_WORKER_MAX_NB

Used when calling starpu_parallel_worker_init()

57.27.2.3 STARPU_PARALLEL_WORKER_NB

#define STARPU_PARALLEL_WORKER_NB

Used when calling starpu_parallel_worker_init()

57.27.2.4 STARPU_PARALLEL_WORKER_PREFERE_MIN

#define STARPU_PARALLEL_WORKER_PREFERE_MIN

Used when calling starpu_parallel_worker_init()

57.27.2.5 STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS

#define STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS

Used when calling starpu_parallel_worker_init()

57.27.2.6 STARPU_PARALLEL_WORKER_POLICY_NAME

#define STARPU_PARALLEL_WORKER_POLICY_NAME

Used when calling starpu_parallel_worker_init()

57.27.2.7 STARPU_PARALLEL_WORKER_POLICY_STRUCT

#define STARPU_PARALLEL_WORKER_POLICY_STRUCT

Used when calling starpu_parallel_worker_init()

57.27.2.8 STARPU_PARALLEL_WORKER_CREATE_FUNC

#define STARPU_PARALLEL_WORKER_CREATE_FUNC

Used when calling starpu_parallel_worker_init()

57.27.2.9 STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG

#define STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG

Used when calling starpu_parallel_worker_init()

57.27.2.10 STARPU_PARALLEL_WORKER_TYPE

#define STARPU_PARALLEL_WORKER_TYPE

Used when calling starpu_parallel_worker_init()

57.27.2.11 STARPU_PARALLEL_WORKER_AWAKE_WORKERS

#define STARPU_PARALLEL_WORKER_AWAKE_WORKERS

Used when calling starpu_parallel_worker_init()

57.27.2.12 STARPU_PARALLEL_WORKER_PARTITION_ONE

#define STARPU_PARALLEL_WORKER_PARTITION_ONE

Used when calling starpu_parallel_worker_init()

Generated by Doxygen

592 Module Documentation a.k.a StarPU’s API

57.27.2.13 STARPU_PARALLEL_WORKER_NEW

#define STARPU_PARALLEL_WORKER_NEW

Used when calling starpu_parallel_worker_init()

57.27.2.14 STARPU_PARALLEL_WORKER_NCORES

#define STARPU_PARALLEL_WORKER_NCORES

Used when calling starpu_parallel_worker_init()

57.27.2.15 STARPU_CLUSTER_MIN_NB

#define STARPU_CLUSTER_MIN_NB

Deprecated Use STARPU_PARALLEL_WORKER_MIN_NB

57.27.2.16 STARPU_CLUSTER_MAX_NB

#define STARPU_CLUSTER_MAX_NB

Deprecated Use STARPU_PARALLEL_WORKER_MAX_NB

57.27.2.17 STARPU_CLUSTER_NB

#define STARPU_CLUSTER_NB

Deprecated Use STARPU_PARALLEL_WORKER_NB

57.27.2.18 STARPU_CLUSTER_PREFERE_MIN

#define STARPU_CLUSTER_PREFERE_MIN

Deprecated Use STARPU_PARALLEL_WORKER_PREFERE_MIN

57.27.2.19 STARPU_CLUSTER_KEEP_HOMOGENEOUS

#define STARPU_CLUSTER_KEEP_HOMOGENEOUS

Deprecated Use STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS

57.27.2.20 STARPU_CLUSTER_POLICY_NAME

#define STARPU_CLUSTER_POLICY_NAME

Deprecated Use STARPU_PARALLEL_WORKER_POLICY_NAME

57.27.2.21 STARPU_CLUSTER_POLICY_STRUCT

#define STARPU_CLUSTER_POLICY_STRUCT

Deprecated Use STARPU_PARALLEL_WORKER_POLICY_STRUCT

Generated by Doxygen

57.27 Parallel Workers 593

57.27.2.22 STARPU_CLUSTER_CREATE_FUNC

#define STARPU_CLUSTER_CREATE_FUNC

Deprecated Use STARPU_PARALLEL_WORKER_CREATE_FUNC

57.27.2.23 STARPU_CLUSTER_CREATE_FUNC_ARG

#define STARPU_CLUSTER_CREATE_FUNC_ARG

Deprecated Use STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG

57.27.2.24 STARPU_CLUSTER_TYPE

#define STARPU_CLUSTER_TYPE

Deprecated Use STARPU_PARALLEL_WORKER_TYPE

57.27.2.25 STARPU_CLUSTER_AWAKE_WORKERS

#define STARPU_CLUSTER_AWAKE_WORKERS

Deprecated Use STARPU_PARALLEL_WORKER_AWAKE_WORKERS

57.27.2.26 STARPU_CLUSTER_PARTITION_ONE

#define STARPU_CLUSTER_PARTITION_ONE

Deprecated Use STARPU_PARALLEL_WORKER_PARTITION_ONE

57.27.2.27 STARPU_CLUSTER_NEW

#define STARPU_CLUSTER_NEW

Deprecated Use STARPU_PARALLEL_WORKER_NEW

57.27.2.28 STARPU_CLUSTER_NCORES

#define STARPU_CLUSTER_NCORES

Deprecated Use STARPU_PARALLEL_WORKER_NCORES

57.27.3 Enumeration Type Documentation

57.27.3.1 starpu_parallel_worker_types

enum starpu_parallel_worker_types

These represent the default available functions to enforce parallel_worker use by the sub-runtime

Generated by Doxygen

594 Module Documentation a.k.a StarPU’s API

Enumerator

STARPU_PARALLEL_WORKER_OPENMP todo
STARPU_PARALLEL_WORKER_INTEL_OPENMP_MKL todo

STARPU_PARALLEL_WORKER_GNU_OPENMP_MKL todo

57.27.3.2 starpu_cluster_types

enum starpu_cluster_types

Deprecated Use starpu_parallel_worker_types

Enumerator

STARPU_CLUSTER_OPENMP deprecated

STARPU_CLUSTER_INTEL_OPENMP_MKL deprecated

STARPU_CLUSTER_GNU_OPENMP_MKL deprecated

57.27.4 Function Documentation

57.27.4.1 starpu_parallel_worker_init()

struct starpu_parallel_worker_config ∗ starpu_parallel_worker_init (

hwloc_obj_type_t parallel_worker_level,

...)

Create parallel_workers on the machine with the given parameters. See Workers Creating Parallel Workers for
more details.

57.27.4.2 starpu_parallel_worker_shutdown()

int starpu_parallel_worker_shutdown (

struct starpu_parallel_worker_config ∗ parallel_workers)

Delete the given parallel_workers configuration

57.27.4.3 starpu_parallel_worker_print()

int starpu_parallel_worker_print (

struct starpu_parallel_worker_config ∗ parallel_workers)

Print the given parallel_workers configuration. See Workers Creating Parallel Workers for more details.

57.27.4.4 starpu_parallel_worker_openmp_prologue()

void starpu_parallel_worker_openmp_prologue (

void ∗)

Prologue functions

57.27.4.5 starpu_cluster_machine()

struct starpu_cluster_machine ∗ starpu_cluster_machine (

hwloc_obj_type_t cluster_level,

...)

Deprecated Use starpu_parallel_worker_init()

Generated by Doxygen

57.27 Parallel Workers 595

57.27.4.6 starpu_uncluster_machine()

int starpu_uncluster_machine (

struct starpu_cluster_machine ∗ clusters)

Deprecated Use starpu_parallel_worker_shutdown()

57.27.4.7 starpu_cluster_print()

int starpu_cluster_print (

struct starpu_cluster_machine ∗ clusters)

Deprecated Use starpu_parallel_worker_print()

Generated by Doxygen

596 Module Documentation a.k.a StarPU’s API

57.28 Performance Monitoring Counters

API to access performance monitoring counters.

API

• enum starpu_perf_counter_scope { starpu_perf_counter_scope_undefined , starpu_perf_counter_scope_global
, starpu_perf_counter_scope_per_worker , starpu_perf_counter_scope_per_codelet }

• enum starpu_perf_counter_type {
starpu_perf_counter_type_undefined , starpu_perf_counter_type_int32 , starpu_perf_counter_type_int64 ,
starpu_perf_counter_type_float ,
starpu_perf_counter_type_double }

• void starpu_perf_counter_collection_start (void)
• void starpu_perf_counter_collection_stop (void)

Scope Related Routines

• int starpu_perf_counter_scope_name_to_id (const char ∗name)
• const char ∗ starpu_perf_counter_scope_id_to_name (enum starpu_perf_counter_scope scope)

Type Related Routines

• int starpu_perf_counter_type_name_to_id (const char ∗name)
• const char ∗ starpu_perf_counter_type_id_to_name (enum starpu_perf_counter_type type)

Counter Related Routines

• int starpu_perf_counter_nb (enum starpu_perf_counter_scope scope)
• int starpu_perf_counter_name_to_id (enum starpu_perf_counter_scope scope, const char ∗name)
• int starpu_perf_counter_nth_to_id (enum starpu_perf_counter_scope scope, int nth)
• const char ∗ starpu_perf_counter_id_to_name (int id)
• int starpu_perf_counter_get_type_id (int id)
• const char ∗ starpu_perf_counter_get_help_string (int id)

Listener Related Routines

• void starpu_perf_counter_list_avail (enum starpu_perf_counter_scope scope)
• void starpu_perf_counter_list_all_avail (void)
• struct starpu_perf_counter_set ∗ starpu_perf_counter_set_alloc (enum starpu_perf_counter_scope scope)
• void starpu_perf_counter_set_free (struct starpu_perf_counter_set ∗set)
• void starpu_perf_counter_set_enable_id (struct starpu_perf_counter_set ∗set, int id)
• void starpu_perf_counter_set_disable_id (struct starpu_perf_counter_set ∗set, int id)
• struct starpu_perf_counter_listener ∗ starpu_perf_counter_listener_init (struct starpu_perf_counter_set ∗set,

void(∗callback)(struct starpu_perf_counter_listener ∗listener, struct starpu_perf_counter_sample ∗sample,
void ∗context), void ∗user_arg)

• void starpu_perf_counter_listener_exit (struct starpu_perf_counter_listener ∗listener)
• void starpu_perf_counter_set_global_listener (struct starpu_perf_counter_listener ∗listener)
• void starpu_perf_counter_set_per_worker_listener (unsigned workerid, struct starpu_perf_counter_listener
∗listener)

• void starpu_perf_counter_set_all_per_worker_listeners (struct starpu_perf_counter_listener ∗listener)
• void starpu_perf_counter_set_per_codelet_listener (struct starpu_codelet ∗cl, struct starpu_perf_counter_←↩

listener ∗listener)
• void starpu_perf_counter_unset_global_listener (void)
• void starpu_perf_counter_unset_per_worker_listener (unsigned workerid)
• void starpu_perf_counter_unset_all_per_worker_listeners (void)
• void starpu_perf_counter_unset_per_codelet_listener (struct starpu_codelet ∗cl)

Generated by Doxygen

57.28 Performance Monitoring Counters 597

Sample Related Routines

• int32_t starpu_perf_counter_sample_get_int32_value (struct starpu_perf_counter_sample ∗sample, const int
counter_id)

• int64_t starpu_perf_counter_sample_get_int64_value (struct starpu_perf_counter_sample ∗sample, const int
counter_id)

• float starpu_perf_counter_sample_get_float_value (struct starpu_perf_counter_sample ∗sample, const int
counter_id)

• double starpu_perf_counter_sample_get_double_value (struct starpu_perf_counter_sample ∗sample, const
int counter_id)

57.28.1 Detailed Description

API to access performance monitoring counters.

57.28.2 Enumeration Type Documentation

57.28.2.1 starpu_perf_counter_scope

enum starpu_perf_counter_scope

Enum of all possible performance counter scopes.

Enumerator

starpu_perf_counter_scope_undefined undefined scope

starpu_perf_counter_scope_global global scope

starpu_perf_counter_scope_per_worker per-worker scope

starpu_perf_counter_scope_per_codelet per-codelet scope

57.28.2.2 starpu_perf_counter_type

enum starpu_perf_counter_type

Enum of all possible performance counter value type.

Enumerator

starpu_perf_counter_type_undefined undefined value type

starpu_perf_counter_type_int32 signed 32-bit integer value

starpu_perf_counter_type_int64 signed 64-bit integer value

starpu_perf_counter_type_float 32-bit single precision floating-point value

starpu_perf_counter_type_double 64-bit double precision floating-point value

57.28.3 Function Documentation

57.28.3.1 starpu_perf_counter_collection_start()

void starpu_perf_counter_collection_start (

void)

Start collecting performance counter values.

Generated by Doxygen

598 Module Documentation a.k.a StarPU’s API

57.28.3.2 starpu_perf_counter_collection_stop()

void starpu_perf_counter_collection_stop (

void)

Stop collecting performance counter values.

57.28.3.3 starpu_perf_counter_scope_name_to_id()

int starpu_perf_counter_scope_name_to_id (

const char ∗ name)

Translate scope name constant string to scope id.

57.28.3.4 starpu_perf_counter_scope_id_to_name()

const char ∗ starpu_perf_counter_scope_id_to_name (

enum starpu_perf_counter_scope scope)

Translate scope id to scope name constant string.

57.28.3.5 starpu_perf_counter_type_name_to_id()

int starpu_perf_counter_type_name_to_id (

const char ∗ name)

Translate type name constant string to type id.

57.28.3.6 starpu_perf_counter_type_id_to_name()

const char ∗ starpu_perf_counter_type_id_to_name (

enum starpu_perf_counter_type type)

Translate type id to type name constant string.

57.28.3.7 starpu_perf_counter_nb()

int starpu_perf_counter_nb (

enum starpu_perf_counter_scope scope)

Return the number of performance counters for the given scope.

57.28.3.8 starpu_perf_counter_name_to_id()

int starpu_perf_counter_name_to_id (

enum starpu_perf_counter_scope scope,

const char ∗ name)

Translate a performance counter name to its id.

57.28.3.9 starpu_perf_counter_nth_to_id()

int starpu_perf_counter_nth_to_id (

enum starpu_perf_counter_scope scope,

int nth)

Translate a performance counter rank in its scope to its counter id.

57.28.3.10 starpu_perf_counter_id_to_name()

const char ∗ starpu_perf_counter_id_to_name (

int id)

Translate a counter id to its name constant string.

57.28.3.11 starpu_perf_counter_get_type_id()

int starpu_perf_counter_get_type_id (

int id)

Return the counter's type id.

Generated by Doxygen

57.28 Performance Monitoring Counters 599

57.28.3.12 starpu_perf_counter_get_help_string()

const char ∗ starpu_perf_counter_get_help_string (

int id)

Return the counter's help string.

57.28.3.13 starpu_perf_counter_list_avail()

void starpu_perf_counter_list_avail (

enum starpu_perf_counter_scope scope)

Display the list of counters defined in the given scope.

57.28.3.14 starpu_perf_counter_list_all_avail()

void starpu_perf_counter_list_all_avail (

void)

Display the list of counters defined in all scopes.

57.28.3.15 starpu_perf_counter_set_alloc()

struct starpu_perf_counter_set ∗ starpu_perf_counter_set_alloc (

enum starpu_perf_counter_scope scope)

Allocate a new performance counter set.

57.28.3.16 starpu_perf_counter_set_free()

void starpu_perf_counter_set_free (

struct starpu_perf_counter_set ∗ set)

Free a performance counter set.

57.28.3.17 starpu_perf_counter_set_enable_id()

void starpu_perf_counter_set_enable_id (

struct starpu_perf_counter_set ∗ set,

int id)

Enable a given counter in the set.

57.28.3.18 starpu_perf_counter_set_disable_id()

void starpu_perf_counter_set_disable_id (

struct starpu_perf_counter_set ∗ set,

int id)

Disable a given counter in the set.

57.28.3.19 starpu_perf_counter_listener_init()

struct starpu_perf_counter_listener ∗ starpu_perf_counter_listener_init (

struct starpu_perf_counter_set ∗ set,

void(∗)(struct starpu_perf_counter_listener ∗listener, struct starpu_perf_counter←↩

_sample ∗sample, void ∗context) callback,

void ∗ user_arg)

Initialize a new performance counter listener.

57.28.3.20 starpu_perf_counter_listener_exit()

void starpu_perf_counter_listener_exit (

struct starpu_perf_counter_listener ∗ listener)

End a performance counter listener.

Generated by Doxygen

600 Module Documentation a.k.a StarPU’s API

57.28.3.21 starpu_perf_counter_set_global_listener()

void starpu_perf_counter_set_global_listener (

struct starpu_perf_counter_listener ∗ listener)

Set a listener for the global scope.

57.28.3.22 starpu_perf_counter_set_per_worker_listener()

void starpu_perf_counter_set_per_worker_listener (

unsigned workerid,

struct starpu_perf_counter_listener ∗ listener)

Set a listener for the per_worker scope on a given worker.

57.28.3.23 starpu_perf_counter_set_all_per_worker_listeners()

void starpu_perf_counter_set_all_per_worker_listeners (

struct starpu_perf_counter_listener ∗ listener)

Set a common listener for all workers.

57.28.3.24 starpu_perf_counter_set_per_codelet_listener()

void starpu_perf_counter_set_per_codelet_listener (

struct starpu_codelet ∗ cl,

struct starpu_perf_counter_listener ∗ listener)

Set a per_codelet listener for a codelet.

57.28.3.25 starpu_perf_counter_unset_global_listener()

void starpu_perf_counter_unset_global_listener (

void)

Unset the global listener.

57.28.3.26 starpu_perf_counter_unset_per_worker_listener()

void starpu_perf_counter_unset_per_worker_listener (

unsigned workerid)

Unset the per_worker listener.

57.28.3.27 starpu_perf_counter_unset_all_per_worker_listeners()

void starpu_perf_counter_unset_all_per_worker_listeners (

void)

Unset all per_worker listeners.

57.28.3.28 starpu_perf_counter_unset_per_codelet_listener()

void starpu_perf_counter_unset_per_codelet_listener (

struct starpu_codelet ∗ cl)

Unset a per_codelet listener.

57.28.3.29 starpu_perf_counter_sample_get_int32_value()

int32_t starpu_perf_counter_sample_get_int32_value (

struct starpu_perf_counter_sample ∗ sample,

const int counter_id)

Read an int32 counter value from a sample.

Generated by Doxygen

57.28 Performance Monitoring Counters 601

57.28.3.30 starpu_perf_counter_sample_get_int64_value()

int64_t starpu_perf_counter_sample_get_int64_value (

struct starpu_perf_counter_sample ∗ sample,

const int counter_id)

Read an int64 counter value from a sample.

57.28.3.31 starpu_perf_counter_sample_get_float_value()

float starpu_perf_counter_sample_get_float_value (

struct starpu_perf_counter_sample ∗ sample,

const int counter_id)

Read a float counter value from a sample.

57.28.3.32 starpu_perf_counter_sample_get_double_value()

double starpu_perf_counter_sample_get_double_value (

struct starpu_perf_counter_sample ∗ sample,

const int counter_id)

Read a double counter value from a sample.

Generated by Doxygen

602 Module Documentation a.k.a StarPU’s API

57.29 Performance Model

Data Structures

• struct starpu_perfmodel_device
• struct starpu_perfmodel_arch
• struct starpu_perfmodel_history_entry
• struct starpu_perfmodel_history_list
• struct starpu_perfmodel_regression_model
• struct starpu_perfmodel_per_arch
• struct starpu_perfmodel

Macros

• #define starpu_per_arch_perfmodel

Typedefs

• typedef double(∗ starpu_perfmodel_per_arch_cost_function) (struct starpu_task ∗task, struct
starpu_perfmodel_arch ∗arch, unsigned nimpl)

• typedef size_t(∗ starpu_perfmodel_per_arch_size_base) (struct starpu_task ∗task, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• typedef struct _starpu_perfmodel_state ∗ starpu_perfmodel_state_t

Enumerations

• enum starpu_perfmodel_type {
STARPU_PERFMODEL_INVALID , STARPU_PER_WORKER , STARPU_PER_ARCH , STARPU_COMMON
,
STARPU_HISTORY_BASED , STARPU_REGRESSION_BASED , STARPU_NL_REGRESSION_BASED ,
STARPU_MULTIPLE_REGRESSION_BASED }

Functions

• void starpu_perfmodel_init (struct starpu_perfmodel ∗model)
• int starpu_perfmodel_deinit (struct starpu_perfmodel ∗model)
• int starpu_energy_start (int workerid, enum starpu_worker_archtype archi)
• int starpu_energy_stop (struct starpu_perfmodel ∗model, struct starpu_task ∗task, unsigned nimpl, unsigned

ntasks, int workerid, enum starpu_worker_archtype archi)
• int starpu_perfmodel_load_file (const char ∗filename, struct starpu_perfmodel ∗model)
• int starpu_perfmodel_load_symbol (const char ∗symbol, struct starpu_perfmodel ∗model)
• int starpu_perfmodel_unload_model (struct starpu_perfmodel ∗model)
• void starpu_save_history_based_model (struct starpu_perfmodel ∗model)
• void starpu_perfmodel_get_model_path (const char ∗symbol, char ∗path, size_t maxlen)
• void starpu_perfmodel_dump_xml (FILE ∗output, struct starpu_perfmodel ∗model)
• void starpu_perfmodel_free_sampling (void)
• struct starpu_perfmodel_arch ∗ starpu_worker_get_perf_archtype (int workerid, unsigned sched_ctx_id)
• int starpu_perfmodel_get_narch_combs (void)
• int starpu_perfmodel_arch_comb_add (int ndevices, struct starpu_perfmodel_device ∗devices)
• int starpu_perfmodel_arch_comb_get (int ndevices, struct starpu_perfmodel_device ∗devices)
• struct starpu_perfmodel_arch ∗ starpu_perfmodel_arch_comb_fetch (int comb)
• struct starpu_perfmodel_per_arch ∗ starpu_perfmodel_get_model_per_arch (struct starpu_perfmodel
∗model, struct starpu_perfmodel_arch ∗arch, unsigned impl)

• struct starpu_perfmodel_per_arch ∗ starpu_perfmodel_get_model_per_devices (struct starpu_perfmodel
∗model, int impl,...)

• int starpu_perfmodel_set_per_devices_cost_function (struct starpu_perfmodel ∗model, int impl, starpu←↩

_perfmodel_per_arch_cost_function func,...)

Generated by Doxygen

57.29 Performance Model 603

• int starpu_perfmodel_set_per_devices_size_base (struct starpu_perfmodel ∗model, int impl, starpu_←↩

perfmodel_per_arch_size_base func,...)
• void starpu_perfmodel_debugfilepath (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch ∗arch,

char ∗path, size_t maxlen, unsigned nimpl)
• const char ∗ starpu_perfmodel_get_archtype_name (enum starpu_worker_archtype archtype)
• void starpu_perfmodel_get_arch_name (struct starpu_perfmodel_arch ∗arch, char ∗archname, size_←↩

t maxlen, unsigned nimpl)
• double starpu_perfmodel_history_based_expected_perf (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch
∗arch, uint32_t footprint)

• void starpu_perfmodel_initialize (void)
• int starpu_perfmodel_list (FILE ∗output)
• void starpu_perfmodel_print (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl, char ∗parameter, uint32_t ∗footprint, FILE ∗output)
• int starpu_perfmodel_print_all (struct starpu_perfmodel ∗model, char ∗arch, char ∗parameter, uint32_t
∗footprint, FILE ∗output)

• int starpu_perfmodel_print_estimations (struct starpu_perfmodel ∗model, uint32_t footprint, FILE ∗output)
• int starpu_perfmodel_list_combs (FILE ∗output, struct starpu_perfmodel ∗model)
• void starpu_perfmodel_update_history (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct

starpu_perfmodel_arch ∗arch, unsigned cpuid, unsigned nimpl, double measured)
• void starpu_perfmodel_update_history_n (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct

starpu_perfmodel_arch ∗arch, unsigned cpuid, unsigned nimpl, double average_measured, unsigned num-
ber)

• void starpu_perfmodel_directory (FILE ∗output)
• void starpu_bus_print_bandwidth (FILE ∗f)
• void starpu_bus_print_affinity (FILE ∗f)
• void starpu_bus_print_filenames (FILE ∗f)
• double starpu_transfer_bandwidth (unsigned src_node, unsigned dst_node)
• double starpu_transfer_latency (unsigned src_node, unsigned dst_node)
• double starpu_transfer_predict (unsigned src_node, unsigned dst_node, size_t size)

Variables

• struct starpu_perfmodel starpu_perfmodel_nop

57.29.1 Detailed Description

57.29.2 Data Structure Documentation

57.29.2.1 struct starpu_perfmodel_device

todo

Data Fields

enum starpu_worker_archtype type type of the device

int devid identifier of the precise device

int ncores number of execution in parallel, minus 1

57.29.2.2 struct starpu_perfmodel_arch

todo

Data Fields

int ndevices number of the devices for the given arch

struct starpu_perfmodel_device ∗ devices list of the devices for the given arch

Generated by Doxygen

604 Module Documentation a.k.a StarPU’s API

57.29.2.3 struct starpu_perfmodel_history_entry

todo

Data Fields

double mean mean_n = 1/n sum

double deviation n dev_n = sum2 - 1/n (sum)∧2

double sum sum of samples (in µs)

double sum2 sum of samples∧2

unsigned nsample number of samples

unsigned nerror

uint32_t footprint data footprint

size_t size in bytes

double flops Provided by the application

double duration
starpu_tag_t tag

double ∗ parameters

57.29.2.4 struct starpu_perfmodel_history_list

todo

Data Fields

struct starpu_perfmodel_history_list ∗ next

struct starpu_perfmodel_history_entry ∗ entry

57.29.2.5 struct starpu_perfmodel_regression_model

todo

Data Fields

double sumlny sum of ln(measured)

double sumlnx sum of ln(size)

double sumlnx2 sum of ln(size)∧2

unsigned long minx minimum size

unsigned long maxx maximum size

double sumlnxlny sum of ln(size)∗ln(measured)

double alpha estimated = alpha ∗ size ∧ beta

double beta estimated = alpha ∗ size ∧ beta

unsigned valid whether the linear regression model is valid (i.e. enough measures)

double a estimated = a size ∧b + c

double b estimated = a size ∧b + c

double c estimated = a size ∧b + c
unsigned nl_valid whether the non-linear regression model is valid (i.e. enough measures)

unsigned nsample number of sample values for non-linear regression

double ∗ coeff list of computed coefficients for multiple linear regression model

unsigned ncoeff number of coefficients for multiple linear regression model

unsigned multi_valid whether the multiple linear regression model is valid

Generated by Doxygen

57.29 Performance Model 605

57.29.2.6 struct starpu_perfmodel_per_arch

information about the performance model of a given arch.

Data Fields

• starpu_perfmodel_per_arch_cost_function cost_function
• starpu_perfmodel_per_arch_size_base size_base
• char debug_path [256]

Private Attributes

• struct starpu_perfmodel_history_table ∗ history
• struct starpu_perfmodel_history_list ∗ list
• struct starpu_perfmodel_regression_model regression

57.29.2.6.1 Field Documentation

57.29.2.6.1.1 cost_function starpu_perfmodel_per_arch_cost_function starpu_perfmodel_per_arch←↩

::cost_function

Used by STARPU_PER_ARCH, must point to functions which take a task, the target arch and implementation num-
ber (as mere conveniency, since the array is already indexed by these), and must return a task duration estimation
in micro-seconds.

57.29.2.6.1.2 size_base starpu_perfmodel_per_arch_size_base starpu_perfmodel_per_arch::size_←↩

base

Same as in structure starpu_perfmodel, but per-arch, in case it depends on the architecture-specific implementation.

57.29.2.6.1.3 history struct starpu_perfmodel_history_table∗ starpu_perfmodel_per_arch::history

[private]

The history of performance measurements.

57.29.2.6.1.4 list struct starpu_perfmodel_history_list∗ starpu_perfmodel_per_arch::list [private]

Used by STARPU_HISTORY_BASED, STARPU_NL_REGRESSION_BASED and STARPU_MULTIPLE_REGRESSION_BASED,
records all execution history measures.

57.29.2.6.1.5 regression struct starpu_perfmodel_regression_model starpu_perfmodel_per_arch←↩

::regression [private]

Used by STARPU_REGRESSION_BASED, STARPU_NL_REGRESSION_BASED and STARPU_MULTIPLE_REGRESSION_BASED,
contains the estimated factors of the regression.

57.29.2.7 struct starpu_perfmodel

Contain all information about a performance model. At least the type and symbol fields have to be filled when
defining a performance model for a codelet. For compatibility, make sure to initialize the whole structure to zero,
either by using explicit memset, or by letting the compiler implicitly do it in e.g. static storage case. If not provided,
other fields have to be zero.

Data Fields

• enum starpu_perfmodel_type type
• double(∗ cost_function)(struct starpu_task ∗, unsigned nimpl)
• double(∗ arch_cost_function)(struct starpu_task ∗, struct starpu_perfmodel_arch ∗arch, unsigned nimpl)
• double(∗ worker_cost_function)(struct starpu_task ∗, unsigned workerid, unsigned nimpl)
• size_t(∗ size_base)(struct starpu_task ∗, unsigned nimpl)
• uint32_t(∗ footprint)(struct starpu_task ∗)

Generated by Doxygen

606 Module Documentation a.k.a StarPU’s API

• const char ∗ symbol
• char ∗ path
• void(∗ parameters)(struct starpu_task ∗task, double ∗parameters)

Private Attributes

• unsigned is_loaded
• unsigned benchmarking
• unsigned is_init
• const char ∗∗ parameters_names
• unsigned nparameters
• unsigned ∗∗ combinations
• unsigned ncombinations
• starpu_perfmodel_state_t state

57.29.2.7.1 Field Documentation

57.29.2.7.1.1 type enum starpu_perfmodel_type starpu_perfmodel::type

type of performance model

• STARPU_HISTORY_BASED, STARPU_REGRESSION_BASED, STARPU_NL_REGRESSION_BASED: No
other fields needs to be provided, this is purely history-based.

• STARPU_MULTIPLE_REGRESSION_BASED: Need to provide fields starpu_perfmodel::nparameters (num-
ber of different parameters), starpu_perfmodel::ncombinations (number of parameters combinations-tuples)
and table starpu_perfmodel::combinations which defines exponents of the equation. Function cl_perf_func
also needs to define how to extract parameters from the task.

• STARPU_PER_ARCH: either field starpu_perfmodel::arch_cost_function has to be filled with a function that
returns the cost in micro-seconds on the arch given as parameter, or field starpu_perfmodel::per_arch has to
be filled with functions which return the cost in micro-seconds.

• STARPU_COMMON: field starpu_perfmodel::cost_function has to be filled with a function that returns the
cost in micro-seconds on a CPU, timing on other archs will be determined by multiplying by an arch-specific
factor.

57.29.2.7.1.2 cost_function double(∗ starpu_perfmodel::cost_function) (struct starpu_task ∗,
unsigned nimpl)

Used by STARPU_COMMON. Take a task and implementation number, and must return a task duration estimation
in micro-seconds.

57.29.2.7.1.3 arch_cost_function double(∗ starpu_perfmodel::arch_cost_function) (struct starpu_task

∗, struct starpu_perfmodel_arch ∗arch, unsigned nimpl)

Used by STARPU_PER_ARCH. Take a task, an arch and implementation number, and must return a task duration
estimation in micro-seconds on that arch.

57.29.2.7.1.4 worker_cost_function double(∗ starpu_perfmodel::worker_cost_function) (struct

starpu_task ∗, unsigned workerid, unsigned nimpl)

Used by STARPU_PER_WORKER. Take a task, a worker id and implementation number, and must return a task
duration estimation in micro-seconds on that worker.

57.29.2.7.1.5 size_base size_t(∗ starpu_perfmodel::size_base) (struct starpu_task ∗, unsigned

nimpl)

Used by STARPU_HISTORY_BASED, STARPU_REGRESSION_BASED and STARPU_NL_REGRESSION_BASED.
If not NULL, take a task and implementation number, and return the size to be used as index to distinguish histories
and as a base for regressions.

Generated by Doxygen

57.29 Performance Model 607

57.29.2.7.1.6 footprint uint32_t(∗ starpu_perfmodel::footprint) (struct starpu_task ∗)
Used by STARPU_HISTORY_BASED. If not NULL, take a task and return the footprint to be used as index to
distinguish histories. The default is to use the starpu_task_data_footprint() function.

57.29.2.7.1.7 symbol const char∗ starpu_perfmodel::symbol

symbol name for the performance model, which will be used as file name to store the model. It must be set otherwise
the model will be ignored.

57.29.2.7.1.8 path char∗ starpu_perfmodel::path

name of the file storing the performance model. It is non NULL if the model has been loaded or stored in a file.

57.29.2.7.1.9 is_loaded unsigned starpu_perfmodel::is_loaded [private]

Whether the performance model is already loaded from the disk.

57.29.2.7.1.10 parameters_names const char∗∗ starpu_perfmodel::parameters_names [private]

Names of parameters used for multiple linear regression models (M, N, K)

57.29.2.7.1.11 nparameters unsigned starpu_perfmodel::nparameters [private]

Number of parameters used for multiple linear regression models

57.29.2.7.1.12 combinations unsigned∗∗ starpu_perfmodel::combinations [private]

Table of combinations of parameters (and the exponents) used for multiple linear regression models

57.29.2.7.1.13 ncombinations unsigned starpu_perfmodel::ncombinations [private]

Number of combination of parameters used for multiple linear regression models

57.29.3 Enumeration Type Documentation

57.29.3.1 starpu_perfmodel_type

enum starpu_perfmodel_type

todo

Enumerator

STARPU_PER_WORKER Application-provided per-worker cost model function

STARPU_PER_ARCH Application-provided per-arch cost model function

STARPU_COMMON Application-provided common cost model function, with
per-arch factor

STARPU_HISTORY_BASED Automatic history-based cost model

STARPU_REGRESSION_BASED Automatic linear regression-based cost model (alpha ∗ size ∧

beta)

STARPU_NL_REGRESSION_BASED Automatic non-linear regression-based cost model (a ∗ size
∧ b + c)

STARPU_MULTIPLE_REGRESSION_BASED Automatic multiple linear regression-based cost model.
Application provides parameters, their combinations and
exponents.

57.29.4 Function Documentation

Generated by Doxygen

608 Module Documentation a.k.a StarPU’s API

57.29.4.1 starpu_perfmodel_init()

void starpu_perfmodel_init (

struct starpu_perfmodel ∗ model)

Initialize the model performance model structure. This is automatically called when e.g. submitting a task using a
codelet using this performance model.

57.29.4.2 starpu_perfmodel_deinit()

int starpu_perfmodel_deinit (

struct starpu_perfmodel ∗ model)

Deinitialize the model performance model structure. You need to call this before deallocating the structure. You
will probably want to call starpu_perfmodel_unload_model() before calling this function, to save the perfmodel.

57.29.4.3 starpu_energy_start()

int starpu_energy_start (

int workerid,

enum starpu_worker_archtype archi)

starpu_energy_start - start counting hardware events in an event set

• workerid is the worker on which calibration is to be performed (in the case of GPUs, use -1 for CPUs)

• archi is the type of architecture on which calibration will be run

See Measuring energy and power with StarPU for more details.

57.29.4.4 starpu_energy_stop()

int starpu_energy_stop (

struct starpu_perfmodel ∗ model,

struct starpu_task ∗ task,

unsigned nimpl,

unsigned ntasks,

int workerid,

enum starpu_worker_archtype archi)

starpu_energy_stop - stop counting hardware events in an event set

• model is the energy performance model to be filled with the result

• task is a task specimen, so the performance model folds the result according to the parameter sizes of the
task.

• nimpl is the implementation number run during calibration

• ntasks is the number of tasks run during calibration

• workerid is the worker on which calibration was performed (in the case of GPUs, use -1 for CPUs)

• archi is the type of architecture on which calibration was run

See Measuring energy and power with StarPU for more details.

57.29.4.5 starpu_perfmodel_load_file()

int starpu_perfmodel_load_file (

const char ∗ filename,

struct starpu_perfmodel ∗ model)

Load the performance model found in the file named filename. model has to be completely zero, and will be
filled with the information stored in the given file.

Generated by Doxygen

57.29 Performance Model 609

57.29.4.6 starpu_perfmodel_load_symbol()

int starpu_perfmodel_load_symbol (

const char ∗ symbol,

struct starpu_perfmodel ∗ model)

Load a given performance model. model has to be completely zero, and will be filled with the information stored
in $STARPU_HOME/.starpu. The function is intended to be used by external tools that want to read the perfor-
mance model files.

57.29.4.7 starpu_perfmodel_unload_model()

int starpu_perfmodel_unload_model (

struct starpu_perfmodel ∗ model)

Unload model which has been previously loaded through the function starpu_perfmodel_load_symbol()

57.29.4.8 starpu_save_history_based_model()

void starpu_save_history_based_model (

struct starpu_perfmodel ∗ model)

Save the performance model in its file.

57.29.4.9 starpu_perfmodel_get_model_path()

void starpu_perfmodel_get_model_path (

const char ∗ symbol,

char ∗ path,

size_t maxlen)

Fills path (supposed to be maxlen long) with the full path to the performance model file for symbol symbol.
This path can later on be used for instance with starpu_perfmodel_load_file() .

57.29.4.10 starpu_perfmodel_dump_xml()

void starpu_perfmodel_dump_xml (

FILE ∗ output,

struct starpu_perfmodel ∗ model)

Dump performance model model to output stream output, in XML format. See Performance Model Example for
more details.

57.29.4.11 starpu_perfmodel_free_sampling()

void starpu_perfmodel_free_sampling (

void)

Free internal memory used for sampling management. It should only be called by an application which is not
calling starpu_shutdown() as this function already calls it. See for example tools/starpu_perfmodel_←↩

display.c.

57.29.4.12 starpu_worker_get_perf_archtype()

struct starpu_perfmodel_arch ∗ starpu_worker_get_perf_archtype (

int workerid,

unsigned sched_ctx_id)

Return the architecture type of the worker workerid.

57.29.4.13 starpu_perfmodel_debugfilepath()

void starpu_perfmodel_debugfilepath (

struct starpu_perfmodel ∗ model,

struct starpu_perfmodel_arch ∗ arch,

char ∗ path,

Generated by Doxygen

610 Module Documentation a.k.a StarPU’s API

size_t maxlen,

unsigned nimpl)

Return the path to the debugging information for the performance model.

57.29.4.14 starpu_perfmodel_get_arch_name()

void starpu_perfmodel_get_arch_name (

struct starpu_perfmodel_arch ∗ arch,

char ∗ archname,

size_t maxlen,

unsigned nimpl)

Return the architecture name for arch

57.29.4.15 starpu_perfmodel_history_based_expected_perf()

double starpu_perfmodel_history_based_expected_perf (

struct starpu_perfmodel ∗ model,

struct starpu_perfmodel_arch ∗ arch,

uint32_t footprint)

Return the estimated time in µs of a task with the given model and the given footprint.

57.29.4.16 starpu_perfmodel_initialize()

void starpu_perfmodel_initialize (

void)

If starpu_init() is not used, starpu_perfmodel_initialize() should be used called calling starpu_perfmodel_∗ functions.

57.29.4.17 starpu_perfmodel_list()

int starpu_perfmodel_list (

FILE ∗ output)

Print a list of all performance models on output

57.29.4.18 starpu_perfmodel_update_history()

void starpu_perfmodel_update_history (

struct starpu_perfmodel ∗ model,

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned cpuid,

unsigned nimpl,

double measured)

Feed the performance model model with one explicit measurement (in µs or J), in addition to measurements done
by StarPU itself. This can be useful when the application already has an existing set of measurements done in good
conditions, that StarPU could benefit from instead of doing on-line measurements. An example of use can be seen
in Performance Model Example.
Note that this records only one measurement, and StarPU would ignore the first measurement (since it is usually
disturbed by library loading etc.). Make sure to call this function several times to record all your measurements.
You can also call starpu_perfmodel_update_history_n() to directly provide an average performed on several tasks.
See Performance Model Calibration for more details.

57.29.4.19 starpu_perfmodel_update_history_n()

void starpu_perfmodel_update_history_n (

struct starpu_perfmodel ∗ model,

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned cpuid,

Generated by Doxygen

57.29 Performance Model 611

unsigned nimpl,

double average_measured,

unsigned number)

Feed the performance model model with an explicit average measurement (in µs or J).
This is similar to starpu_perfmodel_update_history(), but records a batch of number measurements provided as
the average of the measurements average_measured.

57.29.4.20 starpu_perfmodel_directory()

void starpu_perfmodel_directory (

FILE ∗ output)

Print the directory name storing performance models on output

57.29.4.21 starpu_bus_print_bandwidth()

void starpu_bus_print_bandwidth (

FILE ∗ f)

Print a matrix of bus bandwidths on f.

57.29.4.22 starpu_bus_print_affinity()

void starpu_bus_print_affinity (

FILE ∗ f)

Print the affinity devices on f.

57.29.4.23 starpu_bus_print_filenames()

void starpu_bus_print_filenames (

FILE ∗ f)

Print on f the name of the files containing the matrix of bus bandwidths, the affinity devices and the latency.

57.29.4.24 starpu_transfer_bandwidth()

double starpu_transfer_bandwidth (

unsigned src_node,

unsigned dst_node)

Return the bandwidth of data transfer between two memory nodes. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.29.4.25 starpu_transfer_latency()

double starpu_transfer_latency (

unsigned src_node,

unsigned dst_node)

Return the latency of data transfer between two memory nodes. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.29.4.26 starpu_transfer_predict()

double starpu_transfer_predict (

unsigned src_node,

unsigned dst_node,

size_t size)

Return the estimated time to transfer a given size between two memory nodes. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.29.5 Variable Documentation

Generated by Doxygen

612 Module Documentation a.k.a StarPU’s API

57.29.5.1 starpu_perfmodel_nop

struct starpu_perfmodel starpu_perfmodel_nop [extern]

Performance model which just always return 1µs.

Generated by Doxygen

57.30 Performance Steering Knobs 613

57.30 Performance Steering Knobs

API to access performance steering counters.

API

• enum starpu_perf_knob_scope { starpu_perf_knob_scope_undefined , starpu_perf_knob_scope_global ,
starpu_perf_knob_scope_per_worker , starpu_perf_knob_scope_per_scheduler }

• enum starpu_perf_knob_type {
starpu_perf_knob_type_undefined , starpu_perf_knob_type_int32 , starpu_perf_knob_type_int64 ,
starpu_perf_knob_type_float ,
starpu_perf_knob_type_double }

Scope Related Routines

• int starpu_perf_knob_scope_name_to_id (const char ∗name)
• const char ∗ starpu_perf_knob_scope_id_to_name (enum starpu_perf_knob_scope scope)

Type Related Routines

• int starpu_perf_knob_type_name_to_id (const char ∗name)
• const char ∗ starpu_perf_knob_type_id_to_name (enum starpu_perf_knob_type type)

Performance Steering Knob Related Routines

• int starpu_perf_knob_nb (enum starpu_perf_knob_scope scope)
• int starpu_perf_knob_name_to_id (enum starpu_perf_knob_scope scope, const char ∗name)
• int starpu_perf_knob_nth_to_id (enum starpu_perf_knob_scope scope, int nth)
• const char ∗ starpu_perf_knob_id_to_name (int id)
• int starpu_perf_knob_get_type_id (int id)
• const char ∗ starpu_perf_knob_get_help_string (int id)
• void starpu_perf_knob_list_avail (enum starpu_perf_knob_scope scope)
• void starpu_perf_knob_list_all_avail (void)
• int32_t starpu_perf_knob_get_global_int32_value (const int knob_id)
• int64_t starpu_perf_knob_get_global_int64_value (const int knob_id)
• float starpu_perf_knob_get_global_float_value (const int knob_id)
• double starpu_perf_knob_get_global_double_value (const int knob_id)
• void starpu_perf_knob_set_global_int32_value (const int knob_id, int32_t new_value)
• void starpu_perf_knob_set_global_int64_value (const int knob_id, int64_t new_value)
• void starpu_perf_knob_set_global_float_value (const int knob_id, float new_value)
• void starpu_perf_knob_set_global_double_value (const int knob_id, double new_value)
• int32_t starpu_perf_knob_get_per_worker_int32_value (const int knob_id, unsigned workerid)
• int64_t starpu_perf_knob_get_per_worker_int64_value (const int knob_id, unsigned workerid)
• float starpu_perf_knob_get_per_worker_float_value (const int knob_id, unsigned workerid)
• double starpu_perf_knob_get_per_worker_double_value (const int knob_id, unsigned workerid)
• void starpu_perf_knob_set_per_worker_int32_value (const int knob_id, unsigned workerid, int32_t new_←↩

value)
• void starpu_perf_knob_set_per_worker_int64_value (const int knob_id, unsigned workerid, int64_t new_←↩

value)
• void starpu_perf_knob_set_per_worker_float_value (const int knob_id, unsigned workerid, float new_value)
• void starpu_perf_knob_set_per_worker_double_value (const int knob_id, unsigned workerid, double new_←↩

value)
• int32_t starpu_perf_knob_get_per_scheduler_int32_value (const int knob_id, const char ∗sched_policy_←↩

name)
• int64_t starpu_perf_knob_get_per_scheduler_int64_value (const int knob_id, const char ∗sched_policy_←↩

name)

Generated by Doxygen

614 Module Documentation a.k.a StarPU’s API

• float starpu_perf_knob_get_per_scheduler_float_value (const int knob_id, const char ∗sched_policy_name)
• double starpu_perf_knob_get_per_scheduler_double_value (const int knob_id, const char ∗sched_policy_←↩

name)
• void starpu_perf_knob_set_per_scheduler_int32_value (const int knob_id, const char ∗sched_policy_name,

int32_t new_value)
• void starpu_perf_knob_set_per_scheduler_int64_value (const int knob_id, const char ∗sched_policy_name,

int64_t new_value)
• void starpu_perf_knob_set_per_scheduler_float_value (const int knob_id, const char ∗sched_policy_name,

float new_value)
• void starpu_perf_knob_set_per_scheduler_double_value (const int knob_id, const char ∗sched_policy_←↩

name, double new_value)

57.30.1 Detailed Description

API to access performance steering counters.

57.30.2 Enumeration Type Documentation

57.30.2.1 starpu_perf_knob_scope

enum starpu_perf_knob_scope

Enum of all possible performance knob scopes.

Enumerator

starpu_perf_knob_scope_undefined undefined scope

starpu_perf_knob_scope_global global scope

starpu_perf_knob_scope_per_worker per-worker scope

starpu_perf_knob_scope_per_scheduler per-scheduler scope

57.30.2.2 starpu_perf_knob_type

enum starpu_perf_knob_type

Enum of all possible performance knob value type.

Enumerator

starpu_perf_knob_type_undefined undefined value type

starpu_perf_knob_type_int32 signed 32-bit integer value

starpu_perf_knob_type_int64 signed 64-bit integer value

starpu_perf_knob_type_float 32-bit single precision floating-point value

starpu_perf_knob_type_double 64-bit double precision floating-point value

57.30.3 Function Documentation

57.30.3.1 starpu_perf_knob_scope_name_to_id()

int starpu_perf_knob_scope_name_to_id (

const char ∗ name)

Generated by Doxygen

57.30 Performance Steering Knobs 615

Translate scope name constant string to scope id.

57.30.3.2 starpu_perf_knob_scope_id_to_name()

const char ∗ starpu_perf_knob_scope_id_to_name (

enum starpu_perf_knob_scope scope)

Translate scope id to scope name constant string.

57.30.3.3 starpu_perf_knob_type_name_to_id()

int starpu_perf_knob_type_name_to_id (

const char ∗ name)

Translate type name constant string to type id.

57.30.3.4 starpu_perf_knob_type_id_to_name()

const char ∗ starpu_perf_knob_type_id_to_name (

enum starpu_perf_knob_type type)

Translate type id to type name constant string.

57.30.3.5 starpu_perf_knob_nb()

int starpu_perf_knob_nb (

enum starpu_perf_knob_scope scope)

Return the number of performance steering knobs for the given scope.

57.30.3.6 starpu_perf_knob_name_to_id()

int starpu_perf_knob_name_to_id (

enum starpu_perf_knob_scope scope,

const char ∗ name)

Translate a performance knob name to its id.

57.30.3.7 starpu_perf_knob_nth_to_id()

int starpu_perf_knob_nth_to_id (

enum starpu_perf_knob_scope scope,

int nth)

Translate a performance knob name to its id.

57.30.3.8 starpu_perf_knob_id_to_name()

const char ∗ starpu_perf_knob_id_to_name (

int id)

Translate a performance knob rank in its scope to its knob id.

57.30.3.9 starpu_perf_knob_get_type_id()

int starpu_perf_knob_get_type_id (

int id)

Translate a knob id to its name constant string.

57.30.3.10 starpu_perf_knob_get_help_string()

const char ∗ starpu_perf_knob_get_help_string (

int id)

Return the knob's help string.

Generated by Doxygen

616 Module Documentation a.k.a StarPU’s API

57.30.3.11 starpu_perf_knob_list_avail()

void starpu_perf_knob_list_avail (

enum starpu_perf_knob_scope scope)

Display the list of knobs defined in the given scope.

57.30.3.12 starpu_perf_knob_list_all_avail()

void starpu_perf_knob_list_all_avail (

void)

Display the list of knobs defined in all scopes.

57.30.3.13 starpu_perf_knob_get_global_int32_value()

int32_t starpu_perf_knob_get_global_int32_value (

const int knob_id)

Get knob value for Global scope.

57.30.3.14 starpu_perf_knob_get_global_int64_value()

int64_t starpu_perf_knob_get_global_int64_value (

const int knob_id)

Get knob value for Global scope.

57.30.3.15 starpu_perf_knob_get_global_float_value()

float starpu_perf_knob_get_global_float_value (

const int knob_id)

Get knob value for Global scope.

57.30.3.16 starpu_perf_knob_get_global_double_value()

double starpu_perf_knob_get_global_double_value (

const int knob_id)

Get knob value for Global scope.

57.30.3.17 starpu_perf_knob_set_global_int32_value()

void starpu_perf_knob_set_global_int32_value (

const int knob_id,

int32_t new_value)

Set int32 knob value for Global scope.

57.30.3.18 starpu_perf_knob_set_global_int64_value()

void starpu_perf_knob_set_global_int64_value (

const int knob_id,

int64_t new_value)

Set int64 knob value for Global scope.

57.30.3.19 starpu_perf_knob_set_global_float_value()

void starpu_perf_knob_set_global_float_value (

const int knob_id,

float new_value)

Set float knob value for Global scope.

Generated by Doxygen

57.30 Performance Steering Knobs 617

57.30.3.20 starpu_perf_knob_set_global_double_value()

void starpu_perf_knob_set_global_double_value (

const int knob_id,

double new_value)

Set double knob value for Global scope.

57.30.3.21 starpu_perf_knob_get_per_worker_int32_value()

int32_t starpu_perf_knob_get_per_worker_int32_value (

const int knob_id,

unsigned workerid)

Get int32 value for Per_worker scope.

57.30.3.22 starpu_perf_knob_get_per_worker_int64_value()

int64_t starpu_perf_knob_get_per_worker_int64_value (

const int knob_id,

unsigned workerid)

Get int64 value for Per_worker scope.

57.30.3.23 starpu_perf_knob_get_per_worker_float_value()

float starpu_perf_knob_get_per_worker_float_value (

const int knob_id,

unsigned workerid)

Get float value for Per_worker scope.

57.30.3.24 starpu_perf_knob_get_per_worker_double_value()

double starpu_perf_knob_get_per_worker_double_value (

const int knob_id,

unsigned workerid)

Get double value for Per_worker scope.

57.30.3.25 starpu_perf_knob_set_per_worker_int32_value()

void starpu_perf_knob_set_per_worker_int32_value (

const int knob_id,

unsigned workerid,

int32_t new_value)

Set int32 value for Per_worker scope.

57.30.3.26 starpu_perf_knob_set_per_worker_int64_value()

void starpu_perf_knob_set_per_worker_int64_value (

const int knob_id,

unsigned workerid,

int64_t new_value)

Set int64 value for Per_worker scope.

57.30.3.27 starpu_perf_knob_set_per_worker_float_value()

void starpu_perf_knob_set_per_worker_float_value (

const int knob_id,

unsigned workerid,

float new_value)

Set float value for Per_worker scope.

Generated by Doxygen

618 Module Documentation a.k.a StarPU’s API

57.30.3.28 starpu_perf_knob_set_per_worker_double_value()

void starpu_perf_knob_set_per_worker_double_value (

const int knob_id,

unsigned workerid,

double new_value)

Set double value for Per_worker scope.

57.30.3.29 starpu_perf_knob_get_per_scheduler_int32_value()

int32_t starpu_perf_knob_get_per_scheduler_int32_value (

const int knob_id,

const char ∗ sched_policy_name)

Get int32 value for per_scheduler scope.

57.30.3.30 starpu_perf_knob_get_per_scheduler_int64_value()

int64_t starpu_perf_knob_get_per_scheduler_int64_value (

const int knob_id,

const char ∗ sched_policy_name)

Get int64 value for per_scheduler scope.

57.30.3.31 starpu_perf_knob_get_per_scheduler_float_value()

float starpu_perf_knob_get_per_scheduler_float_value (

const int knob_id,

const char ∗ sched_policy_name)

Get float value for per_scheduler scope.

57.30.3.32 starpu_perf_knob_get_per_scheduler_double_value()

double starpu_perf_knob_get_per_scheduler_double_value (

const int knob_id,

const char ∗ sched_policy_name)

Get double value for per_scheduler scope.

57.30.3.33 starpu_perf_knob_set_per_scheduler_int32_value()

void starpu_perf_knob_set_per_scheduler_int32_value (

const int knob_id,

const char ∗ sched_policy_name,

int32_t new_value)

Set int32 value for per_scheduler scope.

57.30.3.34 starpu_perf_knob_set_per_scheduler_int64_value()

void starpu_perf_knob_set_per_scheduler_int64_value (

const int knob_id,

const char ∗ sched_policy_name,

int64_t new_value)

Set int64 value for per_scheduler scope.

57.30.3.35 starpu_perf_knob_set_per_scheduler_float_value()

void starpu_perf_knob_set_per_scheduler_float_value (

const int knob_id,

const char ∗ sched_policy_name,

float new_value)

Set float value for per_scheduler scope.

Generated by Doxygen

57.30 Performance Steering Knobs 619

57.30.3.36 starpu_perf_knob_set_per_scheduler_double_value()

void starpu_perf_knob_set_per_scheduler_double_value (

const int knob_id,

const char ∗ sched_policy_name,

double new_value)

Set double value for per_scheduler scope.

Generated by Doxygen

620 Module Documentation a.k.a StarPU’s API

57.31 Profiling

Data Structures

• struct starpu_profiling_task_info
• struct starpu_profiling_worker_info
• struct starpu_profiling_bus_info

Macros

• #define STARPU_PROFILING_DISABLE
• #define STARPU_PROFILING_ENABLE
• #define STARPU_NS_PER_S
• #define starpu_timespec_cmp(a, b, CMP)

Functions

• void starpu_profiling_init (void)
• void starpu_profiling_set_id (int new_id)
• int starpu_profiling_status_set (int status)
• int starpu_profiling_status_get (void)
• int starpu_profiling_worker_get_info (int workerid, struct starpu_profiling_worker_info ∗worker_info)
• int starpu_bus_get_count (void)
• int starpu_bus_get_id (int src, int dst)
• int starpu_bus_get_src (int busid)
• int starpu_bus_get_dst (int busid)
• void starpu_bus_set_direct (int busid, int direct)
• int starpu_bus_get_direct (int busid)
• void starpu_bus_set_ngpus (int busid, int ngpus)
• int starpu_bus_get_ngpus (int busid)
• int starpu_bus_get_profiling_info (int busid, struct starpu_profiling_bus_info ∗bus_info)
• static __starpu_inline void starpu_timespec_clear (struct timespec ∗tsp)
• static __starpu_inline void starpu_timespec_add (struct timespec ∗a, struct timespec ∗b, struct timespec
∗result)

• static __starpu_inline void starpu_timespec_accumulate (struct timespec ∗result, struct timespec ∗a)
• static __starpu_inline void starpu_timespec_sub (const struct timespec ∗a, const struct timespec ∗b, struct

timespec ∗result)
• double starpu_timing_timespec_delay_us (struct timespec ∗start, struct timespec ∗end)
• double starpu_timing_timespec_to_us (struct timespec ∗ts)
• void starpu_profiling_bus_helper_display_summary (void)
• void starpu_profiling_worker_helper_display_summary (void)
• void starpu_data_display_memory_stats (void)

57.31.1 Detailed Description

57.31.2 Data Structure Documentation

57.31.2.1 struct starpu_profiling_task_info

Information about the execution of a task. It is accessible from the field starpu_task::profiling_info if profiling was
enabled.

Data Fields

struct timespec submit_time Date of task submission (relative to the initialization of StarPU).

struct timespec push_start_time Time when the task was submitted to the scheduler.

struct timespec push_end_time Time when the scheduler finished with the task submission.

Generated by Doxygen

57.31 Profiling 621

Data Fields

struct timespec pop_start_time Time when the scheduler started to be requested for a task, and
eventually gave that task.

struct timespec pop_end_time Time when the scheduler finished providing the task for
execution.

struct timespec acquire_data_start_time Time when the worker started fetching input data.

struct timespec acquire_data_end_time Time when the worker finished fetching input data.

struct timespec start_time Date of task execution beginning (relative to the initialization of
StarPU).

struct timespec end_time Date of task execution termination (relative to the initialization of
StarPU).

struct timespec release_data_start_time Time when the worker started releasing data.

struct timespec release_data_end_time Time when the worker finished releasing data.

struct timespec callback_start_time Time when the worker started the application callback for the
task.

struct timespec callback_end_time Time when the worker finished the application callback for the
task.

int workerid Identifier of the worker which has executed the task.
uint64_t used_cycles Number of cycles used by the task, only available in the MoviSim

uint64_t stall_cycles Number of cycles stalled within the task, only available in the
MoviSim

double energy_consumed Energy consumed by the task, in Joules

57.31.2.2 struct starpu_profiling_worker_info

Profiling information associated to a worker. The timing is provided since the previous call to starpu_profiling_worker_get_info().
The executing_time, callback_time, waiting_time, sleeping_time, and scheduling_time are exclusive to each other,
i.e. they can be added up, their sum is smaller than total_time. The difference between total_time and the sum is
the uncategorized runtime overhead.

Data Fields

struct timespec start_time Starting date for the reported profiling measurements.

struct timespec total_time Duration of the profiling measurement interval.

struct timespec executing_time Time spent by the worker to execute tasks during the profiling
measurement interval.

struct timespec callback_time Time spent by the worker to execute callbacks, while not executing a
task, during the profiling measurement interval.

struct timespec waiting_time Time spent by the worker waiting for a data transfer to finish, while
not executing a task or a callback, during the profiling measurement
interval.

struct timespec sleeping_time Time spent idling by the worker because no task were available, and
not executing a task or a callback or waiting for a data transfer to
finish, during the profiling measurement interval.

struct timespec scheduling_time Time spent by the worker scheduling tasks, while not executing a
task or a callback or waiting for a data transfer to finish, and there are
tasks to be scheduled, during the profiling measurement interval.

struct timespec all_executing_time Time spent by the worker to execute tasks during the profiling
measurement interval. Normally always equal to executing_time.

struct timespec all_callback_time Time spent by the worker to execute callbacks during the profiling
measurement interval. Normally always greater than callback_time.

Generated by Doxygen

622 Module Documentation a.k.a StarPU’s API

Data Fields

struct timespec all_waiting_time Time spent by the worker waiting for a data transfer to finish during
the profiling measurement interval. Normally always greater than
waiting_time.

struct timespec all_sleeping_time Time spent idling by the worker because no task were available
during the profiling measurement interval. Normally always greater
than sleeping_time.

struct timespec all_scheduling_time Time spent by the worker scheduling tasks during the profiling
measurement interval. Normally always greater than
scheduling_time.

int executed_tasks Number of tasks executed by the worker during the profiling
measurement interval.

uint64_t used_cycles Number of cycles used by the worker, only available in the MoviSim

uint64_t stall_cycles Number of cycles stalled within the worker, only available in the
MoviSim

double energy_consumed Energy consumed by the worker, in Joules

double flops

57.31.2.3 struct starpu_profiling_bus_info

todo

Data Fields

struct timespec start_time Time of bus profiling startup.

struct timespec total_time Total time of bus profiling.

int long long transferred_bytes Number of bytes transferred during profiling.

int transfer_count Number of transfers during profiling.

57.31.3 Macro Definition Documentation

57.31.3.1 STARPU_PROFILING_DISABLE

#define STARPU_PROFILING_DISABLE

Used when calling the function starpu_profiling_status_set() to disable profiling.

57.31.3.2 STARPU_PROFILING_ENABLE

#define STARPU_PROFILING_ENABLE

Used when calling the function starpu_profiling_status_set() to enable profiling.

57.31.4 Function Documentation

57.31.4.1 starpu_profiling_init()

void starpu_profiling_init (

void)

Reset performance counters and enable profiling if the environment variable STARPU_PROFILING is set to a posi-
tive value. See Enabling On-line Performance Monitoring for more details.

Generated by Doxygen

57.31 Profiling 623

57.31.4.2 starpu_profiling_set_id()

void starpu_profiling_set_id (

int new_id)

Set the ID used for profiling trace filename. Has to be called before starpu_init(). See Tracing MPI applications for
more details.

57.31.4.3 starpu_profiling_status_set()

int starpu_profiling_status_set (

int status)

Set the profiling status. Profiling is activated by passing STARPU_PROFILING_ENABLE in status. Passing
STARPU_PROFILING_DISABLE disables profiling. Calling this function resets all profiling measurements. When
profiling is enabled, the field starpu_task::profiling_info points to a valid structure starpu_profiling_task_info contain-
ing information about the execution of the task. Negative return values indicate an error, otherwise the previous
status is returned. See Enabling On-line Performance Monitoring for more details.

57.31.4.4 starpu_profiling_status_get()

int starpu_profiling_status_get (

void)

Return the current profiling status or a negative value in case there was an error. See Enabling On-line Performance Monitoring
for more details.

57.31.4.5 starpu_profiling_worker_get_info()

int starpu_profiling_worker_get_info (

int workerid,

struct starpu_profiling_worker_info ∗ worker_info)

Get the profiling info associated to the worker identified by workerid, and reset the profiling measurements. If the
argument worker_info is NULL, only reset the counters associated to worker workerid. Upon successful
completion, this function returns 0. Otherwise, a negative value is returned. See Per-worker Feedback for more
details.

57.31.4.6 starpu_bus_get_count()

int starpu_bus_get_count (

void)

Return the number of buses in the machine. See Hardware Topology for more details.

57.31.4.7 starpu_bus_get_id()

int starpu_bus_get_id (

int src,

int dst)

Return the identifier of the bus between src and dst. See Hardware Topology for more details.

57.31.4.8 starpu_bus_get_src()

int starpu_bus_get_src (

int busid)

Return the source point of bus busid. See Hardware Topology for more details.

57.31.4.9 starpu_bus_get_dst()

int starpu_bus_get_dst (

int busid)

Return the destination point of bus busid. See Hardware Topology for more details.

Generated by Doxygen

624 Module Documentation a.k.a StarPU’s API

57.31.4.10 starpu_bus_set_direct()

void starpu_bus_set_direct (

int busid,

int direct)

See Hardware Topology for more details.

57.31.4.11 starpu_bus_get_direct()

int starpu_bus_get_direct (

int busid)

See Hardware Topology for more details.

57.31.4.12 starpu_bus_set_ngpus()

void starpu_bus_set_ngpus (

int busid,

int ngpus)

See Hardware Topology for more details.

57.31.4.13 starpu_bus_get_ngpus()

int starpu_bus_get_ngpus (

int busid)

See Hardware Topology for more details.

57.31.4.14 starpu_bus_get_profiling_info()

int starpu_bus_get_profiling_info (

int busid,

struct starpu_profiling_bus_info ∗ bus_info)

See _starpu_profiling_bus_helper_display_summary in src/profiling/profiling_helpers.c for a usage example. Note
that calling starpu_bus_get_profiling_info() resets the counters to zero. See Feedback Figures for more details.

57.31.4.15 starpu_timing_timespec_delay_us()

double starpu_timing_timespec_delay_us (

struct timespec ∗ start,

struct timespec ∗ end)

Return the time elapsed between start and end in microseconds. See Per-task Feedback for more details.

57.31.4.16 starpu_timing_timespec_to_us()

double starpu_timing_timespec_to_us (

struct timespec ∗ ts)

Convert the given timespec ts into microseconds. See Per-task Feedback for more details.

57.31.4.17 starpu_profiling_bus_helper_display_summary()

void starpu_profiling_bus_helper_display_summary (

void)

Display statistics about the bus on stderr. if the environment variable STARPU_BUS_STATS is defined. The
function is called automatically by starpu_shutdown(). See Data Statistics for more details.

57.31.4.18 starpu_profiling_worker_helper_display_summary()

void starpu_profiling_worker_helper_display_summary (

void)

Display statistic about the workers on stderr if the environment variable STARPU_WORKER_STATS is defined.
The function is called automatically by starpu_shutdown(). See Data Statistics for more details.

Generated by Doxygen

57.31 Profiling 625

57.31.4.19 starpu_data_display_memory_stats()

void starpu_data_display_memory_stats (

void)

Display statistics about the current data handles registered within StarPU. StarPU must have been configured with
the configure option --enable-memory-stats (see Memory Feedback). See Memory Feedback for more details.

Generated by Doxygen

626 Module Documentation a.k.a StarPU’s API

57.32 Profiling Tool

Data Structures

• struct starpu_prof_tool_info
• union starpu_prof_tool_event_info
• struct starpu_prof_tool_api_info

Typedefs

• typedef void(∗ starpu_prof_tool_cb_func) (struct starpu_prof_tool_info ∗, union starpu_prof_tool_event_info
∗, struct starpu_prof_tool_api_info ∗)

• typedef void(∗ starpu_prof_tool_entry_register_func) (enum starpu_prof_tool_event event_type, starpu_←↩

prof_tool_cb_func cb, enum starpu_prof_tool_command info)
• typedef void(∗ starpu_prof_tool_entry_func) (starpu_prof_tool_entry_register_func reg, starpu_prof_tool_entry_register_func

unreg)

Enumerations

• enum starpu_prof_tool_event {
starpu_prof_tool_event_none , starpu_prof_tool_event_init , starpu_prof_tool_event_terminate ,
starpu_prof_tool_event_init_begin ,
starpu_prof_tool_event_init_end , starpu_prof_tool_event_driver_init , starpu_prof_tool_event_←↩

driver_deinit , starpu_prof_tool_event_driver_init_start ,
starpu_prof_tool_event_driver_init_end , starpu_prof_tool_event_start_cpu_exec , starpu_prof_←↩

tool_event_end_cpu_exec , starpu_prof_tool_event_start_gpu_exec ,
starpu_prof_tool_event_end_gpu_exec , starpu_prof_tool_event_start_transfer , starpu_prof_tool_←↩

event_end_transfer , starpu_prof_tool_event_user_start ,
starpu_prof_tool_event_user_end }

• enum starpu_prof_tool_driver_type { starpu_prof_tool_driver_cpu , starpu_prof_tool_driver_gpu ,
starpu_prof_tool_driver_hip , starpu_prof_tool_driver_ocl }

• enum starpu_prof_tool_command { starpu_prof_tool_command_reg , starpu_prof_tool_command_←↩

toggle , starpu_prof_tool_command_toggle_per_thread }

57.32.1 Detailed Description

57.32.2 Data Structure Documentation

57.32.2.1 struct starpu_prof_tool_info

General information

Data Fields

struct starpu_conf ∗ conf

enum starpu_prof_tool_event event_type

unsigned int starpu_version[3]

int thread_id
int worker_id
int device_number

enum starpu_prof_tool_driver_type driver_type

unsigned memnode

unsigned bytes_to_transfer

unsigned bytes_transfered

void ∗ fun_ptr

Generated by Doxygen

57.32 Profiling Tool 627

57.32.2.2 union starpu_prof_tool_event_info

Event info

Data Fields

enum starpu_prof_tool_event event_type

57.32.2.3 struct starpu_prof_tool_api_info

API info

57.32.3 Typedef Documentation

57.32.3.1 starpu_prof_tool_entry_register_func

typedef void(∗ starpu_prof_tool_entry_register_func) (enum starpu_prof_tool_event event_type,

starpu_prof_tool_cb_func cb, enum starpu_prof_tool_command info)

Register / unregister events

57.32.3.2 starpu_prof_tool_entry_func

typedef void(∗ starpu_prof_tool_entry_func) (starpu_prof_tool_entry_register_func reg, starpu_prof_tool_entry_register_func

unreg)

A function with this signature must be implemented by external tools that want to use the callbacks

57.32.4 Enumeration Type Documentation

57.32.4.1 starpu_prof_tool_event

enum starpu_prof_tool_event

Event type

57.32.4.2 starpu_prof_tool_driver_type

enum starpu_prof_tool_driver_type

todo

57.32.4.3 starpu_prof_tool_command

enum starpu_prof_tool_command

todo

Generated by Doxygen

628 Module Documentation a.k.a StarPU’s API

57.33 Random Functions

Macros

• #define starpu_seed(seed)
• #define starpu_srand48(seed)
• #define starpu_drand48()
• #define starpu_lrand48()
• #define starpu_erand48(xsubi)
• #define starpu_srand48_r(seed, buffer)
• #define starpu_erand48_r(xsubi, buffer, result)

Typedefs

• typedef int starpu_drand48_data

57.33.1 Detailed Description

Generated by Doxygen

57.34 Running Drivers 629

57.34 Running Drivers

Data Structures

• struct starpu_driver
• union starpu_driver.id

Functions

• void starpu_drivers_preinit (void)
• int starpu_driver_run (struct starpu_driver ∗d)
• void starpu_drivers_request_termination (void)
• int starpu_driver_init (struct starpu_driver ∗d)
• int starpu_driver_run_once (struct starpu_driver ∗d)
• int starpu_driver_deinit (struct starpu_driver ∗d)

57.34.1 Detailed Description

57.34.2 Data Structure Documentation

57.34.2.1 struct starpu_driver

structure for designating a given driver. See Using The Driver API for more details.

Data Fields

enum starpu_worker_archtype type Type of the driver. Only STARPU_CPU_WORKER,
STARPU_CUDA_WORKER and STARPU_OPENCL_WORKER are
currently supported.

union starpu_driver.id id Identifier of the driver.

57.34.2.2 union starpu_driver.id

Identifier of the driver.

Data Fields

unsigned cpu_id

unsigned cuda_id

unsigned hip_id

cl_device_id opencl_id

57.34.3 Function Documentation

57.34.3.1 starpu_drivers_preinit()

void starpu_drivers_preinit (

void)

Pre-initialize drivers So as to register information on device types, memory types, etc. Only use internally by StarPU.

57.34.3.2 starpu_driver_run()

int starpu_driver_run (

Generated by Doxygen

630 Module Documentation a.k.a StarPU’s API

struct starpu_driver ∗ d)

Initialize the given driver, run it until it receives a request to terminate, deinitialize it and return 0 on suc-
cess. Return -EINVAL if starpu_driver::type is not a valid StarPU device type (STARPU_CPU_WORKER,
STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
This is the same as using the following functions: calling starpu_driver_init(), then calling starpu_driver_run_once()
in a loop, and finally starpu_driver_deinit().
See Using The Driver API for more details.

57.34.3.3 starpu_drivers_request_termination()

void starpu_drivers_request_termination (

void)

Notify all running drivers that they should terminate. See Using The Driver API for more details.

57.34.3.4 starpu_driver_init()

int starpu_driver_init (

struct starpu_driver ∗ d)

Initialize the given driver. Return 0 on success, -EINVAL if starpu_driver::type is not a valid starpu_worker_archtype.
See Using The Driver API for more details.

57.34.3.5 starpu_driver_run_once()

int starpu_driver_run_once (

struct starpu_driver ∗ d)

Run the driver once, then return 0 on success, -EINVAL if starpu_driver::type is not a valid starpu_worker_archtype.
See Using The Driver API for more details.

57.34.3.6 starpu_driver_deinit()

int starpu_driver_deinit (

struct starpu_driver ∗ d)

Deinitialize the given driver. Return 0 on success, -EINVAL if starpu_driver::type is not a valid starpu_worker_archtype.
See Using The Driver API for more details.

Generated by Doxygen

57.35 Scheduler Toolbox 631

57.35 Scheduler Toolbox

This is the interface for the scheduler toolbox.

Typedefs

• typedef struct starpu_st_fifo_taskq ∗ starpu_st_fifo_taskq_t
• typedef struct starpu_st_prio_deque ∗ starpu_st_prio_deque_t

Functions

• starpu_st_fifo_taskq_t starpu_st_fifo_taskq_create (void) STARPU_ATTRIBUTE_MALLOC
• void starpu_st_fifo_taskq_init (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_taskq_destroy (starpu_st_fifo_taskq_t fifo)
• int starpu_st_fifo_taskq_empty (starpu_st_fifo_taskq_t fifo)
• double starpu_st_fifo_taskq_get_exp_len_prev_task_list (starpu_st_fifo_taskq_t fifo_queue, struct

starpu_task ∗task, int workerid, int nimpl, int ∗fifo_ntasks)
• unsigned starpu_st_fifo_ntasks_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_ntasks_inc (starpu_st_fifo_taskq_t fifo, int n)
• unsigned ∗ starpu_st_fifo_ntasks_per_priority_get (starpu_st_fifo_taskq_t fifo)
• unsigned starpu_st_fifo_nprocessed_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_nprocessed_inc (starpu_st_fifo_taskq_t fifo, int n)
• double starpu_st_fifo_exp_start_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_exp_start_set (starpu_st_fifo_taskq_t fifo, double exp_start)
• double starpu_st_fifo_exp_end_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_exp_end_set (starpu_st_fifo_taskq_t fifo, double exp_end)
• double starpu_st_fifo_exp_len_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_exp_len_set (starpu_st_fifo_taskq_t fifo, double exp_len)
• void starpu_st_fifo_exp_len_inc (starpu_st_fifo_taskq_t fifo, double exp_len)
• double ∗ starpu_st_fifo_exp_len_per_priority_get (starpu_st_fifo_taskq_t fifo)
• double starpu_st_fifo_pipeline_len_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_pipeline_len_set (starpu_st_fifo_taskq_t fifo, double pipeline_len)
• void starpu_st_fifo_pipeline_len_inc (starpu_st_fifo_taskq_t fifo, double pipeline_len)
• int starpu_st_fifo_taskq_push_sorted_task (starpu_st_fifo_taskq_t fifo_queue, struct starpu_task ∗task)
• int starpu_st_fifo_taskq_push_task (starpu_st_fifo_taskq_t fifo, struct starpu_task ∗task)
• int starpu_st_fifo_taskq_push_back_task (starpu_st_fifo_taskq_t fifo_queue, struct starpu_task ∗task)
• int starpu_st_fifo_taskq_pop_this_task (starpu_st_fifo_taskq_t fifo_queue, int workerid, struct starpu_task
∗task)

• struct starpu_task ∗ starpu_st_fifo_taskq_pop_task (starpu_st_fifo_taskq_t fifo, int workerid)
• struct starpu_task ∗ starpu_st_fifo_taskq_pop_local_task (starpu_st_fifo_taskq_t fifo)
• struct starpu_task ∗ starpu_st_fifo_taskq_pop_first_ready_task (starpu_st_fifo_taskq_t fifo_queue, unsigned

workerid, int num_priorities)
• void starpu_st_prio_deque_init (starpu_st_prio_deque_t pdeque)
• void starpu_st_prio_deque_destroy (starpu_st_prio_deque_t pdeque)
• int starpu_st_prio_deque_is_empty (starpu_st_prio_deque_t pdeque)
• int starpu_st_prio_deque_push_back_task (starpu_st_prio_deque_t pdeque, struct starpu_task ∗task)
• int starpu_st_prio_deque_push_front_task (starpu_st_prio_deque_t pdeque, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_st_prio_deque_pop_task_for_worker (starpu_st_prio_deque_t pdeque, int work-

erid, struct starpu_task ∗∗skipped)
• struct starpu_task ∗ starpu_st_prio_deque_deque_task_for_worker (starpu_st_prio_deque_t pdeque, int

workerid, struct starpu_task ∗∗skipped)
• struct starpu_task ∗ starpu_st_prio_deque_deque_first_ready_task (starpu_st_prio_deque_t pdeque, un-

signed workerid)
• struct starpu_task ∗ starpu_st_prio_deque_pop_task (starpu_st_prio_deque_t pdeque)
• struct starpu_task ∗ starpu_st_prio_deque_highest_task (starpu_st_prio_deque_t pdeque)
• struct starpu_task ∗ starpu_st_prio_deque_pop_back_task (starpu_st_prio_deque_t pdeque)

Generated by Doxygen

632 Module Documentation a.k.a StarPU’s API

• int starpu_st_prio_deque_pop_this_task (starpu_st_prio_deque_t pdeque, int workerid, struct starpu_task
∗task)

• void starpu_st_prio_deque_erase (starpu_st_prio_deque_t pdeque, struct starpu_task ∗task)
• int starpu_st_normalize_prio (int priority, int num_priorities, unsigned sched_ctx_id)
• int starpu_st_non_ready_buffers_count (struct starpu_task ∗task, unsigned worker)
• void starpu_st_non_ready_buffers_size (struct starpu_task ∗task, unsigned worker, size_t ∗non_readyp,

size_t ∗non_loadingp, size_t ∗non_allocatedp)

57.35.1 Detailed Description

This is the interface for the scheduler toolbox.
The definitions of the different queue types below (e.g starpu_st_fifo_taskq_t) are private and are thus not
available outside the StarPU source directory. Hence when defining your own scheduler outside of Star←↩

PU source directory, you should use the functions below. Look for example in the scheduler defined in
examples/cholesky/libmy_dmda.c

57.35.2 Typedef Documentation

57.35.2.1 starpu_st_fifo_taskq_t

typedef struct starpu_st_fifo_taskq∗ starpu_st_fifo_taskq_t

Opaque type for FIFO task queue

57.35.2.2 starpu_st_prio_deque_t

typedef struct starpu_st_prio_deque∗ starpu_st_prio_deque_t

Opaque type for PRIO task queue

57.35.3 Function Documentation

57.35.3.1 starpu_st_fifo_taskq_create()

starpu_st_fifo_taskq_t starpu_st_fifo_taskq_create (

void)

Create a FIFO task queue

57.35.3.2 starpu_st_fifo_ntasks_get()

unsigned starpu_st_fifo_ntasks_get (

starpu_st_fifo_taskq_t fifo)

get the number of tasks currently in the queue

57.35.3.3 starpu_st_fifo_ntasks_inc()

void starpu_st_fifo_ntasks_inc (

starpu_st_fifo_taskq_t fifo,

int n)

increase by n the number of tasks currently in the queue

57.35.3.4 starpu_st_fifo_ntasks_per_priority_get()

unsigned ∗ starpu_st_fifo_ntasks_per_priority_get (

starpu_st_fifo_taskq_t fifo)

get the number of tasks currently in the queue corresponding to each priority

Generated by Doxygen

57.35 Scheduler Toolbox 633

57.35.3.5 starpu_st_fifo_nprocessed_get()

unsigned starpu_st_fifo_nprocessed_get (

starpu_st_fifo_taskq_t fifo)

get the number of tasks that were processed

57.35.3.6 starpu_st_fifo_nprocessed_inc()

void starpu_st_fifo_nprocessed_inc (

starpu_st_fifo_taskq_t fifo,

int n)

increase by n the number of tasks that were processed

57.35.3.7 starpu_st_fifo_exp_start_get()

double starpu_st_fifo_exp_start_get (

starpu_st_fifo_taskq_t fifo)

only meaningful if the queue is only used by a single worker Get the expected start date of next item to do in the
queue (i.e. not started yet). This is thus updated when we start it.

57.35.3.8 starpu_st_fifo_exp_start_set()

void starpu_st_fifo_exp_start_set (

starpu_st_fifo_taskq_t fifo,

double exp_start)

Set the expected start date of next item to do in the queue (i.e. not started yet).

57.35.3.9 starpu_st_fifo_exp_end_get()

double starpu_st_fifo_exp_end_get (

starpu_st_fifo_taskq_t fifo)

get the expected end date of last task in the queue

57.35.3.10 starpu_st_fifo_exp_end_set()

void starpu_st_fifo_exp_end_set (

starpu_st_fifo_taskq_t fifo,

double exp_end)

set the expected end date of last task in the queue

57.35.3.11 starpu_st_fifo_exp_len_get()

double starpu_st_fifo_exp_len_get (

starpu_st_fifo_taskq_t fifo)

get the expected duration of the set of tasks in the queue

57.35.3.12 starpu_st_fifo_exp_len_set()

void starpu_st_fifo_exp_len_set (

starpu_st_fifo_taskq_t fifo,

double exp_len)

set the expected duration of the set of tasks in the queue

57.35.3.13 starpu_st_fifo_exp_len_inc()

void starpu_st_fifo_exp_len_inc (

starpu_st_fifo_taskq_t fifo,

double exp_len)

increase or decrease the expected duration of the set of tasks in the queue

Generated by Doxygen

634 Module Documentation a.k.a StarPU’s API

57.35.3.14 starpu_st_fifo_exp_len_per_priority_get()

double ∗ starpu_st_fifo_exp_len_per_priority_get (

starpu_st_fifo_taskq_t fifo)

get the expected duration of the set of tasks in the queue corresponding to each priority

57.35.3.15 starpu_st_fifo_pipeline_len_get()

double starpu_st_fifo_pipeline_len_get (

starpu_st_fifo_taskq_t fifo)

get the expected duration of what is already pushed to the worker

57.35.3.16 starpu_st_fifo_pipeline_len_set()

void starpu_st_fifo_pipeline_len_set (

starpu_st_fifo_taskq_t fifo,

double pipeline_len)

set the expected duration of what is already pushed to the worker

57.35.3.17 starpu_st_fifo_pipeline_len_inc()

void starpu_st_fifo_pipeline_len_inc (

starpu_st_fifo_taskq_t fifo,

double pipeline_len)

increase the expected duration of what is already pushed to the worker (the value can be negative)

57.35.3.18 starpu_st_fifo_taskq_pop_local_task()

struct starpu_task ∗ starpu_st_fifo_taskq_pop_local_task (

starpu_st_fifo_taskq_t fifo)

This is the same as starpu_st_fifo_taskq_pop_task(), but without checking that the worker will be able to execute
this task. This is useful when the scheduler has already checked it.

57.35.3.19 starpu_st_fifo_taskq_pop_first_ready_task()

struct starpu_task ∗ starpu_st_fifo_taskq_pop_first_ready_task (

starpu_st_fifo_taskq_t fifo_queue,

unsigned workerid,

int num_priorities)

Pop the first task that can be executed on the calling driver and taking into account readiness of data

57.35.3.20 starpu_st_prio_deque_init()

void starpu_st_prio_deque_init (

starpu_st_prio_deque_t pdeque)

all _starpu_prio_deque_pop/deque_task function return a task or a NULL pointer if none are available in O(lg(nb
priorities))

57.35.3.21 starpu_st_prio_deque_is_empty()

int starpu_st_prio_deque_is_empty (

starpu_st_prio_deque_t pdeque)

return 0 iff the struct starpu_st_prio_deque is not empty

57.35.3.22 starpu_st_prio_deque_push_front_task()

int starpu_st_prio_deque_push_front_task (

starpu_st_prio_deque_t pdeque,

struct starpu_task ∗ task)

push a task in O(lg(nb priorities))

Generated by Doxygen

57.35 Scheduler Toolbox 635

57.35.3.23 starpu_st_prio_deque_pop_task_for_worker()

struct starpu_task ∗ starpu_st_prio_deque_pop_task_for_worker (

starpu_st_prio_deque_t pdeque,

int workerid,

struct starpu_task ∗∗ skipped)

deque a task of the higher priority available from the front of the list for the highest priority

57.35.3.24 starpu_st_prio_deque_deque_task_for_worker()

struct starpu_task ∗ starpu_st_prio_deque_deque_task_for_worker (

starpu_st_prio_deque_t pdeque,

int workerid,

struct starpu_task ∗∗ skipped)

return a task that can be executed by workerid from the back of the list for the highest priority

Generated by Doxygen

636 Module Documentation a.k.a StarPU’s API

57.36 Scheduling Contexts

StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the
other hand grouping tasks in bundles that will be executed by a single specified worker. In contrast when we group
workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to
the context. Scheduling contexts can be created, deleted and modified dynamically.

Scheduling Contexts Basic API

• void(∗)(unsigned) starpu_sched_ctx_get_sched_policy_callback (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_create (int ∗workerids_ctx, int nworkers_ctx, const char ∗sched_ctx_name,...)
• unsigned starpu_sched_ctx_create_inside_interval (const char ∗policy_name, const char ∗sched_ctx_name,

int min_ncpus, int max_ncpus, int min_ngpus, int max_ngpus, unsigned allow_overlap)
• void starpu_sched_ctx_register_close_callback (unsigned sched_ctx_id, void(∗close_callback)(unsigned

sched_ctx_id, void ∗args), void ∗args)
• void starpu_sched_ctx_add_workers (int ∗workerids_ctx, unsigned nworkers_ctx, unsigned sched_ctx_id)
• void starpu_sched_ctx_remove_workers (int ∗workerids_ctx, unsigned nworkers_ctx, unsigned sched_ctx←↩

_id)
• void starpu_sched_ctx_display_workers (unsigned sched_ctx_id, FILE ∗f)
• void starpu_sched_ctx_delete (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_inheritor (unsigned sched_ctx_id, unsigned inheritor)
• unsigned starpu_sched_ctx_get_inheritor (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_hierarchy_level (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_context (unsigned ∗sched_ctx_id)
• unsigned starpu_sched_ctx_get_context (void)
• void starpu_sched_ctx_stop_task_submission (void)
• void starpu_sched_ctx_finished_submit (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_workers_list (unsigned sched_ctx_id, int ∗∗workerids)
• unsigned starpu_sched_ctx_get_workers_list_raw (unsigned sched_ctx_id, int ∗∗workerids)
• unsigned starpu_sched_ctx_get_nworkers (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_nshared_workers (unsigned sched_ctx_id, unsigned sched_ctx_id2)
• unsigned starpu_sched_ctx_contains_worker (int workerid, unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_contains_type_of_worker (enum starpu_worker_archtype arch, unsigned

sched_ctx_id)
• unsigned starpu_sched_ctx_worker_get_id (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_ctx_for_task (struct starpu_task ∗task)
• unsigned starpu_worker_get_sched_ctx_id_stream (unsigned stream_workerid)
• unsigned starpu_sched_ctx_overlapping_ctxs_on_worker (int workerid)
• void ∗ starpu_sched_ctx_get_user_data (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_user_data (unsigned sched_ctx_id, void ∗user_data)
• void starpu_sched_ctx_set_policy_data (unsigned sched_ctx_id, void ∗policy_data)
• void ∗ starpu_sched_ctx_get_policy_data (unsigned sched_ctx_id)
• struct starpu_sched_policy ∗ starpu_sched_ctx_get_sched_policy (unsigned sched_ctx_id)
• void ∗ starpu_sched_ctx_exec_parallel_code (void ∗(∗func)(void ∗), void ∗param, unsigned sched_ctx_id)
• int starpu_sched_ctx_get_nready_tasks (unsigned sched_ctx_id)
• double starpu_sched_ctx_get_nready_flops (unsigned sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_increment (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_decrement (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_reset (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_increment_all_ctx_locked (struct starpu_task ∗task, un-

signed sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_decrement_all_ctx_locked (struct starpu_task ∗task, un-

signed sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_reset_all (struct starpu_task ∗task, unsigned sched_ctx_id)
• void starpu_sched_ctx_set_priority (int ∗workers, int nworkers, unsigned sched_ctx_id, unsigned priority)
• unsigned starpu_sched_ctx_get_priority (int worker, unsigned sched_ctx_id)

Generated by Doxygen

57.36 Scheduling Contexts 637

• void starpu_sched_ctx_get_available_cpuids (unsigned sched_ctx_id, int ∗∗cpuids, int ∗ncpuids)
• void starpu_sched_ctx_bind_current_thread_to_cpuid (unsigned cpuid)
• int starpu_sched_ctx_book_workers_for_task (unsigned sched_ctx_id, int ∗workerids, int nworkers)
• void starpu_sched_ctx_unbook_workers_for_task (unsigned sched_ctx_id, int master)
• unsigned starpu_sched_ctx_worker_is_master_for_child_ctx (int workerid, unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_master_get_context (int masterid)
• void starpu_sched_ctx_revert_task_counters_ctx_locked (unsigned sched_ctx_id, double flops)
• void starpu_sched_ctx_move_task_to_ctx_locked (struct starpu_task ∗task, unsigned sched_ctx, un-

signed with_repush)
• int starpu_sched_ctx_get_worker_rank (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_has_starpu_scheduler (unsigned sched_ctx_id, unsigned ∗awake_workers)
• int starpu_sched_ctx_get_stream_worker (unsigned sub_ctx)
• int starpu_sched_ctx_get_nsms (unsigned sched_ctx)
• void starpu_sched_ctx_get_sms_interval (int stream_workerid, int ∗start, int ∗end)
• #define STARPU_SCHED_CTX_POLICY_NAME
• #define STARPU_SCHED_CTX_POLICY_STRUCT
• #define STARPU_SCHED_CTX_POLICY_MIN_PRIO
• #define STARPU_SCHED_CTX_POLICY_MAX_PRIO
• #define STARPU_SCHED_CTX_HIERARCHY_LEVEL
• #define STARPU_SCHED_CTX_NESTED
• #define STARPU_SCHED_CTX_AWAKE_WORKERS
• #define STARPU_SCHED_CTX_POLICY_INIT
• #define STARPU_SCHED_CTX_USER_DATA
• #define STARPU_SCHED_CTX_CUDA_NSMS
• #define STARPU_SCHED_CTX_SUB_CTXS

Scheduling Context Priorities

• int starpu_sched_ctx_get_min_priority (unsigned sched_ctx_id)
• int starpu_sched_ctx_get_max_priority (unsigned sched_ctx_id)
• int starpu_sched_ctx_set_min_priority (unsigned sched_ctx_id, int min_prio)
• int starpu_sched_ctx_set_max_priority (unsigned sched_ctx_id, int max_prio)
• int starpu_sched_ctx_min_priority_is_set (unsigned sched_ctx_id)
• int starpu_sched_ctx_max_priority_is_set (unsigned sched_ctx_id)
• #define STARPU_MIN_PRIO
• #define STARPU_MAX_PRIO
• #define STARPU_DEFAULT_PRIO

Scheduling Context Worker Collection

• struct starpu_worker_collection ∗ starpu_sched_ctx_create_worker_collection (unsigned sched_ctx_id,
enum starpu_worker_collection_type type) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_ctx_delete_worker_collection (unsigned sched_ctx_id)
• struct starpu_worker_collection ∗ starpu_sched_ctx_get_worker_collection (unsigned sched_ctx_id)

57.36.1 Detailed Description

StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the
other hand grouping tasks in bundles that will be executed by a single specified worker. In contrast when we group
workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to
the context. Scheduling contexts can be created, deleted and modified dynamically.

57.36.2 Macro Definition Documentation

Generated by Doxygen

638 Module Documentation a.k.a StarPU’s API

57.36.2.1 STARPU_SCHED_CTX_POLICY_NAME

#define STARPU_SCHED_CTX_POLICY_NAME

Used when calling starpu_sched_ctx_create() to specify a name for a scheduling policy

57.36.2.2 STARPU_SCHED_CTX_POLICY_STRUCT

#define STARPU_SCHED_CTX_POLICY_STRUCT

Used when calling starpu_sched_ctx_create() to specify a pointer to a scheduling policy

57.36.2.3 STARPU_SCHED_CTX_POLICY_MIN_PRIO

#define STARPU_SCHED_CTX_POLICY_MIN_PRIO

Used when calling starpu_sched_ctx_create() to specify a minimum scheduler priority value.

57.36.2.4 STARPU_SCHED_CTX_POLICY_MAX_PRIO

#define STARPU_SCHED_CTX_POLICY_MAX_PRIO

Used when calling starpu_sched_ctx_create() to specify a maximum scheduler priority value.

57.36.2.5 STARPU_SCHED_CTX_AWAKE_WORKERS

#define STARPU_SCHED_CTX_AWAKE_WORKERS

Used when calling starpu_sched_ctx_create() to specify ???

57.36.2.6 STARPU_SCHED_CTX_POLICY_INIT

#define STARPU_SCHED_CTX_POLICY_INIT

Used when calling starpu_sched_ctx_create() to specify a function pointer allowing to initialize the scheduling policy.

57.36.2.7 STARPU_SCHED_CTX_USER_DATA

#define STARPU_SCHED_CTX_USER_DATA

Used when calling starpu_sched_ctx_create() to specify a pointer to some user data related to the context being
created.

57.36.2.8 STARPU_SCHED_CTX_CUDA_NSMS

#define STARPU_SCHED_CTX_CUDA_NSMS

Used when calling starpu_sched_ctx_create() in order to create a context on the NVIDIA GPU to specify the number
of SMs the context should have

57.36.2.9 STARPU_SCHED_CTX_SUB_CTXS

#define STARPU_SCHED_CTX_SUB_CTXS

Used when calling starpu_sched_ctx_create() to specify a list of sub contexts of the current context.

57.36.2.10 STARPU_MIN_PRIO

#define STARPU_MIN_PRIO

Provided for legacy reasons.

57.36.2.11 STARPU_MAX_PRIO

#define STARPU_MAX_PRIO

Provided for legacy reasons.

Generated by Doxygen

57.36 Scheduling Contexts 639

57.36.2.12 STARPU_DEFAULT_PRIO

#define STARPU_DEFAULT_PRIO

By convention, the default priority level should be 0 so that we can statically allocate tasks with a default priority.

57.36.3 Function Documentation

57.36.3.1 starpu_sched_ctx_create()

unsigned starpu_sched_ctx_create (

int ∗ workerids_ctx,

int nworkers_ctx,

const char ∗ sched_ctx_name,

...)

Create a scheduling context with the given parameters (see below) and assign the workers in workerids_ctx
to execute the tasks submitted to it. The return value represents the identifier of the context that has just been
created. It will be further used to indicate the context the tasks will be submitted to. The return value should be at
most STARPU_NMAX_SCHED_CTXS.
The arguments following the name of the scheduling context can be of the following types:

• STARPU_SCHED_CTX_POLICY_NAME, followed by the name of a predefined scheduling policy. Use an
empty string to create the context with the default scheduling policy.

• STARPU_SCHED_CTX_POLICY_STRUCT, followed by a pointer to a custom scheduling policy (struct
starpu_sched_policy ∗)

• STARPU_SCHED_CTX_POLICY_MIN_PRIO, followed by a integer representing the minimum priority value
to be defined for the scheduling policy.

• STARPU_SCHED_CTX_POLICY_MAX_PRIO, followed by a integer representing the maximum priority value
to be defined for the scheduling policy.

• STARPU_SCHED_CTX_POLICY_INIT, followed by a function pointer (ie. void init_sched(void)) allowing to
initialize the scheduling policy.

• STARPU_SCHED_CTX_USER_DATA, followed by a pointer to a custom user data structure, to be retrieved
by starpu_sched_ctx_get_user_data().

See Creating A Context for more details.

57.36.3.2 starpu_sched_ctx_create_inside_interval()

unsigned starpu_sched_ctx_create_inside_interval (

const char ∗ policy_name,

const char ∗ sched_ctx_name,

int min_ncpus,

int max_ncpus,

int min_ngpus,

int max_ngpus,

unsigned allow_overlap)

Create a context indicating an approximate interval of resources

57.36.3.3 starpu_sched_ctx_register_close_callback()

void starpu_sched_ctx_register_close_callback (

unsigned sched_ctx_id,

void(∗)(unsigned sched_ctx_id, void ∗args) close_callback,

void ∗ args)

Execute the callback whenever the last task of the context finished executing, it is called with the parameters
sched_ctx and any other parameter needed by the application (packed in args)

Generated by Doxygen

640 Module Documentation a.k.a StarPU’s API

57.36.3.4 starpu_sched_ctx_add_workers()

void starpu_sched_ctx_add_workers (

int ∗ workerids_ctx,

unsigned nworkers_ctx,

unsigned sched_ctx_id)

Add dynamically the workers in workerids_ctx to the context sched_ctx_id. The last argument cannot be
greater than STARPU_NMAX_SCHED_CTXS. See Modifying A Context for more details.

57.36.3.5 starpu_sched_ctx_remove_workers()

void starpu_sched_ctx_remove_workers (

int ∗ workerids_ctx,

unsigned nworkers_ctx,

unsigned sched_ctx_id)

Remove the workers in workerids_ctx from the context sched_ctx_id. The last argument cannot be
greater than STARPU_NMAX_SCHED_CTXS. See Modifying A Context for more details.

57.36.3.6 starpu_sched_ctx_display_workers()

void starpu_sched_ctx_display_workers (

unsigned sched_ctx_id,

FILE ∗ f)

Print on the file f the worker names belonging to the context sched_ctx_id

57.36.3.7 starpu_sched_ctx_delete()

void starpu_sched_ctx_delete (

unsigned sched_ctx_id)

Delete scheduling context sched_ctx_id and transfer remaining workers to the inheritor scheduling context.
See Deleting A Context for more details.

57.36.3.8 starpu_sched_ctx_set_inheritor()

void starpu_sched_ctx_set_inheritor (

unsigned sched_ctx_id,

unsigned inheritor)

Indicate that the context inheritor will inherit the resources of the context sched_ctx_id when sched_←↩

ctx_id will be deleted. See Deleting A Context for more details.

57.36.3.9 starpu_sched_ctx_set_context()

void starpu_sched_ctx_set_context (

unsigned ∗ sched_ctx_id)

Set the scheduling context the subsequent tasks will be submitted to. See Submitting Tasks To A Context and
Temporary Contexts for more details.

57.36.3.10 starpu_sched_ctx_get_context()

unsigned starpu_sched_ctx_get_context (

void)

Return the scheduling context the tasks are currently submitted to, or STARPU_NMAX_SCHED_CTXS if no default
context has been defined by calling the function starpu_sched_ctx_set_context().

57.36.3.11 starpu_sched_ctx_stop_task_submission()

void starpu_sched_ctx_stop_task_submission (

void)

Stop submitting tasks from the empty context list until the next time the context has time to check the empty context
list. See Emptying A Context for more details.

Generated by Doxygen

57.36 Scheduling Contexts 641

57.36.3.12 starpu_sched_ctx_finished_submit()

void starpu_sched_ctx_finished_submit (

unsigned sched_ctx_id)

Indicate starpu that the application finished submitting to this context in order to move the workers to the inheritor
as soon as possible. See Deleting A Context for more details.

57.36.3.13 starpu_sched_ctx_get_workers_list()

unsigned starpu_sched_ctx_get_workers_list (

unsigned sched_ctx_id,

int ∗∗ workerids)

Return the list of workers in the array workerids, the return value is the number of workers. The user should free
the workerids table after finishing using it (it is allocated inside the function with the proper size)

57.36.3.14 starpu_sched_ctx_get_workers_list_raw()

unsigned starpu_sched_ctx_get_workers_list_raw (

unsigned sched_ctx_id,

int ∗∗ workerids)

Return the list of workers in the array workerids, the return value is the number of workers. This list is provided
in raw order, i.e. not sorted by tree or list order, and the user should not free the workerids table. This function
is thus much less costly than starpu_sched_ctx_get_workers_list().

57.36.3.15 starpu_sched_ctx_get_nworkers()

unsigned starpu_sched_ctx_get_nworkers (

unsigned sched_ctx_id)

Return the number of workers managed by the specified context (Usually needed to verify if it manages any workers
or if it should be blocked)

57.36.3.16 starpu_sched_ctx_get_nshared_workers()

unsigned starpu_sched_ctx_get_nshared_workers (

unsigned sched_ctx_id,

unsigned sched_ctx_id2)

Return the number of workers shared by two contexts.

57.36.3.17 starpu_sched_ctx_contains_worker()

unsigned starpu_sched_ctx_contains_worker (

int workerid,

unsigned sched_ctx_id)

Return 1 if the worker belongs to the context and 0 otherwise

57.36.3.18 starpu_sched_ctx_worker_get_id()

unsigned starpu_sched_ctx_worker_get_id (

unsigned sched_ctx_id)

Return the workerid if the worker belongs to the context and -1 otherwise. If the thread calling this function is not a
worker the function returns -1 as it calls the function starpu_worker_get_id().

57.36.3.19 starpu_sched_ctx_overlapping_ctxs_on_worker()

unsigned starpu_sched_ctx_overlapping_ctxs_on_worker (

int workerid)

Check if a worker is shared between several contexts

Generated by Doxygen

642 Module Documentation a.k.a StarPU’s API

57.36.3.20 starpu_sched_ctx_get_user_data()

void ∗ starpu_sched_ctx_get_user_data (

unsigned sched_ctx_id)

Return the user data pointer associated to the scheduling context.

57.36.3.21 starpu_sched_ctx_set_policy_data()

void starpu_sched_ctx_set_policy_data (

unsigned sched_ctx_id,

void ∗ policy_data)

Allocate the scheduling policy data (private information of the scheduler like queues, variables, additional condition
variables) the context. See Defining A New Basic Scheduling Policy for more details.

57.36.3.22 starpu_sched_ctx_get_policy_data()

void ∗ starpu_sched_ctx_get_policy_data (

unsigned sched_ctx_id)

Return the scheduling policy data (private information of the scheduler) of the contexts previously assigned to. See
Defining A New Basic Scheduling Policy for more details.

57.36.3.23 starpu_sched_ctx_exec_parallel_code()

void ∗ starpu_sched_ctx_exec_parallel_code (

void ∗(∗)(void ∗) func,

void ∗ param,

unsigned sched_ctx_id)

Execute any parallel code on the workers of the sched_ctx (workers are blocked)

57.36.3.24 starpu_sched_ctx_worker_is_master_for_child_ctx()

unsigned starpu_sched_ctx_worker_is_master_for_child_ctx (

int workerid,

unsigned sched_ctx_id)

Return the first context (child of sched_ctx_id) where the workerid is master

57.36.3.25 starpu_sched_ctx_master_get_context()

unsigned starpu_sched_ctx_master_get_context (

int masterid)

Return the context id of masterid if it master of a context. If not, return STARPU_NMAX_SCHED_CTXS.

57.36.3.26 starpu_sched_ctx_get_min_priority()

int starpu_sched_ctx_get_min_priority (

unsigned sched_ctx_id)

Return the current minimum priority level supported by the scheduling policy of the given scheduler context.

57.36.3.27 starpu_sched_ctx_get_max_priority()

int starpu_sched_ctx_get_max_priority (

unsigned sched_ctx_id)

Return the current maximum priority level supported by the scheduling policy of the given scheduler context.

57.36.3.28 starpu_sched_ctx_set_min_priority()

int starpu_sched_ctx_set_min_priority (

unsigned sched_ctx_id,

int min_prio)

Generated by Doxygen

57.36 Scheduling Contexts 643

Define the minimum task priority level supported by the scheduling policy of the given scheduler context. The default
minimum priority level is the same as the default priority level which is 0 by convention. The application may access
that value by calling the function starpu_sched_ctx_get_min_priority(). This function should only be called from the
initialization method of the scheduling policy, and should not be used directly from the application.

57.36.3.29 starpu_sched_ctx_set_max_priority()

int starpu_sched_ctx_set_max_priority (

unsigned sched_ctx_id,

int max_prio)

Define the maximum priority level supported by the scheduling policy of the given scheduler context. The default
maximum priority level is 1. The application may access that value by calling the starpu_sched_ctx_get_max_priority()
function. This function should only be called from the initialization method of the scheduling policy, and should not
be used directly from the application.

57.36.3.30 starpu_sched_ctx_create_worker_collection()

struct starpu_worker_collection ∗ starpu_sched_ctx_create_worker_collection (

unsigned sched_ctx_id,

enum starpu_worker_collection_type type)

Create a worker collection of the type indicated by the last parameter for the context specified through the first
parameter.

57.36.3.31 starpu_sched_ctx_delete_worker_collection()

void starpu_sched_ctx_delete_worker_collection (

unsigned sched_ctx_id)

Delete the worker collection of the specified scheduling context

57.36.3.32 starpu_sched_ctx_get_worker_collection()

struct starpu_worker_collection ∗ starpu_sched_ctx_get_worker_collection (

unsigned sched_ctx_id)

Return the worker collection managed by the indicated context

57.36.4 Variable Documentation

57.36.4.1 starpu_sched_ctx_get_sched_policy_callback

void(∗)(unsigned) starpu_sched_ctx_get_sched_policy_callback(unsigned sched_ctx_id) (

unsigned sched_ctx_id)

Return the function associated with the scheduler context sched_ctx_id which was given through the field
starpu_conf::sched_policy_callback

Generated by Doxygen

644 Module Documentation a.k.a StarPU’s API

57.37 Scheduling Policy

TODO. While StarPU comes with a variety of scheduling policies (see Task Scheduling Policies), it may sometimes
be desirable to implement custom policies to address specific problems. The API described below allows users to
write their own scheduling policy.

Data Structures

• struct starpu_sched_policy

Macros

• #define STARPU_NMAX_SCHED_CTXS
• #define STARPU_MAXIMPLEMENTATIONS

Typedefs

• typedef void(∗ starpu_notify_ready_soon_func) (void ∗data, struct starpu_task ∗task, double delay)

Functions

• struct starpu_sched_policy ∗∗ starpu_sched_get_predefined_policies (void)
• struct starpu_sched_policy ∗ starpu_get_sched_lib_policy (const char ∗name)
• struct starpu_sched_policy ∗∗ starpu_get_sched_lib_policies (void)
• struct starpu_sched_policy ∗ starpu_sched_get_sched_policy_in_ctx (unsigned sched_ctx_id)
• struct starpu_sched_policy ∗ starpu_sched_get_sched_policy (void)
• void starpu_worker_get_sched_condition (int workerid, starpu_pthread_mutex_t ∗∗sched_mutex, starpu_←↩

pthread_cond_t ∗∗sched_cond)
• unsigned long starpu_task_get_job_id (struct starpu_task ∗task)
• int starpu_sched_get_min_priority (void)
• int starpu_sched_get_max_priority (void)
• int starpu_sched_set_min_priority (int min_prio)
• int starpu_sched_set_max_priority (int max_prio)
• int starpu_worker_can_execute_task (unsigned workerid, struct starpu_task ∗task, unsigned nimpl)
• int starpu_worker_can_execute_task_impl (unsigned workerid, struct starpu_task ∗task, unsigned ∗impl_←↩

mask)
• int starpu_worker_can_execute_task_first_impl (unsigned workerid, struct starpu_task ∗task, unsigned
∗nimpl)

• int starpu_push_local_task (int workerid, struct starpu_task ∗task, int back)
• int starpu_push_task_end (struct starpu_task ∗task)
• int starpu_get_prefetch_flag (void)
• int starpu_prefetch_task_input_on_node_prio (struct starpu_task ∗task, unsigned node, int prio)
• int starpu_prefetch_task_input_on_node (struct starpu_task ∗task, unsigned node)
• int starpu_idle_prefetch_task_input_on_node_prio (struct starpu_task ∗task, unsigned node, int prio)
• int starpu_idle_prefetch_task_input_on_node (struct starpu_task ∗task, unsigned node)
• int starpu_prefetch_task_input_for_prio (struct starpu_task ∗task, unsigned worker, int prio)
• int starpu_prefetch_task_input_for (struct starpu_task ∗task, unsigned worker)
• int starpu_idle_prefetch_task_input_for_prio (struct starpu_task ∗task, unsigned worker, int prio)
• int starpu_idle_prefetch_task_input_for (struct starpu_task ∗task, unsigned worker)
• uint32_t starpu_task_footprint (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct

starpu_perfmodel_arch ∗arch, unsigned nimpl)
• uint32_t starpu_task_data_footprint (struct starpu_task ∗task)
• double starpu_task_expected_length (struct starpu_task ∗task, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl)
• double starpu_task_worker_expected_length (struct starpu_task ∗task, unsigned workerid, unsigned

sched_ctx_id, unsigned nimpl)

Generated by Doxygen

57.37 Scheduling Policy 645

• double starpu_task_expected_length_average (struct starpu_task ∗task, unsigned sched_ctx_id)
• double starpu_worker_get_relative_speedup (struct starpu_perfmodel_arch ∗perf_arch)
• double starpu_task_expected_data_transfer_time (unsigned memory_node, struct starpu_task ∗task)
• double starpu_task_expected_data_transfer_time_for (struct starpu_task ∗task, unsigned worker)
• double starpu_data_expected_transfer_time (starpu_data_handle_t handle, unsigned memory_node, enum

starpu_data_access_mode mode)
• double starpu_task_expected_energy (struct starpu_task ∗task, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl)
• double starpu_task_worker_expected_energy (struct starpu_task ∗task, unsigned workerid, unsigned

sched_ctx_id, unsigned nimpl)
• double starpu_task_expected_energy_average (struct starpu_task ∗task, unsigned sched_ctx_id)
• double starpu_task_expected_conversion_time (struct starpu_task ∗task, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• void starpu_task_notify_ready_soon_register (starpu_notify_ready_soon_func f, void ∗data)
• void starpu_sched_ctx_worker_shares_tasks_lists (int workerid, int sched_ctx_id)
• void starpu_sched_task_break (struct starpu_task ∗task)

Worker operations

• int starpu_wake_worker_relax (int workerid)
• int starpu_wake_worker_no_relax (int workerid)
• int starpu_wake_worker_locked (int workerid)
• int starpu_wake_worker_relax_light (int workerid)

57.37.1 Detailed Description

TODO. While StarPU comes with a variety of scheduling policies (see Task Scheduling Policies), it may sometimes
be desirable to implement custom policies to address specific problems. The API described below allows users to
write their own scheduling policy.

57.37.2 Data Structure Documentation

57.37.2.1 struct starpu_sched_policy

Contain all the methods that implement a scheduling policy. An application may specify which scheduling strategy
in the field starpu_conf::sched_policy passed to the function starpu_init().
For each task going through the scheduler, the following methods get called in the given order:

• starpu_sched_policy::submit_hook when the task is submitted

• starpu_sched_policy::push_task when the task becomes ready. The scheduler is here given the task

• starpu_sched_policy::pop_task when the worker is idle. The scheduler here gives back the task to the core.
It must not access this task any more

• starpu_sched_policy::pre_exec_hook right before the worker actually starts the task computation (after trans-
ferring any missing data).

• starpu_sched_policy::post_exec_hook right after the worker actually completes the task computation.

For each task not going through the scheduler (because starpu_task::execute_on_a_specific_worker was set),
these get called:

• starpu_sched_policy::submit_hook when the task is submitted

• starpu_sched_policy::push_task_notify when the task becomes ready. This is just a notification, the scheduler
does not have to do anything about the task.

• starpu_sched_policy::pre_exec_hook right before the worker actually starts the task computation (after trans-
ferring any missing data).

• starpu_sched_policy::post_exec_hook right after the worker actually completes the task computation.

Generated by Doxygen

646 Module Documentation a.k.a StarPU’s API

Data Fields

• void(∗ init_sched)(unsigned sched_ctx_id)
• void(∗ deinit_sched)(unsigned sched_ctx_id)
• int(∗ push_task)(struct starpu_task ∗)
• double(∗ simulate_push_task)(struct starpu_task ∗)
• void(∗ push_task_notify)(struct starpu_task ∗, int workerid, int perf_workerid, unsigned sched_ctx_id)
• struct starpu_task ∗(∗ pop_task)(unsigned sched_ctx_id)
• void(∗ submit_hook)(struct starpu_task ∗task)
• void(∗ pre_exec_hook)(struct starpu_task ∗, unsigned sched_ctx_id)
• void(∗ post_exec_hook)(struct starpu_task ∗, unsigned sched_ctx_id)
• void(∗ do_schedule)(unsigned sched_ctx_id)
• void(∗ add_workers)(unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void(∗ remove_workers)(unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• int prefetches
• const char ∗ policy_name
• const char ∗ policy_description
• enum starpu_worker_collection_type worker_type

57.37.2.1.1 Field Documentation

57.37.2.1.1.1 init_sched void(∗ starpu_sched_policy::init_sched) (unsigned sched_ctx_id)

Initialize the scheduling policy, called before any other method.

57.37.2.1.1.2 deinit_sched void(∗ starpu_sched_policy::deinit_sched) (unsigned sched_ctx_id)

Cleanup the scheduling policy

57.37.2.1.1.3 push_task int(∗ starpu_sched_policy::push_task) (struct starpu_task ∗)
Insert a task into the scheduler, called when the task becomes ready for execution. This must call
starpu_push_task_end() once it has effectively pushed the task to a queue (to note the time when this was
done in the task), but before releasing mutexes (so that the task hasn't been already taken by a worker).

57.37.2.1.1.4 push_task_notify void(∗ starpu_sched_policy::push_task_notify) (struct starpu_task

∗, int workerid, int perf_workerid, unsigned sched_ctx_id)

Notify the scheduler that a task was pushed on a given worker. This method is called when a task that was explicitly
assigned to a worker becomes ready and is about to be executed by the worker. This method therefore permits to
keep the state of the scheduler coherent even when StarPU bypasses the scheduling strategy.
Note: to get an estimation of the task duration, perf_workerid needs to be used rather than workerid, for
the case of parallel tasks.

57.37.2.1.1.5 pop_task struct starpu_task ∗(∗ starpu_sched_policy::pop_task) (unsigned sched_←↩

ctx_id)

Get a task from the scheduler. If this method returns NULL, the worker will start sleeping. If later on some task
are pushed for this worker, starpu_wake_worker() must be called to wake the worker so it can call the pop_task()
method again. The mutex associated to the worker is already taken when this method is called. This method
may release it (e.g. for scalability reasons when doing work stealing), but it must acquire it again before taking
the decision whether to return a task or NULL, so the atomicity of deciding to return NULL and making the worker
actually sleep is preserved. Otherwise in simgrid or blocking driver mode the worker might start sleeping while a
task has just been pushed for it. If this method is defined as NULL, the worker will only execute tasks from its local
queue. In this case, the push_task method should use the starpu_push_local_task method to assign tasks to the
different workers.

57.37.2.1.1.6 submit_hook void(∗ starpu_sched_policy::submit_hook) (struct starpu_task ∗task)
Optional field. This method is called when a task is submitted.

Generated by Doxygen

57.37 Scheduling Policy 647

57.37.2.1.1.7 pre_exec_hook void(∗ starpu_sched_policy::pre_exec_hook) (struct starpu_task ∗,
unsigned sched_ctx_id)

Optional field. This method is called every time a task is starting.

57.37.2.1.1.8 post_exec_hook void(∗ starpu_sched_policy::post_exec_hook) (struct starpu_task

∗, unsigned sched_ctx_id)

Optional field. This method is called every time a task has been executed.

57.37.2.1.1.9 do_schedule void(∗ starpu_sched_policy::do_schedule) (unsigned sched_ctx_id)

Optional field. This method is called when it is a good time to start scheduling tasks. This is notably called when
the application calls starpu_task_wait_for_all() or starpu_do_schedule() explicitly.

57.37.2.1.1.10 add_workers void(∗ starpu_sched_policy::add_workers) (unsigned sched_ctx_id,

int ∗workerids, unsigned nworkers)

Initialize scheduling structures corresponding to each worker used by the policy.

57.37.2.1.1.11 remove_workers void(∗ starpu_sched_policy::remove_workers) (unsigned sched_←↩

ctx_id, int ∗workerids, unsigned nworkers)

Deinitialize scheduling structures corresponding to each worker used by the policy.

57.37.2.1.1.12 prefetches int starpu_sched_policy::prefetches

Whether this scheduling policy does data prefetching, and thus the core should not try to do it opportunistically.

57.37.2.1.1.13 policy_name const char∗ starpu_sched_policy::policy_name

Optional field. Name of the policy.

57.37.2.1.1.14 policy_description const char∗ starpu_sched_policy::policy_description

Optional field. Human readable description of the policy.

57.37.3 Macro Definition Documentation

57.37.3.1 STARPU_NMAX_SCHED_CTXS

#define STARPU_NMAX_SCHED_CTXS

Define the maximum number of scheduling contexts managed by StarPU. The default value can be modified at
configure by using the option --enable-max-sched-ctxs.

57.37.3.2 STARPU_MAXIMPLEMENTATIONS

#define STARPU_MAXIMPLEMENTATIONS

Define the maximum number of implementations per architecture. The default value can be modified at configure
by using the option --enable-maximplementations.

57.37.4 Function Documentation

57.37.4.1 starpu_sched_get_predefined_policies()

struct starpu_sched_policy ∗∗ starpu_sched_get_predefined_policies (

void)

Return an NULL-terminated array of all the predefined scheduling policies. See Task Scheduling Policies for more
details.

Generated by Doxygen

648 Module Documentation a.k.a StarPU’s API

57.37.4.2 starpu_get_sched_lib_policy()

struct starpu_sched_policy ∗ starpu_get_sched_lib_policy (

const char ∗ name)

Allow an external library to return a scheduling policy to be loaded dynamically. See Using a New Scheduling Policy
for more details.

57.37.4.3 starpu_get_sched_lib_policies()

struct starpu_sched_policy ∗∗ starpu_get_sched_lib_policies (

void)

Allow an external library to return a list of scheduling policies to be loaded dynamically. See Using a New Scheduling Policy
for more details.

57.37.4.4 starpu_sched_get_sched_policy_in_ctx()

struct starpu_sched_policy ∗ starpu_sched_get_sched_policy_in_ctx (

unsigned sched_ctx_id)

Return the scheduler policy of the default context. See Task Scheduling Policies for more details.

57.37.4.5 starpu_sched_get_sched_policy()

struct starpu_sched_policy ∗ starpu_sched_get_sched_policy (

void)

Return the scheduler policy of the given context. See Task Scheduling Policies for more details.

57.37.4.6 starpu_worker_get_sched_condition()

void starpu_worker_get_sched_condition (

int workerid,

starpu_pthread_mutex_t ∗∗ sched_mutex,

starpu_pthread_cond_t ∗∗ sched_cond)

When there is no available task for a worker, StarPU blocks this worker on a condition variable. This function
specifies which condition variable (and the associated mutex) should be used to block (and to wake up) a worker.
Note that multiple workers may use the same condition variable. For instance, in the case of a scheduling strategy
with a single task queue, the same condition variable would be used to block and wake up all workers.

57.37.4.7 starpu_task_get_job_id()

unsigned long starpu_task_get_job_id (

struct starpu_task ∗ task)

Return the job identifier associated with the task. See Getting Scheduling Task Details for more details.

57.37.4.8 starpu_sched_get_min_priority()

int starpu_sched_get_min_priority (

void)

TODO: check if this is correct Return the current minimum priority level supported by the scheduling policy. See
Defining A New Basic Scheduling Policy for more details.

57.37.4.9 starpu_sched_get_max_priority()

int starpu_sched_get_max_priority (

void)

TODO: check if this is correct Return the current maximum priority level supported by the scheduling policy. See
Defining A New Basic Scheduling Policy for more details.

Generated by Doxygen

57.37 Scheduling Policy 649

57.37.4.10 starpu_sched_set_min_priority()

int starpu_sched_set_min_priority (

int min_prio)

TODO: check if this is correct Define the minimum task priority level supported by the scheduling policy. The
default minimum priority level is the same as the default priority level which is 0 by convention. The application
may access that value by calling the function starpu_sched_get_min_priority(). This function should only be called
from the initialization method of the scheduling policy, and should not be used directly from the application. See
Defining A New Basic Scheduling Policy for more details.

57.37.4.11 starpu_sched_set_max_priority()

int starpu_sched_set_max_priority (

int max_prio)

TODO: check if this is correct Define the maximum priority level supported by the scheduling policy.
The default maximum priority level is 1. The application may access that value by calling the function
starpu_sched_get_max_priority(). This function should only be called from the initialization method of the schedul-
ing policy, and should not be used directly from the application. See Defining A New Basic Scheduling Policy for
more details.

57.37.4.12 starpu_worker_can_execute_task()

int starpu_worker_can_execute_task (

unsigned workerid,

struct starpu_task ∗ task,

unsigned nimpl)

Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a task
to a worker, otherwise the task may fail to execute. See Defining A New Basic Scheduling Policy for more details.

57.37.4.13 starpu_worker_can_execute_task_impl()

int starpu_worker_can_execute_task_impl (

unsigned workerid,

struct starpu_task ∗ task,

unsigned ∗ impl_mask)

Check if the worker specified by workerid can execute the codelet and return which implementation numbers can
be used. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute. This
should be preferred rather than calling starpu_worker_can_execute_task() for each and every implementation. It
can also be used with impl_mask == NULL to check for at least one implementation without determining which.
See Defining A New Basic Scheduling Policy for more details.

57.37.4.14 starpu_worker_can_execute_task_first_impl()

int starpu_worker_can_execute_task_first_impl (

unsigned workerid,

struct starpu_task ∗ task,

unsigned ∗ nimpl)

Check if the worker specified by workerid can execute the codelet and return the first implementation which can be
used. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute. This
should be preferred rather than calling starpu_worker_can_execute_task() for each and every implementation. It
can also be used with impl_mask == NULL to check for at least one implementation without determining which.
See Defining A New Basic Scheduling Policy for more details.

57.37.4.15 starpu_push_local_task()

int starpu_push_local_task (

int workerid,

struct starpu_task ∗ task,

int back)

Generated by Doxygen

650 Module Documentation a.k.a StarPU’s API

The scheduling policy may put tasks directly into a worker’s local queue so that it is not always necessary to create
its own queue when the local queue is sufficient. back is ignored: the task priority is used to order tasks in this
queue. See Defining A New Basic Scheduling Policy for more details.

57.37.4.16 starpu_push_task_end()

int starpu_push_task_end (

struct starpu_task ∗ task)

Must be called by a scheduler to notify that the given task has just been pushed. See Defining A New Basic Scheduling Policy
for more details.

57.37.4.17 starpu_get_prefetch_flag()

int starpu_get_prefetch_flag (

void)

Whether STARPU_PREFETCH was set. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.18 starpu_prefetch_task_input_on_node_prio()

int starpu_prefetch_task_input_on_node_prio (

struct starpu_task ∗ task,

unsigned node,

int prio)

Prefetch data for a given p task on a given p node with a given priority. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.19 starpu_prefetch_task_input_on_node()

int starpu_prefetch_task_input_on_node (

struct starpu_task ∗ task,

unsigned node)

Prefetch data for a given p task on a given p node. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.20 starpu_idle_prefetch_task_input_on_node_prio()

int starpu_idle_prefetch_task_input_on_node_prio (

struct starpu_task ∗ task,

unsigned node,

int prio)

Prefetch data for a given p task on a given p node when the bus is idle with a given priority. See
Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.37.4.21 starpu_idle_prefetch_task_input_on_node()

int starpu_idle_prefetch_task_input_on_node (

struct starpu_task ∗ task,

unsigned node)

Prefetch data for a given p task on a given p node when the bus is idle. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.22 starpu_prefetch_task_input_for_prio()

int starpu_prefetch_task_input_for_prio (

struct starpu_task ∗ task,

unsigned worker,

int prio)

Prefetch data for a given p task on a given p worker with a given priority. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

Generated by Doxygen

57.37 Scheduling Policy 651

57.37.4.23 starpu_prefetch_task_input_for()

int starpu_prefetch_task_input_for (

struct starpu_task ∗ task,

unsigned worker)

Prefetch data for a given p task on a given p worker. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.24 starpu_idle_prefetch_task_input_for_prio()

int starpu_idle_prefetch_task_input_for_prio (

struct starpu_task ∗ task,

unsigned worker,

int prio)

Prefetch data for a given p task on a given p worker when the bus is idle with a given priority. See
Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.37.4.25 starpu_idle_prefetch_task_input_for()

int starpu_idle_prefetch_task_input_for (

struct starpu_task ∗ task,

unsigned worker)

Prefetch data for a given p task on a given p worker when the bus is idle. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.26 starpu_task_footprint()

uint32_t starpu_task_footprint (

struct starpu_perfmodel ∗ model,

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return the footprint for a given task, taking into account user-provided perfmodel footprint or size_base functions.
See Performance Model Example for more details.

57.37.4.27 starpu_task_data_footprint()

uint32_t starpu_task_data_footprint (

struct starpu_task ∗ task)

Return the raw footprint for the data of a given task (without taking into account user-provided functions). See
Performance Model Example for more details.

57.37.4.28 starpu_task_expected_length()

double starpu_task_expected_length (

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return expected task duration in micro-seconds on a given architecture arch using given implementation nimpl.
See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.37.4.29 starpu_task_worker_expected_length()

double starpu_task_worker_expected_length (

struct starpu_task ∗ task,

unsigned workerid,

unsigned sched_ctx_id,

unsigned nimpl)

Same as starpu_task_expected_length() but for a precise worker. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

Generated by Doxygen

652 Module Documentation a.k.a StarPU’s API

57.37.4.30 starpu_task_expected_length_average()

double starpu_task_expected_length_average (

struct starpu_task ∗ task,

unsigned sched_ctx_id)

Return expected task duration in micro-seconds, averaged over the different workers driven by the scheduler
sched_ctx_id Note: this is not just the average of the durations using the number of processing units
as coefficients, but their efficiency at processing the task, thus the harmonic average of the durations. See
Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.37.4.31 starpu_worker_get_relative_speedup()

double starpu_worker_get_relative_speedup (

struct starpu_perfmodel_arch ∗ perf_arch)

Return an estimated speedup factor relative to CPU speed. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.32 starpu_task_expected_data_transfer_time()

double starpu_task_expected_data_transfer_time (

unsigned memory_node,

struct starpu_task ∗ task)

Return expected data transfer time in micro-seconds for the given memory_node. Prefer using starpu_task_expected_data_transfer_time_for()
which is more precise. See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.37.4.33 starpu_task_expected_data_transfer_time_for()

double starpu_task_expected_data_transfer_time_for (

struct starpu_task ∗ task,

unsigned worker)

Return expected data transfer time in micro-seconds for the given worker. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.34 starpu_data_expected_transfer_time()

double starpu_data_expected_transfer_time (

starpu_data_handle_t handle,

unsigned memory_node,

enum starpu_data_access_mode mode)

Predict the transfer time (in micro-seconds) to move handle to a memory node. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.35 starpu_task_expected_energy()

double starpu_task_expected_energy (

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return expected energy use in J. See Helper functions for defining a scheduling policy (Basic or modular) for more
details.

57.37.4.36 starpu_task_worker_expected_energy()

double starpu_task_worker_expected_energy (

struct starpu_task ∗ task,

unsigned workerid,

unsigned sched_ctx_id,

unsigned nimpl)

Same as starpu_task_expected_energy but for a precise worker. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

Generated by Doxygen

57.37 Scheduling Policy 653

57.37.4.37 starpu_task_expected_energy_average()

double starpu_task_expected_energy_average (

struct starpu_task ∗ task,

unsigned sched_ctx_id)

Return expected task energy use in J, averaged over the different workers driven by the scheduler sched_←↩

ctx_id Note: this is not just the average of the energy uses using the number of processing units as co-
efficients, but their efficiency at processing the task, thus the harmonic average of the energy uses. See
Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.37.4.38 starpu_task_expected_conversion_time()

double starpu_task_expected_conversion_time (

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return expected conversion time in ms (multiformat interface only). See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.37.4.39 starpu_task_notify_ready_soon_register()

void starpu_task_notify_ready_soon_register (

starpu_notify_ready_soon_func f,

void ∗ data)

Register a callback to be called when it is determined when a task will be ready an estimated amount
of time from now, because its last dependency has just started and we know how long it will take. See
Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.37.4.40 starpu_sched_ctx_worker_shares_tasks_lists()

void starpu_sched_ctx_worker_shares_tasks_lists (

int workerid,

int sched_ctx_id)

The scheduling policies indicates if the worker may pop tasks from the list of other workers or if there is a central list
with task for all the workers. See Defining A New Basic Scheduling Policy for more details.

57.37.4.41 starpu_sched_task_break()

void starpu_sched_task_break (

struct starpu_task ∗ task)

The scheduling policy should call this when it makes a scheduling decision for a task. This will possibly stop
execution at this point, and then the programmer can inspect local variables etc. to determine why this scheduling
decision was done.
See STARPU_TASK_BREAK_ON_SCHED See Defining A New Basic Scheduling Policy for more details.

57.37.4.42 starpu_wake_worker_relax()

int starpu_wake_worker_relax (

int workerid)

Wake up workerid while temporarily entering the current worker relax state if needed during the wait-
ing process. Return 1 if workerid has been woken up or its state_keep_awake flag has been set to
1, and 0 otherwise (if workerid was not in the STATE_SLEEPING or in the STATE_SCHEDULING). See
Defining A New Basic Scheduling Policy for more details.

57.37.4.43 starpu_wake_worker_no_relax()

int starpu_wake_worker_no_relax (

int workerid)

Must be called to wake up a worker that is sleeping on the cond. Return 0 whenever the worker is not in a sleeping
state or has the state_keep_awake flag on. See Defining A New Basic Scheduling Policy for more details.

Generated by Doxygen

654 Module Documentation a.k.a StarPU’s API

57.37.4.44 starpu_wake_worker_locked()

int starpu_wake_worker_locked (

int workerid)

Version of starpu_wake_worker_no_relax() which assumes that the sched mutex is locked See Defining A New Basic Scheduling Policy
for more details.

57.37.4.45 starpu_wake_worker_relax_light()

int starpu_wake_worker_relax_light (

int workerid)

Light version of starpu_wake_worker_relax() which, when possible, speculatively set keep_awake on the target
worker without waiting for the worker to enter the relax state. See Defining A New Basic Scheduling Policy for more
details.

Generated by Doxygen

57.38 Scheduling Context Hypervisor - Linear Programming 655

57.38 Scheduling Context Hypervisor - Linear Programming

Functions

• double sc_hypervisor_lp_get_nworkers_per_ctx (int nsched_ctxs, int ntypes_of_workers, double res[nsched←↩

_ctxs][ntypes_of_workers], int total_nw[ntypes_of_workers], struct types_of_workers ∗tw, unsigned ∗in_←↩

sched_ctxs)
• double sc_hypervisor_lp_get_tmax (int nw, int ∗workers)
• void sc_hypervisor_lp_round_double_to_int (int ns, int nw, double res[ns][nw], int res_rounded[ns][nw])
• void sc_hypervisor_lp_redistribute_resources_in_ctxs (int ns, int nw, int res_rounded[ns][nw], double

res[ns][nw], unsigned ∗sched_ctxs, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_distribute_resources_in_ctxs (unsigned ∗sched_ctxs, int ns, int nw, int res_←↩

rounded[ns][nw], double res[ns][nw], int ∗workers, int nworkers, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs (unsigned ∗sched_ctxs, int ns, int nw, dou-

ble res[ns][nw], int ∗workers, int nworkers, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_place_resources_in_ctx (int ns, int nw, double w_in_s[ns][nw], unsigned ∗sched_ctxs,

int ∗workers, unsigned do_size, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_share_remaining_resources (int ns, unsigned ∗sched_ctxs, int nworkers, int ∗workers)
• double sc_hypervisor_lp_find_tmax (double t1, double t2)
• unsigned sc_hypervisor_lp_execute_dichotomy (int ns, int nw, double w_in_s[ns][nw], unsigned solve_lp_←↩

integer, void ∗specific_data, double tmin, double tmax, double smallest_tmax, double(∗lp_estimated_distrib←↩

_func)(int lns, int lnw, double ldraft_w_in_s[ns][nw], unsigned lis_integer, double ltmax, void ∗lspecifc_data))
• double sc_hypervisor_lp_simulate_distrib_flops (int nsched_ctxs, int ntypes_of_workers, double speed[nsched←↩

_ctxs][ntypes_of_workers], double flops[nsched_ctxs], double res[nsched_ctxs][ntypes_of_workers], int
total_nw[ntypes_of_workers], unsigned sched_ctxs[nsched_ctxs], double vmax)

• double sc_hypervisor_lp_simulate_distrib_tasks (int ns, int nw, int nt, double w_in_s[ns][nw], double
tasks[nw][nt], double times[nw][nt], unsigned is_integer, double tmax, unsigned ∗in_sched_ctxs, struct
sc_hypervisor_policy_task_pool ∗tmp_task_pools)

• double sc_hypervisor_lp_simulate_distrib_flops_on_sample (int ns, int nw, double final_w_in_s[ns][nw], un-
signed is_integer, double tmax, double ∗∗speed, double flops[ns], double ∗∗final_flops_on_w)

57.38.1 Detailed Description

57.38.2 Function Documentation

57.38.2.1 sc_hypervisor_lp_get_nworkers_per_ctx()

double sc_hypervisor_lp_get_nworkers_per_ctx (

int nsched_ctxs,

int ntypes_of_workers,

double res[nsched_ctxs][ntypes_of_workers],

int total_nw[ntypes_of_workers],

struct types_of_workers ∗ tw,

unsigned ∗ in_sched_ctxs)

return tmax, and compute in table res the nr of workers needed by each context st the system ends up in the
smallest tma

57.38.2.2 sc_hypervisor_lp_get_tmax()

double sc_hypervisor_lp_get_tmax (

int nw,

int ∗ workers)

return tmax of the system

Generated by Doxygen

656 Module Documentation a.k.a StarPU’s API

57.38.2.3 sc_hypervisor_lp_round_double_to_int()

void sc_hypervisor_lp_round_double_to_int (

int ns,

int nw,

double res[ns][nw],

int res_rounded[ns][nw])

the linear programme determines a rational number of resources for each ctx, we round them depending on the
type of resource

57.38.2.4 sc_hypervisor_lp_redistribute_resources_in_ctxs()

void sc_hypervisor_lp_redistribute_resources_in_ctxs (

int ns,

int nw,

int res_rounded[ns][nw],

double res[ns][nw],

unsigned ∗ sched_ctxs,

struct types_of_workers ∗ tw)

redistribute the resource in contexts by assigning the first x available resources to each one

57.38.2.5 sc_hypervisor_lp_distribute_resources_in_ctxs()

void sc_hypervisor_lp_distribute_resources_in_ctxs (

unsigned ∗ sched_ctxs,

int ns,

int nw,

int res_rounded[ns][nw],

double res[ns][nw],

int ∗ workers,

int nworkers,

struct types_of_workers ∗ tw)

make the first distribution of resource in contexts by assigning the first x available resources to each one

57.38.2.6 sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs()

void sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs (

unsigned ∗ sched_ctxs,

int ns,

int nw,

double res[ns][nw],

int ∗ workers,

int nworkers,

struct types_of_workers ∗ tw)

make the first distribution of resource in contexts by assigning the first x available resources to each one, share not
integer no of workers

57.38.2.7 sc_hypervisor_lp_place_resources_in_ctx()

void sc_hypervisor_lp_place_resources_in_ctx (

int ns,

int nw,

double w_in_s[ns][nw],

unsigned ∗ sched_ctxs,

int ∗ workers,

unsigned do_size,

struct types_of_workers ∗ tw)

place resources in contexts depending on whether they already have workers or not

Generated by Doxygen

57.38 Scheduling Context Hypervisor - Linear Programming 657

57.38.2.8 sc_hypervisor_lp_share_remaining_resources()

void sc_hypervisor_lp_share_remaining_resources (

int ns,

unsigned ∗ sched_ctxs,

int nworkers,

int ∗ workers)

not used resources are shared between all contexts

57.38.2.9 sc_hypervisor_lp_find_tmax()

double sc_hypervisor_lp_find_tmax (

double t1,

double t2)

dichotomy btw t1 & t2

57.38.2.10 sc_hypervisor_lp_execute_dichotomy()

unsigned sc_hypervisor_lp_execute_dichotomy (

int ns,

int nw,

double w_in_s[ns][nw],

unsigned solve_lp_integer,

void ∗ specific_data,

double tmin,

double tmax,

double smallest_tmax,

double(∗)(int lns, int lnw, double ldraft_w_in_s[ns][nw], unsigned lis_integer,

double ltmax, void ∗lspecifc_data) lp_estimated_distrib_func)

execute the lp through dichotomy

57.38.2.11 sc_hypervisor_lp_simulate_distrib_flops()

double sc_hypervisor_lp_simulate_distrib_flops (

int nsched_ctxs,

int ntypes_of_workers,

double speed[nsched_ctxs][ntypes_of_workers],

double flops[nsched_ctxs],

double res[nsched_ctxs][ntypes_of_workers],

int total_nw[ntypes_of_workers],

unsigned sched_ctxs[nsched_ctxs],

double vmax)

linear program that returns 1/tmax, and computes in table res the nr of workers needed by each context st the
system ends up in the smallest tmax

57.38.2.12 sc_hypervisor_lp_simulate_distrib_tasks()

double sc_hypervisor_lp_simulate_distrib_tasks (

int ns,

int nw,

int nt,

double w_in_s[ns][nw],

double tasks[nw][nt],

double times[nw][nt],

unsigned is_integer,

double tmax,

unsigned ∗ in_sched_ctxs,

struct sc_hypervisor_policy_task_pool ∗ tmp_task_pools)

linear program that simulates a distribution of tasks that minimises the execution time of the tasks in the pool

Generated by Doxygen

658 Module Documentation a.k.a StarPU’s API

57.38.2.13 sc_hypervisor_lp_simulate_distrib_flops_on_sample()

double sc_hypervisor_lp_simulate_distrib_flops_on_sample (

int ns,

int nw,

double final_w_in_s[ns][nw],

unsigned is_integer,

double tmax,

double ∗∗ speed,

double flops[ns],

double ∗∗ final_flops_on_w)

linear program that simulates a distribution of flops over the workers on particular sample of the execution of the
application such that the entire sample would finish in a minimum amount of time

Generated by Doxygen

57.39 Scheduling Context Hypervisor - Building a new resizing policy 659

57.39 Scheduling Context Hypervisor - Building a new resizing policy

Data Structures

• struct types_of_workers
• struct sc_hypervisor_policy_task_pool
• struct sc_hypervisor_policy
• struct sc_hypervisor_resize_ack

Macros

• #define HYPERVISOR_REDIM_SAMPLE
• #define HYPERVISOR_START_REDIM_SAMPLE
• #define SC_NOTHING
• #define SC_IDLE
• #define SC_SPEED

Functions

• void sc_hypervisor_policy_add_task_to_pool (struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t foot-
print, struct sc_hypervisor_policy_task_pool ∗∗task_pools, size_t data_size)

• void sc_hypervisor_policy_remove_task_from_pool (struct starpu_task ∗task, uint32_t footprint, struct
sc_hypervisor_policy_task_pool ∗∗task_pools)

• struct sc_hypervisor_policy_task_pool ∗ sc_hypervisor_policy_clone_task_pool (struct sc_hypervisor_policy_task_pool
∗tp)

• void sc_hypervisor_get_tasks_times (int nw, int nt, double times[nw][nt], int ∗workers, unsigned size_ctxs,
struct sc_hypervisor_policy_task_pool ∗task_pools)

• unsigned sc_hypervisor_find_lowest_prio_sched_ctx (unsigned req_sched_ctx, int nworkers_to_move)
• int ∗ sc_hypervisor_get_idlest_workers (unsigned sched_ctx, int ∗nworkers, enum starpu_worker_archtype

arch)
• int ∗ sc_hypervisor_get_idlest_workers_in_list (int ∗start, int ∗workers, int nall_workers, int ∗nworkers, enum

starpu_worker_archtype arch)
• int sc_hypervisor_get_movable_nworkers (struct sc_hypervisor_policy_config ∗config, unsigned sched_ctx,

enum starpu_worker_archtype arch)
• int sc_hypervisor_compute_nworkers_to_move (unsigned req_sched_ctx)
• unsigned sc_hypervisor_policy_resize (unsigned sender_sched_ctx, unsigned receiver_sched_ctx, unsigned

force_resize, unsigned now)
• unsigned sc_hypervisor_policy_resize_to_unknown_receiver (unsigned sender_sched_ctx, unsigned now)
• double sc_hypervisor_get_ctx_speed (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisor_get_slowest_ctx_exec_time (void)
• double sc_hypervisor_get_fastest_ctx_exec_time (void)
• double sc_hypervisor_get_speed_per_worker (struct sc_hypervisor_wrapper ∗sc_w, unsigned worker)
• double sc_hypervisor_get_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w, enum starpu_worker_archtype

arch)
• double sc_hypervisor_get_ref_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w, enum

starpu_worker_archtype arch)
• double sc_hypervisor_get_avg_speed (enum starpu_worker_archtype arch)
• void sc_hypervisor_check_if_consider_max (struct types_of_workers ∗tw)
• void sc_hypervisor_group_workers_by_type (struct types_of_workers ∗tw, int ∗total_nw)
• enum starpu_worker_archtype sc_hypervisor_get_arch_for_index (unsigned w, struct types_of_workers ∗tw)
• unsigned sc_hypervisor_get_index_for_arch (enum starpu_worker_archtype arch, struct types_of_workers
∗tw)

• unsigned sc_hypervisor_criteria_fulfilled (unsigned sched_ctx, int worker)
• unsigned sc_hypervisor_check_idle (unsigned sched_ctx, int worker)
• unsigned sc_hypervisor_check_speed_gap_btw_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers,

int nworkers)

Generated by Doxygen

660 Module Documentation a.k.a StarPU’s API

• unsigned sc_hypervisor_check_speed_gap_btw_ctxs_on_level (int level, int ∗workers_in, int nworkers_in,
unsigned father_sched_ctx_id, unsigned ∗∗sched_ctxs, int ∗nsched_ctxs)

• unsigned sc_hypervisor_get_resize_criteria (void)
• struct types_of_workers ∗ sc_hypervisor_get_types_of_workers (int ∗workers, unsigned nworkers)

• struct sc_hypervisor_wrapper ∗ sc_hypervisor_get_wrapper (unsigned sched_ctx)
• unsigned ∗ sc_hypervisor_get_sched_ctxs (void)
• int sc_hypervisor_get_nsched_ctxs (void)
• double sc_hypervisor_get_elapsed_flops_per_sched_ctx (struct sc_hypervisor_wrapper ∗sc_w)
• int sc_hypervisor_get_nworkers_ctx (unsigned sched_ctx, enum starpu_worker_archtype arch)
• double sc_hypervisor_get_total_elapsed_flops_per_sched_ctx (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisorsc_hypervisor_get_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w,

enum starpu_worker_archtype arch)
• double sc_hypervisor_get_speed (struct sc_hypervisor_wrapper ∗sc_w, enum starpu_worker_archtype arch)

• void sc_hypervisor_set_config (unsigned sched_ctx, void ∗config)
• struct sc_hypervisor_policy_config ∗ sc_hypervisor_get_config (unsigned sched_ctx)
• void sc_hypervisor_ctl (unsigned sched_ctx,...)
• #define SC_HYPERVISOR_MAX_IDLE
• #define SC_HYPERVISOR_MIN_WORKING
• #define SC_HYPERVISOR_PRIORITY
• #define SC_HYPERVISOR_MIN_WORKERS
• #define SC_HYPERVISOR_MAX_WORKERS
• #define SC_HYPERVISOR_GRANULARITY
• #define SC_HYPERVISOR_FIXED_WORKERS
• #define SC_HYPERVISOR_MIN_TASKS
• #define SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE
• #define SC_HYPERVISOR_TIME_TO_APPLY
• #define SC_HYPERVISOR_NULL
• #define SC_HYPERVISOR_ISPEED_W_SAMPLE
• #define SC_HYPERVISOR_ISPEED_CTX_SAMPLE
• #define SC_HYPERVISOR_TIME_SAMPLE
• #define MAX_IDLE_TIME
• #define MIN_WORKING_TIME

57.39.1 Detailed Description

57.39.2 Data Structure Documentation

57.39.2.1 struct types_of_workers

Data Fields

unsigned ncpus

unsigned ncuda

unsigned nw

57.39.2.2 struct sc_hypervisor_policy_task_pool

Task wrapper linked list

Data Fields

struct starpu_codelet ∗ cl Which codelet has been executed

uint32_t footprint Task footprint key

unsigned sched_ctx_id Context the task belongs to

Generated by Doxygen

57.39 Scheduling Context Hypervisor - Building a new resizing policy 661

Data Fields

unsigned long n Number of tasks of this kind

size_t data_size The quantity of data(in bytes) needed by the task
to execute

struct sc_hypervisor_policy_task_pool ∗ next Other task kinds

57.39.2.3 struct sc_hypervisor_policy

Methods to implement a hypervisor resizing policy.

Data Fields

• const char ∗ name
• unsigned custom
• void(∗ size_ctxs)(unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void(∗ resize_ctxs)(unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void(∗ handle_idle_cycle)(unsigned sched_ctx, int worker)
• void(∗ handle_pushed_task)(unsigned sched_ctx, int worker)
• void(∗ handle_poped_task)(unsigned sched_ctx, int worker, struct starpu_task ∗task, uint32_t footprint)
• void(∗ handle_idle_end)(unsigned sched_ctx, int worker)
• void(∗ handle_post_exec_hook)(unsigned sched_ctx, int task_tag)
• void(∗ handle_submitted_job)(struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t footprint, size_t data←↩

_size)
• void(∗ end_ctx)(unsigned sched_ctx)
• void(∗ start_ctx)(unsigned sched_ctx)
• void(∗ init_worker)(int workerid, unsigned sched_ctx)

57.39.2.3.1 Field Documentation

57.39.2.3.1.1 name const char∗ sc_hypervisor_policy::name

Indicate the name of the policy, if there is not a custom policy, the policy corresponding to this name will be used by
the hypervisor

57.39.2.3.1.2 custom unsigned sc_hypervisor_policy::custom

Indicate whether the policy is custom or not

57.39.2.3.1.3 size_ctxs void(∗ sc_hypervisor_policy::size_ctxs) (unsigned ∗sched_ctxs, int nsched←↩

_ctxs, int ∗workers, int nworkers)

Distribute workers to contexts even at the beginning of the program

57.39.2.3.1.4 resize_ctxs void(∗ sc_hypervisor_policy::resize_ctxs) (unsigned ∗sched_ctxs, int

nsched_ctxs, int ∗workers, int nworkers)

Require explicit resizing

57.39.2.3.1.5 handle_idle_cycle void(∗ sc_hypervisor_policy::handle_idle_cycle) (unsigned sched←↩

_ctx, int worker)

Called whenever the indicated worker executes another idle cycle in sched_ctx

57.39.2.3.1.6 handle_pushed_task void(∗ sc_hypervisor_policy::handle_pushed_task) (unsigned

sched_ctx, int worker)

Called whenever a task is pushed on the worker’s queue corresponding to the context sched_ctx

Generated by Doxygen

662 Module Documentation a.k.a StarPU’s API

57.39.2.3.1.7 handle_poped_task void(∗ sc_hypervisor_policy::handle_poped_task) (unsigned

sched_ctx, int worker, struct starpu_task ∗task, uint32_t footprint)

Called whenever a task is poped from the worker’s queue corresponding to the context sched_ctx

57.39.2.3.1.8 handle_idle_end void(∗ sc_hypervisor_policy::handle_idle_end) (unsigned sched_←↩

ctx, int worker)

Called whenever a task is executed on the indicated worker and context after a long period of idle time

57.39.2.3.1.9 handle_post_exec_hook void(∗ sc_hypervisor_policy::handle_post_exec_hook) (unsigned

sched_ctx, int task_tag)

Called whenever a tag task has just been executed. The table of resize requests is provided as well as the tag

57.39.2.3.1.10 handle_submitted_job void(∗ sc_hypervisor_policy::handle_submitted_job) (struct

starpu_codelet ∗cl, unsigned sched_ctx, uint32_t footprint, size_t data_size)

the hypervisor takes a decision when a job was submitted in this ctx

57.39.2.3.1.11 end_ctx void(∗ sc_hypervisor_policy::end_ctx) (unsigned sched_ctx)

the hypervisor takes a decision when a certain ctx was deleted

57.39.2.3.1.12 start_ctx void(∗ sc_hypervisor_policy::start_ctx) (unsigned sched_ctx)

the hypervisor takes a decision when a certain ctx was registered

57.39.2.3.1.13 init_worker void(∗ sc_hypervisor_policy::init_worker) (int workerid, unsigned

sched_ctx)

the hypervisor initializes values for the workers

57.39.2.4 struct sc_hypervisor_resize_ack

Structure to check if the workers moved to another context are actually taken into account in that context.

Data Fields

int receiver_sched_ctx The context receiving the new workers

int ∗ moved_workers List of workers required to be moved

int nmoved_workers Number of workers required to be moved

int ∗ acked_workers List of workers that actually got in the receiver ctx. If the value corresponding to
a worker is 1, this worker got moved in the new context.

57.39.3 Macro Definition Documentation

57.39.3.1 SC_HYPERVISOR_MAX_IDLE

#define SC_HYPERVISOR_MAX_IDLE

This macro is used when calling sc_hypervisor_ctl() and must be followed by 3 arguments: an array of int for the
workerids to apply the condition, an int to indicate the size of the array, and a double value indicating the maximum
idle time allowed for a worker before the resizing process should be triggered

57.39.3.2 SC_HYPERVISOR_PRIORITY

#define SC_HYPERVISOR_PRIORITY

This macro is used when calling sc_hypervisor_ctl() and must be followed by 3 arguments: an array of int for the
workerids to apply the condition, an int to indicate the size of the array, and an int value indicating the priority of the
workers previously mentioned. The workers with the smallest priority are moved the first.

Generated by Doxygen

57.39 Scheduling Context Hypervisor - Building a new resizing policy 663

57.39.3.3 SC_HYPERVISOR_MIN_WORKERS

#define SC_HYPERVISOR_MIN_WORKERS

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument(int) indicating the minimum
number of workers a context should have, underneath this limit the context cannot execute.

57.39.3.4 SC_HYPERVISOR_MAX_WORKERS

#define SC_HYPERVISOR_MAX_WORKERS

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument(int) indicating the maxi-
mum number of workers a context should have, above this limit the context would not be able to scale

57.39.3.5 SC_HYPERVISOR_GRANULARITY

#define SC_HYPERVISOR_GRANULARITY

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument(int) indicating the gran-
ularity of the resizing process (the number of workers should be moved from the context once it is resized) This
parameter is ignore for the Gflops rate based strategy (see Resizing Strategies), the number of workers that have
to be moved is calculated by the strategy.

57.39.3.6 SC_HYPERVISOR_FIXED_WORKERS

#define SC_HYPERVISOR_FIXED_WORKERS

This macro is used when calling sc_hypervisor_ctl() and must be followed by 2 arguments: an array of int for the
workerids to apply the condition and an int to indicate the size of the array. These workers are not allowed to be
moved from the context.

57.39.3.7 SC_HYPERVISOR_MIN_TASKS

#define SC_HYPERVISOR_MIN_TASKS

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument (int) that indicated the
minimum number of tasks that have to be executed before the context could be resized. This parameter is ignored
for the Application Driven strategy (see Resizing Strategies) where the user indicates exactly when the resize should
be done.

57.39.3.8 SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE

#define SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument, a double value indicating
the maximum idle time allowed for workers that have just been moved from other contexts in the current context.

57.39.3.9 SC_HYPERVISOR_TIME_TO_APPLY

#define SC_HYPERVISOR_TIME_TO_APPLY

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument (int) indicating the tag an
executed task should have such that this configuration should be taken into account.

57.39.3.10 SC_HYPERVISOR_NULL

#define SC_HYPERVISOR_NULL

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument

57.39.3.11 SC_HYPERVISOR_ISPEED_W_SAMPLE

#define SC_HYPERVISOR_ISPEED_W_SAMPLE

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument, a double, that indicates
the number of flops needed to be executed before computing the speed of a worker

Generated by Doxygen

664 Module Documentation a.k.a StarPU’s API

57.39.3.12 SC_HYPERVISOR_ISPEED_CTX_SAMPLE

#define SC_HYPERVISOR_ISPEED_CTX_SAMPLE

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument, a double, that indicates
the number of flops needed to be executed before computing the speed of a context

57.39.4 Function Documentation

57.39.4.1 sc_hypervisor_policy_add_task_to_pool()

void sc_hypervisor_policy_add_task_to_pool (

struct starpu_codelet ∗ cl,

unsigned sched_ctx,

uint32_t footprint,

struct sc_hypervisor_policy_task_pool ∗∗ task_pools,

size_t data_size)

add task information to a task wrapper linked list

57.39.4.2 sc_hypervisor_policy_remove_task_from_pool()

void sc_hypervisor_policy_remove_task_from_pool (

struct starpu_task ∗ task,

uint32_t footprint,

struct sc_hypervisor_policy_task_pool ∗∗ task_pools)

remove task information from a task wrapper linked list

57.39.4.3 sc_hypervisor_policy_clone_task_pool()

struct sc_hypervisor_policy_task_pool ∗ sc_hypervisor_policy_clone_task_pool (

struct sc_hypervisor_policy_task_pool ∗ tp)

clone a task wrapper linked list

57.39.4.4 sc_hypervisor_get_tasks_times()

void sc_hypervisor_get_tasks_times (

int nw,

int nt,

double times[nw][nt],

int ∗ workers,

unsigned size_ctxs,

struct sc_hypervisor_policy_task_pool ∗ task_pools)

get the execution time of the submitted tasks out of starpu's calibration files

57.39.4.5 sc_hypervisor_find_lowest_prio_sched_ctx()

unsigned sc_hypervisor_find_lowest_prio_sched_ctx (

unsigned req_sched_ctx,

int nworkers_to_move)

find the context with the lowest priority in order to move some workers

57.39.4.6 sc_hypervisor_get_idlest_workers()

int ∗ sc_hypervisor_get_idlest_workers (

unsigned sched_ctx,

int ∗ nworkers,

enum starpu_worker_archtype arch)

find the first most idle workers of a context

Generated by Doxygen

57.39 Scheduling Context Hypervisor - Building a new resizing policy 665

57.39.4.7 sc_hypervisor_get_idlest_workers_in_list()

int ∗ sc_hypervisor_get_idlest_workers_in_list (

int ∗ start,

int ∗ workers,

int nall_workers,

int ∗ nworkers,

enum starpu_worker_archtype arch)

find the first most idle workers in a list

57.39.4.8 sc_hypervisor_get_movable_nworkers()

int sc_hypervisor_get_movable_nworkers (

struct sc_hypervisor_policy_config ∗ config,

unsigned sched_ctx,

enum starpu_worker_archtype arch)

find workers that can be moved from a context (if the constraints of min, max, etc allow this)

57.39.4.9 sc_hypervisor_compute_nworkers_to_move()

int sc_hypervisor_compute_nworkers_to_move (

unsigned req_sched_ctx)

compute how many workers should be moved from this context

57.39.4.10 sc_hypervisor_policy_resize()

unsigned sc_hypervisor_policy_resize (

unsigned sender_sched_ctx,

unsigned receiver_sched_ctx,

unsigned force_resize,

unsigned now)

check the policy's constraints in order to resize

57.39.4.11 sc_hypervisor_policy_resize_to_unknown_receiver()

unsigned sc_hypervisor_policy_resize_to_unknown_receiver (

unsigned sender_sched_ctx,

unsigned now)

check the policy's constraints in order to resize and find a context willing the resources

57.39.4.12 sc_hypervisor_get_ctx_speed()

double sc_hypervisor_get_ctx_speed (

struct sc_hypervisor_wrapper ∗ sc_w)

compute the speed of a context

57.39.4.13 sc_hypervisor_get_slowest_ctx_exec_time()

double sc_hypervisor_get_slowest_ctx_exec_time (

void)

get the time of execution of the slowest context

57.39.4.14 sc_hypervisor_get_fastest_ctx_exec_time()

double sc_hypervisor_get_fastest_ctx_exec_time (

void)

get the time of execution of the fastest context

Generated by Doxygen

666 Module Documentation a.k.a StarPU’s API

57.39.4.15 sc_hypervisor_get_speed_per_worker()

double sc_hypervisor_get_speed_per_worker (

struct sc_hypervisor_wrapper ∗ sc_w,

unsigned worker)

compute the speed of a workers in a context

57.39.4.16 sc_hypervisor_get_speed_per_worker_type()

double sc_hypervisor_get_speed_per_worker_type (

struct sc_hypervisor_wrapper ∗ sc_w,

enum starpu_worker_archtype arch)

compute the speed of a type of worker in a context

57.39.4.17 sc_hypervisor_get_ref_speed_per_worker_type()

double sc_hypervisor_get_ref_speed_per_worker_type (

struct sc_hypervisor_wrapper ∗ sc_w,

enum starpu_worker_archtype arch)

compute the speed of a type of worker in a context depending on its history

57.39.4.18 sc_hypervisor_get_avg_speed()

double sc_hypervisor_get_avg_speed (

enum starpu_worker_archtype arch)

compute the average speed of a type of worker in all ctxs from the beginning of appl

57.39.4.19 sc_hypervisor_check_if_consider_max()

void sc_hypervisor_check_if_consider_max (

struct types_of_workers ∗ tw)

verify if we need to consider the max in the lp

57.39.4.20 sc_hypervisor_group_workers_by_type()

void sc_hypervisor_group_workers_by_type (

struct types_of_workers ∗ tw,

int ∗ total_nw)

get the list of workers grouped by type

57.39.4.21 sc_hypervisor_get_arch_for_index()

enum starpu_worker_archtype sc_hypervisor_get_arch_for_index (

unsigned w,

struct types_of_workers ∗ tw)

get what type of worker corresponds to a certain index of types of workers

57.39.4.22 sc_hypervisor_get_index_for_arch()

unsigned sc_hypervisor_get_index_for_arch (

enum starpu_worker_archtype arch,

struct types_of_workers ∗ tw)

get the index of types of workers corresponding to the type of workers indicated

57.39.4.23 sc_hypervisor_criteria_fulfilled()

unsigned sc_hypervisor_criteria_fulfilled (

unsigned sched_ctx,

int worker)

check if we trigger resizing or not

Generated by Doxygen

57.39 Scheduling Context Hypervisor - Building a new resizing policy 667

57.39.4.24 sc_hypervisor_check_idle()

unsigned sc_hypervisor_check_idle (

unsigned sched_ctx,

int worker)

check if worker was idle long enough

57.39.4.25 sc_hypervisor_check_speed_gap_btw_ctxs()

unsigned sc_hypervisor_check_speed_gap_btw_ctxs (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int ∗ workers,

int nworkers)

check if there is a speed gap btw ctxs

57.39.4.26 sc_hypervisor_check_speed_gap_btw_ctxs_on_level()

unsigned sc_hypervisor_check_speed_gap_btw_ctxs_on_level (

int level,

int ∗ workers_in,

int nworkers_in,

unsigned father_sched_ctx_id,

unsigned ∗∗ sched_ctxs,

int ∗ nsched_ctxs)

check if there is a speed gap btw ctxs on one level

57.39.4.27 sc_hypervisor_get_resize_criteria()

unsigned sc_hypervisor_get_resize_criteria (

void)

check what triggers resizing (idle, speed, etc.

57.39.4.28 sc_hypervisor_get_types_of_workers()

struct types_of_workers ∗ sc_hypervisor_get_types_of_workers (

int ∗ workers,

unsigned nworkers)

load information concerning the type of workers into a types_of_workers struct

57.39.4.29 sc_hypervisor_get_wrapper()

struct sc_hypervisor_wrapper ∗ sc_hypervisor_get_wrapper (

unsigned sched_ctx)

Return the wrapper of the given context

57.39.4.30 sc_hypervisor_get_sched_ctxs()

unsigned ∗ sc_hypervisor_get_sched_ctxs (

void)

Get the list of registered contexts

57.39.4.31 sc_hypervisor_get_nsched_ctxs()

int sc_hypervisor_get_nsched_ctxs (

void)

Get the number of registered contexts

Generated by Doxygen

668 Module Documentation a.k.a StarPU’s API

57.39.4.32 sc_hypervisor_get_elapsed_flops_per_sched_ctx()

double sc_hypervisor_get_elapsed_flops_per_sched_ctx (

struct sc_hypervisor_wrapper ∗ sc_w)

Get the number of flops executed by a context since last resizing (reset to 0 when a resizing is done)

57.39.4.33 sc_hypervisor_set_config()

void sc_hypervisor_set_config (

unsigned sched_ctx,

void ∗ config)

Specify the configuration for a context

57.39.4.34 sc_hypervisor_get_config()

struct sc_hypervisor_policy_config ∗ sc_hypervisor_get_config (

unsigned sched_ctx)

Return the configuration of a context

57.39.4.35 sc_hypervisor_ctl()

void sc_hypervisor_ctl (

unsigned sched_ctx,

...)

Specify different parameters for the configuration of a context. The list must be zero-terminated

57.39.4.36 sc_hypervisor_get_nworkers_ctx()

int sc_hypervisor_get_nworkers_ctx (

unsigned sched_ctx,

enum starpu_worker_archtype arch)

Get the number of workers of a certain architecture in a context

57.39.4.37 sc_hypervisor_get_total_elapsed_flops_per_sched_ctx()

double sc_hypervisor_get_total_elapsed_flops_per_sched_ctx (

struct sc_hypervisor_wrapper ∗ sc_w)

Get the number of flops executed by a context since the beginning

57.39.4.38 sc_hypervisorsc_hypervisor_get_speed_per_worker_type()

double sc_hypervisorsc_hypervisor_get_speed_per_worker_type (

struct sc_hypervisor_wrapper ∗ sc_w,

enum starpu_worker_archtype arch)

Compute an average value of the cpu/cuda speed

57.39.4.39 sc_hypervisor_get_speed()

double sc_hypervisor_get_speed (

struct sc_hypervisor_wrapper ∗ sc_w,

enum starpu_worker_archtype arch)

Compte the actual speed of all workers of a specific type of worker

Generated by Doxygen

57.40 Scheduling Context Hypervisor - Regular usage 669

57.40 Scheduling Context Hypervisor - Regular usage

Functions

• void ∗ sc_hypervisor_init (struct sc_hypervisor_policy ∗policy)
• void sc_hypervisor_shutdown (void)
• void sc_hypervisor_register_ctx (unsigned sched_ctx, double total_flops)
• void sc_hypervisor_unregister_ctx (unsigned sched_ctx)
• void sc_hypervisor_post_resize_request (unsigned sched_ctx, int task_tag)
• void sc_hypervisor_resize_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void sc_hypervisor_stop_resize (unsigned sched_ctx)
• void sc_hypervisor_start_resize (unsigned sched_ctx)
• const char ∗ sc_hypervisor_get_policy (void)
• void sc_hypervisor_add_workers_to_sched_ctx (int ∗workers_to_add, unsigned nworkers_to_add, unsigned

sched_ctx)
• void sc_hypervisor_remove_workers_from_sched_ctx (int ∗workers_to_remove, unsigned nworkers_to_←↩

remove, unsigned sched_ctx, unsigned now)
• void sc_hypervisor_move_workers (unsigned sender_sched_ctx, unsigned receiver_sched_ctx, int
∗workers_to_move, unsigned nworkers_to_move, unsigned now)

• void sc_hypervisor_size_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• unsigned sc_hypervisor_get_size_req (unsigned ∗∗sched_ctxs, int ∗nsched_ctxs, int ∗∗workers, int
∗nworkers)

• void sc_hypervisor_save_size_req (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void sc_hypervisor_free_size_req (void)
• unsigned sc_hypervisor_can_resize (unsigned sched_ctx)
• void sc_hypervisor_set_type_of_task (struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t footprint,

size_t data_size)
• void sc_hypervisor_update_diff_total_flops (unsigned sched_ctx, double diff_total_flops)
• void sc_hypervisor_update_diff_elapsed_flops (unsigned sched_ctx, double diff_task_flops)
• void sc_hypervisor_update_resize_interval (unsigned ∗sched_ctxs, int nsched_ctxs, int max_nworkers)
• void sc_hypervisor_get_ctxs_on_level (unsigned ∗∗sched_ctxs, int ∗nsched_ctxs, unsigned hierarchy_level,

unsigned father_sched_ctx_id)
• unsigned sc_hypervisor_get_nhierarchy_levels (void)
• void sc_hypervisor_get_leaves (unsigned ∗sched_ctxs, int nsched_ctxs, unsigned ∗leaves, int ∗nleaves)
• double sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx (unsigned sched_ctx)
• void sc_hypervisor_print_overhead (void)
• void sc_hypervisor_init_worker (int workerid, unsigned sched_ctx)

Variables

• starpu_pthread_mutex_t act_hypervisor_mutex

57.40.1 Detailed Description

There is a single hypervisor that is in charge of resizing contexts and the resizing strategy is chosen at the initial-
ization of the hypervisor. A single resize can be done at a time.
The Scheduling Context Hypervisor Plugin provides a series of performance counters to StarPU. By incrementing
them, StarPU can help the hypervisor in the resizing decision making process.
The function sc_hypervisor_init() initializes the hypervisor to use the strategy provided as parameter and creates
the performance counters (see starpu_sched_ctx_performance_counters). These performance counters represent
actually some callbacks that will be used by the contexts to notify the information needed by the hypervisor.
Scheduling Contexts that have to be resized by the hypervisor must be first registered to the hypervisor using the
function sc_hypervisor_register_ctx()
Note: The Hypervisor is actually a worker that takes this role once certain conditions trigger the resizing process
(there is no additional thread assigned to the hypervisor).

Generated by Doxygen

670 Module Documentation a.k.a StarPU’s API

57.40.2 Function Documentation

57.40.2.1 sc_hypervisor_init()

void ∗ sc_hypervisor_init (

struct sc_hypervisor_policy ∗ policy)

Start the hypervisor with the given policy

57.40.2.2 sc_hypervisor_shutdown()

void sc_hypervisor_shutdown (

void)

Shutdown the hypervisor. The hypervisor and all information concerning it is cleaned. There is no synchronization
between this function and starpu_shutdown(). Thus, this should be called after starpu_shutdown(), because the
performance counters will still need allocated callback functions.

57.40.2.3 sc_hypervisor_register_ctx()

void sc_hypervisor_register_ctx (

unsigned sched_ctx,

double total_flops)

Register the context to the hypervisor, and indicate the number of flops the context will execute (used for Gflops rate
based strategy)

57.40.2.4 sc_hypervisor_unregister_ctx()

void sc_hypervisor_unregister_ctx (

unsigned sched_ctx)

Unregister a context from the hypervisor, and so exclude the context from the resizing process

57.40.2.5 sc_hypervisor_post_resize_request()

void sc_hypervisor_post_resize_request (

unsigned sched_ctx,

int task_tag)

Require resizing the context sched_ctx whenever a task tagged with the id task_tag finished executing

57.40.2.6 sc_hypervisor_resize_ctxs()

void sc_hypervisor_resize_ctxs (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int ∗ workers,

int nworkers)

Require reconsidering the distribution of resources over the indicated scheduling contexts, i.e reevaluate the distri-
bution of the resources and eventually resize if needed

57.40.2.7 sc_hypervisor_stop_resize()

void sc_hypervisor_stop_resize (

unsigned sched_ctx)

Do not allow the hypervisor to resize a context.

57.40.2.8 sc_hypervisor_start_resize()

void sc_hypervisor_start_resize (

unsigned sched_ctx)

Allow the hypervisor to resize a context if necessary.

Generated by Doxygen

57.40 Scheduling Context Hypervisor - Regular usage 671

57.40.2.9 sc_hypervisor_get_policy()

const char ∗ sc_hypervisor_get_policy (

void)

Return the name of the resizing policy used by the hypervisor

57.40.2.10 sc_hypervisor_add_workers_to_sched_ctx()

void sc_hypervisor_add_workers_to_sched_ctx (

int ∗ workers_to_add,

unsigned nworkers_to_add,

unsigned sched_ctx)

Ask the hypervisor to add workers to a sched_ctx

57.40.2.11 sc_hypervisor_remove_workers_from_sched_ctx()

void sc_hypervisor_remove_workers_from_sched_ctx (

int ∗ workers_to_remove,

unsigned nworkers_to_remove,

unsigned sched_ctx,

unsigned now)

Ask the hypervisor to remove workers from a sched_ctx

57.40.2.12 sc_hypervisor_move_workers()

void sc_hypervisor_move_workers (

unsigned sender_sched_ctx,

unsigned receiver_sched_ctx,

int ∗ workers_to_move,

unsigned nworkers_to_move,

unsigned now)

Ask the hypervisor to move workers from one context to another

57.40.2.13 sc_hypervisor_size_ctxs()

void sc_hypervisor_size_ctxs (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int ∗ workers,

int nworkers)

Ask the hypervisor to choose a distribution of workers in the required contexts

57.40.2.14 sc_hypervisor_get_size_req()

unsigned sc_hypervisor_get_size_req (

unsigned ∗∗ sched_ctxs,

int ∗ nsched_ctxs,

int ∗∗ workers,

int ∗ nworkers)

Check if there are pending demands of resizing

57.40.2.15 sc_hypervisor_save_size_req()

void sc_hypervisor_save_size_req (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int ∗ workers,

int nworkers)

Save a demand of resizing

Generated by Doxygen

672 Module Documentation a.k.a StarPU’s API

57.40.2.16 sc_hypervisor_free_size_req()

void sc_hypervisor_free_size_req (

void)

Clear the list of pending demands of resizing

57.40.2.17 sc_hypervisor_can_resize()

unsigned sc_hypervisor_can_resize (

unsigned sched_ctx)

Check out if a context can be resized

57.40.2.18 sc_hypervisor_set_type_of_task()

void sc_hypervisor_set_type_of_task (

struct starpu_codelet ∗ cl,

unsigned sched_ctx,

uint32_t footprint,

size_t data_size)

Indicate the types of tasks a context will execute in order to better decide the sizing of ctxs

57.40.2.19 sc_hypervisor_update_diff_total_flops()

void sc_hypervisor_update_diff_total_flops (

unsigned sched_ctx,

double diff_total_flops)

Change dynamically the total number of flops of a context, move the deadline of the finishing time of the context

57.40.2.20 sc_hypervisor_update_diff_elapsed_flops()

void sc_hypervisor_update_diff_elapsed_flops (

unsigned sched_ctx,

double diff_task_flops)

Change dynamically the number of the elapsed flops in a context, modify the past in order to better compute the
speed

57.40.2.21 sc_hypervisor_update_resize_interval()

void sc_hypervisor_update_resize_interval (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int max_nworkers)

Update the min and max workers needed by each context

57.40.2.22 sc_hypervisor_get_ctxs_on_level()

void sc_hypervisor_get_ctxs_on_level (

unsigned ∗∗ sched_ctxs,

int ∗ nsched_ctxs,

unsigned hierarchy_level,

unsigned father_sched_ctx_id)

Return a list of contexts that are on the same level in the hierarchy of contexts

57.40.2.23 sc_hypervisor_get_nhierarchy_levels()

unsigned sc_hypervisor_get_nhierarchy_levels (

void)

Returns the number of levels of ctxs registered to the hyp

Generated by Doxygen

57.40 Scheduling Context Hypervisor - Regular usage 673

57.40.2.24 sc_hypervisor_get_leaves()

void sc_hypervisor_get_leaves (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

unsigned ∗ leaves,

int ∗ nleaves)

Return the leaves ctxs from the list of ctxs

57.40.2.25 sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx()

double sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx (

unsigned sched_ctx)

Return the nready flops of all ctxs below in hierarchy of sched_ctx

57.40.3 Variable Documentation

57.40.3.1 act_hypervisor_mutex

starpu_pthread_mutex_t act_hypervisor_mutex [extern]

synchronise the hypervisor when several workers try to update its information

Generated by Doxygen

674 Module Documentation a.k.a StarPU’s API

57.41 Sink

Functions

• void starpu_sink_common_worker (int argc, char ∗∗argv)

57.41.1 Detailed Description

Generated by Doxygen

57.42 Standard Memory Library 675

57.42 Standard Memory Library

Macros

• #define STARPU_MALLOC_PINNED
• #define STARPU_MALLOC_COUNT
• #define STARPU_MALLOC_NORECLAIM
• #define STARPU_MEMORY_WAIT
• #define STARPU_MEMORY_OVERFLOW
• #define STARPU_MALLOC_SIMULATION_FOLDED
• #define STARPU_MALLOC_SIMULATION_UNIQUE
• #define starpu_data_malloc_pinned_if_possible
• #define starpu_data_free_pinned_if_possible

Typedefs

• typedef int(∗ starpu_malloc_hook) (unsigned dst_node, void ∗∗A, size_t dim, int flags)
• typedef int(∗ starpu_free_hook) (unsigned dst_node, void ∗A, size_t dim, int flags)

Functions

• void starpu_malloc_set_align (size_t align)
• int starpu_malloc (void ∗∗A, size_t dim)
• int starpu_free (void ∗A)
• int starpu_malloc_flags (void ∗∗A, size_t dim, int flags)
• int starpu_free_flags (void ∗A, size_t dim, int flags)
• int starpu_free_noflag (void ∗A, size_t dim)
• void starpu_malloc_set_hooks (starpu_malloc_hook malloc_hook, starpu_free_hook free_hook)
• int starpu_memory_pin (void ∗addr, size_t size)
• int starpu_memory_unpin (void ∗addr, size_t size)
• starpu_ssize_t starpu_memory_get_total (unsigned node)
• starpu_ssize_t starpu_memory_get_available (unsigned node)
• size_t starpu_memory_get_used (unsigned node)
• starpu_ssize_t starpu_memory_get_total_all_nodes (void)
• starpu_ssize_t starpu_memory_get_available_all_nodes (void)
• size_t starpu_memory_get_used_all_nodes (void)
• int starpu_memory_allocate (unsigned node, size_t size, int flags)
• void starpu_memory_deallocate (unsigned node, size_t size)
• void starpu_memory_wait_available (unsigned node, size_t size)
• void starpu_sleep (float nb_sec)
• void starpu_usleep (float nb_micro_sec)
• void starpu_energy_use (float joules)
• double starpu_energy_used (void)

57.42.1 Detailed Description

57.42.2 Macro Definition Documentation

57.42.2.1 STARPU_MALLOC_PINNED

#define STARPU_MALLOC_PINNED

Value passed to the function starpu_malloc_flags() to indicate the memory allocation should be pinned.

Generated by Doxygen

676 Module Documentation a.k.a StarPU’s API

57.42.2.2 STARPU_MALLOC_COUNT

#define STARPU_MALLOC_COUNT

Value passed to the function starpu_malloc_flags() to indicate the memory allocation should be in the limit
defined by the environment variables STARPU_LIMIT_CUDA_devid_MEM, STARPU_LIMIT_CUDA_MEM,
STARPU_LIMIT_OPENCL_devid_MEM, STARPU_LIMIT_OPENCL_MEM, STARPU_LIMIT_HIP_MEM, STARPU_LIMIT_HIP_devid_MEM
and STARPU_LIMIT_CPU_MEM (see Section How to Limit Memory Used By StarPU And Cache Buffer Allocations).
If no memory is available, it tries to reclaim memory from StarPU. Memory allocated this way needs to be freed by
calling the function starpu_free_flags() with the same flag.

57.42.2.3 STARPU_MALLOC_NORECLAIM

#define STARPU_MALLOC_NORECLAIM

Value passed to the function starpu_malloc_flags() along STARPU_MALLOC_COUNT to indicate that while the
memory allocation should be kept in the limits defined for STARPU_MALLOC_COUNT, no reclaiming should
be performed by starpu_malloc_flags() itself, thus potentially overflowing the memory node a bit. Star←↩

PU will reclaim memory after next task termination, according to the STARPU_MINIMUM_AVAILABLE_MEM,
STARPU_TARGET_AVAILABLE_MEM, STARPU_MINIMUM_CLEAN_BUFFERS, and STARPU_TARGET_CLEAN_BUFFERS
environment variables. If STARPU_MEMORY_WAIT is set, no overflowing will happen, starpu_malloc_flags() will
wait for other eviction mechanisms to release enough memory.

57.42.2.4 STARPU_MEMORY_WAIT

#define STARPU_MEMORY_WAIT

Value passed to starpu_memory_allocate() to specify that the function should wait for the requested amount of
memory to become available, and atomically allocate it.

57.42.2.5 STARPU_MEMORY_OVERFLOW

#define STARPU_MEMORY_OVERFLOW

Value passed to starpu_memory_allocate() to specify that the function should allocate the amount of memory, even
if that means overflowing the total size of the memory node.

57.42.2.6 STARPU_MALLOC_SIMULATION_FOLDED

#define STARPU_MALLOC_SIMULATION_FOLDED

Value passed to the function starpu_malloc_flags() to indicate that when StarPU is using simgrid, the allocation can
be "folded", i.e. a memory area is allocated, but its content is actually a replicate of the same memory area, to
avoid having to actually allocate that much memory . This thus allows to have a memory area that does not actually
consumes memory, to which one can read from and write to normally, but get bogus values.

57.42.2.7 STARPU_MALLOC_SIMULATION_UNIQUE

#define STARPU_MALLOC_SIMULATION_UNIQUE

Value passed to the function starpu_malloc_flags() to indicate that when StarPU is using simgrid, the allocation for
that size could be unique. Different from only STARPU_MALLOC_SIMULATION_FOLDED, the same address will
be given for all mallocs of that particular size.

57.42.2.8 starpu_data_malloc_pinned_if_possible

#define starpu_data_malloc_pinned_if_possible

Deprecated Equivalent to starpu_malloc(). This macro is provided to avoid breaking old codes.

57.42.2.9 starpu_data_free_pinned_if_possible

#define starpu_data_free_pinned_if_possible

Deprecated Equivalent to starpu_free(). This macro is provided to avoid breaking old codes.

Generated by Doxygen

57.42 Standard Memory Library 677

57.42.3 Function Documentation

57.42.3.1 starpu_malloc_set_align()

void starpu_malloc_set_align (

size_t align)

Set an alignment constraints for starpu_malloc() allocations. align must be a power of two. This is
for instance called automatically by the OpenCL driver to specify its own alignment constraints. See
Data Management Allocation for more details.

57.42.3.2 starpu_malloc()

int starpu_malloc (

void ∗∗ A,

size_t dim)

Allocate data of the given size dim in main memory, and return the pointer to the allocated data through A. It will
also try to pin it in CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and thus permit
data transfer and computation overlapping. The allocated buffer must be freed thanks to the starpu_free_noflag()
function. See Data Management Allocation for more details.

57.42.3.3 starpu_free()

int starpu_free (

void ∗ A)

Deprecated Free memory which has previously been allocated with starpu_malloc(). This function is depre-
cated, one should use starpu_free_noflag(). The function does nothing if the pointer is NULL. See
Data Management Allocation for more details.

57.42.3.4 starpu_malloc_flags()

int starpu_malloc_flags (

void ∗∗ A,

size_t dim,

int flags)

Perform a memory allocation based on the constraints defined by the given flag. See How to Limit Memory Used By StarPU And Cache Buffer Allocations
for more details.

57.42.3.5 starpu_free_flags()

int starpu_free_flags (

void ∗ A,

size_t dim,

int flags)

Free memory by specifying its size. The given flags should be consistent with the ones given to
starpu_malloc_flags() when allocating the memory. The function does nothing if the pointer is NULL. See
How to Limit Memory Used By StarPU And Cache Buffer Allocations for more details.

57.42.3.6 starpu_free_noflag()

int starpu_free_noflag (

void ∗ A,

size_t dim)

Free memory by specifying its size. Should be used for memory allocated with starpu_malloc(). The function does
nothing if the pointer is NULL. See Data Management Allocation for more details.

Generated by Doxygen

678 Module Documentation a.k.a StarPU’s API

57.42.3.7 starpu_malloc_set_hooks()

void starpu_malloc_set_hooks (

starpu_malloc_hook malloc_hook,

starpu_free_hook free_hook)

Set allocation functions to be used by StarPU. By default, StarPU will use malloc() (or cudaHost←↩

Alloc() if CUDA GPUs are used) for all its data handle allocations. The application can specify another
allocation primitive by calling this. The malloc_hook should pass the allocated pointer through the A parame-
ter, and return 0 on success. On allocation failure, it should return -ENOMEM. The flags parameter contains
STARPU_MALLOC_PINNED if the memory should be pinned by the hook for GPU transfer efficiency. The hook
can use starpu_memory_pin() to achieve this. The dst_node parameter is the starpu memory node, one can
convert it to an hwloc logical id with starpu_memory_nodes_numa_id_to_hwloclogid() or to an OS NUMA number
with starpu_memory_nodes_numa_devid_to_id(). See Data Management Allocation for more details.

57.42.3.8 starpu_memory_pin()

int starpu_memory_pin (

void ∗ addr,

size_t size)

Pin the given memory area, so that CPU-GPU transfers can be done asynchronously with DMAs. The mem-
ory must be unpinned with starpu_memory_unpin() before being freed. Return 0 on success, -1 on error. See
Data Management Allocation for more details.

57.42.3.9 starpu_memory_unpin()

int starpu_memory_unpin (

void ∗ addr,

size_t size)

Unpin the given memory area previously pinned with starpu_memory_pin(). Return 0 on success, -1 on error. See
Data Management Allocation for more details.

57.42.3.10 starpu_memory_get_total()

starpu_ssize_t starpu_memory_get_total (

unsigned node)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer Allocations),
return the amount of total memory on the node. Otherwise return -1. See How to Limit Memory Used By StarPU And Cache Buffer Allocations
for more details.

57.42.3.11 starpu_memory_get_available()

starpu_ssize_t starpu_memory_get_available (

unsigned node)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer Allocations),
return the amount of available memory on the node. Otherwise return -1. See How to Limit Memory Used By StarPU And Cache Buffer Allocations
for more details.

57.42.3.12 starpu_memory_get_used()

size_t starpu_memory_get_used (

unsigned node)

Return the amount of used memory on the node. See Data Management Allocation for more details.

57.42.3.13 starpu_memory_get_total_all_nodes()

starpu_ssize_t starpu_memory_get_total_all_nodes (

void)

Return the amount of total memory on all memory nodes for whose a memory limit is defined (see Section
Data Management Allocation).

Generated by Doxygen

57.42 Standard Memory Library 679

57.42.3.14 starpu_memory_get_available_all_nodes()

starpu_ssize_t starpu_memory_get_available_all_nodes (

void)

Return the amount of available memory on all memory nodes for whose a memory limit is defined (see Section
Data Management Allocation).

57.42.3.15 starpu_memory_get_used_all_nodes()

size_t starpu_memory_get_used_all_nodes (

void)

Return the amount of used memory on all memory nodes. See Data Management Allocation for more details.

57.42.3.16 starpu_memory_allocate()

int starpu_memory_allocate (

unsigned node,

size_t size,

int flags)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer Allocations),
try to allocate some of it. This does not actually allocate memory, but only accounts for it. This can be
useful when the application allocates data another way, but want StarPU to be aware of the allocation size
e.g. for memory reclaiming. By default, return -ENOMEM if there is not enough room on the given node.
flags can be either STARPU_MEMORY_WAIT or STARPU_MEMORY_OVERFLOW to change this. See
How to Limit Memory Used By StarPU And Cache Buffer Allocations for more details.

57.42.3.17 starpu_memory_deallocate()

void starpu_memory_deallocate (

unsigned node,

size_t size)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer Allocations),
free some of it. This does not actually free memory, but only accounts for it, like starpu_memory_allocate().
The amount does not have to be exactly the same as what was passed to starpu_memory_allocate(),
only the eventual amount needs to be the same, i.e. one call to starpu_memory_allocate() can be fol-
lowed by several calls to starpu_memory_deallocate() to declare the deallocation piece by piece. See
How to Limit Memory Used By StarPU And Cache Buffer Allocations for more details.

57.42.3.18 starpu_memory_wait_available()

void starpu_memory_wait_available (

unsigned node,

size_t size)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer Allocations),
this will wait for size bytes to become available on node. Of course, since another thread may be allocating
memory concurrently, this does not necessarily mean that this amount will be actually available, just that it was
reached. To atomically wait for some amount of memory and reserve it, starpu_memory_allocate() should be used
with the STARPU_MEMORY_WAIT flag. See How to Limit Memory Used By StarPU And Cache Buffer Allocations
for more details.

57.42.3.19 starpu_sleep()

void starpu_sleep (

float nb_sec)

Sleep for the given nb_sec seconds. Similar to calling Unix' sleep function, except that it takes a float to allow
sub-second sleeping, and when StarPU is compiled in SimGrid mode it does not really sleep but just makes SimGrid
record that the thread has taken some time to sleep. See Helpers for more details.

Generated by Doxygen

680 Module Documentation a.k.a StarPU’s API

57.42.3.20 starpu_usleep()

void starpu_usleep (

float nb_micro_sec)

Sleep for the given nb_micro_sec micro-seconds. In simgrid mode, this only sleeps within virtual time. See
Helpers for more details.

57.42.3.21 starpu_energy_use()

void starpu_energy_use (

float joules)

Account for joules J being used. This is support in simgrid mode, to record how much energy was used, and will
show up in further call to starpu_energy_used(). See Energy-based Scheduling fore more details.

57.42.3.22 starpu_energy_used()

double starpu_energy_used (

void)

Return the amount of energy having been used in J. This account the amounts passed to starpu_energy_use(), but
also the static energy use set by the STARPU_IDLE_POWER environment variable. See Energy-based Scheduling
fore more details.

Generated by Doxygen

57.43 Task Bundles 681

57.43 Task Bundles

Typedefs

• typedef struct _starpu_task_bundle ∗ starpu_task_bundle_t

Functions

• void starpu_task_bundle_create (starpu_task_bundle_t ∗bundle)
• int starpu_task_bundle_insert (starpu_task_bundle_t bundle, struct starpu_task ∗task)
• int starpu_task_bundle_remove (starpu_task_bundle_t bundle, struct starpu_task ∗task)
• void starpu_task_bundle_close (starpu_task_bundle_t bundle)
• double starpu_task_bundle_expected_length (starpu_task_bundle_t bundle, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t bundle, unsigned
memory_node)

• double starpu_task_bundle_expected_energy (starpu_task_bundle_t bundle, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

57.43.1 Detailed Description

57.43.2 Typedef Documentation

57.43.2.1 starpu_task_bundle_t

typedef struct _starpu_task_bundle∗ starpu_task_bundle_t

Opaque structure describing a list of tasks that should be scheduled on the same worker whenever it’s possible. It
must be considered as a hint given to the scheduler as there is no guarantee that they will be executed on the same
worker.

57.43.3 Function Documentation

57.43.3.1 starpu_task_bundle_create()

void starpu_task_bundle_create (

starpu_task_bundle_t ∗ bundle)

Factory function creating and initializing bundle, when the call returns, memory needed is allocated and bundle
is ready to use.

57.43.3.2 starpu_task_bundle_insert()

int starpu_task_bundle_insert (

starpu_task_bundle_t bundle,

struct starpu_task ∗ task)

Insert task in bundle. Until task is removed from bundle its expected length and data transfer time will be
considered along those of the other tasks of bundle. This function must not be called if bundle is already closed
and/or task is already submitted. On success, it returns 0. There are two cases of error : if bundle is already
closed it returns -EPERM, if task was already submitted it returns -EINVAL.

57.43.3.3 starpu_task_bundle_remove()

int starpu_task_bundle_remove (

starpu_task_bundle_t bundle,

struct starpu_task ∗ task)

Generated by Doxygen

682 Module Documentation a.k.a StarPU’s API

Remove task from bundle. Of course task must have been previously inserted in bundle. This function must
not be called if bundle is already closed and/or task is already submitted. Doing so would result in undefined
behaviour. On success, it returns 0. If bundle is already closed it returns -ENOENT.

57.43.3.4 starpu_task_bundle_close()

void starpu_task_bundle_close (

starpu_task_bundle_t bundle)

Inform the runtime that the user will not modify bundle anymore, it means no more inserting or removing task.
Thus the runtime can destroy it when possible.

57.43.3.5 starpu_task_bundle_expected_length()

double starpu_task_bundle_expected_length (

starpu_task_bundle_t bundle,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return the expected duration of bundle in micro-seconds.

57.43.3.6 starpu_task_bundle_expected_data_transfer_time()

double starpu_task_bundle_expected_data_transfer_time (

starpu_task_bundle_t bundle,

unsigned memory_node)

Return the time (in micro-seconds) expected to transfer all data used within bundle.

57.43.3.7 starpu_task_bundle_expected_energy()

double starpu_task_bundle_expected_energy (

starpu_task_bundle_t bundle,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return the expected energy consumption of bundle in J.

Generated by Doxygen

57.44 Task Lists 683

57.44 Task Lists

Data Structures

• struct starpu_task_list

Functions

• void starpu_task_list_init (struct starpu_task_list ∗list)
• void starpu_task_list_push_front (struct starpu_task_list ∗list, struct starpu_task ∗task)
• void starpu_task_list_push_back (struct starpu_task_list ∗list, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_list_front (const struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_back (const struct starpu_task_list ∗list)
• int starpu_task_list_empty (const struct starpu_task_list ∗list)
• void starpu_task_list_erase (struct starpu_task_list ∗list, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_list_pop_front (struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_pop_back (struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_begin (const struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_end (const struct starpu_task_list ∗list STARPU_ATTRIBUTE_UNUSED)
• struct starpu_task ∗ starpu_task_list_next (const struct starpu_task ∗task)
• int starpu_task_list_ismember (const struct starpu_task_list ∗list, const struct starpu_task ∗look)
• void starpu_task_list_move (struct starpu_task_list ∗ldst, struct starpu_task_list ∗lsrc)

57.44.1 Detailed Description

57.44.2 Data Structure Documentation

57.44.2.1 struct starpu_task_list

Store a double-chained list of tasks

Data Fields

struct starpu_task ∗ head head of the list

struct starpu_task ∗ tail tail of the list

57.44.3 Function Documentation

57.44.3.1 starpu_task_list_init()

void starpu_task_list_init (

struct starpu_task_list ∗ list)

Initialize a list structure. See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.44.3.2 starpu_task_list_push_front()

void starpu_task_list_push_front (

struct starpu_task_list ∗ list,

struct starpu_task ∗ task)

Push task at the front of list. See Helper functions for defining a scheduling policy (Basic or modular) for more
details.

57.44.3.3 starpu_task_list_push_back()

void starpu_task_list_push_back (

Generated by Doxygen

684 Module Documentation a.k.a StarPU’s API

struct starpu_task_list ∗ list,

struct starpu_task ∗ task)

Push task at the back of list. See Helper functions for defining a scheduling policy (Basic or modular) for more
details.

57.44.3.4 starpu_task_list_front()

struct starpu_task ∗ starpu_task_list_front (

const struct starpu_task_list ∗ list)

Get the front of list (without removing it). See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.44.3.5 starpu_task_list_back()

struct starpu_task ∗ starpu_task_list_back (

const struct starpu_task_list ∗ list)

Get the back of list (without removing it). See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.44.3.6 starpu_task_list_empty()

int starpu_task_list_empty (

const struct starpu_task_list ∗ list)

Test if list is empty. See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.44.3.7 starpu_task_list_erase()

void starpu_task_list_erase (

struct starpu_task_list ∗ list,

struct starpu_task ∗ task)

Remove task from list. See Helper functions for defining a scheduling policy (Basic or modular) for more de-
tails.

57.44.3.8 starpu_task_list_pop_front()

struct starpu_task ∗ starpu_task_list_pop_front (

struct starpu_task_list ∗ list)

Remove the element at the front of list. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.44.3.9 starpu_task_list_pop_back()

struct starpu_task ∗ starpu_task_list_pop_back (

struct starpu_task_list ∗ list)

Remove the element at the back of list. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.44.3.10 starpu_task_list_begin()

struct starpu_task ∗ starpu_task_list_begin (

const struct starpu_task_list ∗ list)

Get the first task of list. See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.44.3.11 starpu_task_list_end()

struct starpu_task ∗ starpu_task_list_end (

const struct starpu_task_list ∗list STARPU_ATTRIBUTE_UNUSED)

Get the end of list. See Helper functions for defining a scheduling policy (Basic or modular) for more details.

Generated by Doxygen

57.44 Task Lists 685

57.44.3.12 starpu_task_list_next()

struct starpu_task ∗ starpu_task_list_next (

const struct starpu_task ∗ task)

Get the next task of list. This is not erase-safe. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.44.3.13 starpu_task_list_ismember()

int starpu_task_list_ismember (

const struct starpu_task_list ∗ list,

const struct starpu_task ∗ look)

Test whether the given task look is contained in the list. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.44.3.14 starpu_task_list_move()

void starpu_task_list_move (

struct starpu_task_list ∗ ldst,

struct starpu_task_list ∗ lsrc)

Move list from one head lsrc to another ldst. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

Generated by Doxygen

686 Module Documentation a.k.a StarPU’s API

57.45 Theoretical Lower Bound on Execution Time

Compute theoretical upper computation efficiency bound corresponding to some actual execution.

Functions

• void starpu_bound_start (int deps, int prio)
• void starpu_bound_stop (void)
• void starpu_bound_print_dot (FILE ∗output)
• void starpu_bound_compute (double ∗res, double ∗integer_res, int integer)
• void starpu_bound_print_lp (FILE ∗output)
• void starpu_bound_print_mps (FILE ∗output)
• void starpu_bound_print (FILE ∗output, int integer)

57.45.1 Detailed Description

Compute theoretical upper computation efficiency bound corresponding to some actual execution.

57.45.2 Function Documentation

57.45.2.1 starpu_bound_start()

void starpu_bound_start (

int deps,

int prio)

Start recording tasks (resets stats). deps tells whether dependencies should be recorded too (this is quite expen-
sive)
See Theoretical Lower Bound On Execution Time for more details.

57.45.2.2 starpu_bound_stop()

void starpu_bound_stop (

void)

Stop recording tasks
See Theoretical Lower Bound On Execution Time for more details.

57.45.2.3 starpu_bound_print_dot()

void starpu_bound_print_dot (

FILE ∗ output)

Emit the DAG that was recorded on output.
See Theoretical Lower Bound On Execution Time for more details.

57.45.2.4 starpu_bound_compute()

void starpu_bound_compute (

double ∗ res,

double ∗ integer_res,

int integer)

Get theoretical upper bound (in ms) (needs glpk support detected by configure script). It returns 0 if some perfor-
mance models are not calibrated. integer permits to choose between integer solving (which takes a long time
but is correct), and relaxed solving (which provides an approximate solution).
See Theoretical Lower Bound On Execution Time for more details.

Generated by Doxygen

57.45 Theoretical Lower Bound on Execution Time 687

57.45.2.5 starpu_bound_print_lp()

void starpu_bound_print_lp (

FILE ∗ output)

Emit the Linear Programming system on output for the recorded tasks, in the lp format
See Theoretical Lower Bound On Execution Time for more details.

57.45.2.6 starpu_bound_print_mps()

void starpu_bound_print_mps (

FILE ∗ output)

Emit the Linear Programming system on output for the recorded tasks, in the mps format
See Theoretical Lower Bound On Execution Time for more details.

57.45.2.7 starpu_bound_print()

void starpu_bound_print (

FILE ∗ output,

int integer)

Emit on output the statistics of actual execution vs theoretical upper bound. integer permits to choose be-
tween integer solving (which takes a long time but is correct), and relaxed solving (which provides an approximate
solution).
See Theoretical Lower Bound On Execution Time for more details.

Generated by Doxygen

688 Module Documentation a.k.a StarPU’s API

57.46 Threads

API for thread. The thread functions are either implemented on top of the pthread library or the SimGrid library
when the simulated performance mode is enabled (SimGrid Support).

Macros

• #define STARPU_PTHREAD_CREATE_ON(name, thread, attr, routine, arg, where)
• #define STARPU_PTHREAD_CREATE(thread, attr, routine, arg)
• #define STARPU_PTHREAD_MUTEX_INIT(mutex, attr)
• #define STARPU_PTHREAD_MUTEX_INIT0(mutex, attr)
• #define STARPU_PTHREAD_MUTEX_DESTROY(mutex)
• #define STARPU_PTHREAD_MUTEX_LOCK(mutex)
• #define STARPU_PTHREAD_MUTEX_UNLOCK(mutex)
• #define STARPU_PTHREAD_KEY_CREATE(key, destr)
• #define STARPU_PTHREAD_KEY_DELETE(key)
• #define STARPU_PTHREAD_SETSPECIFIC(key, ptr)
• #define STARPU_PTHREAD_GETSPECIFIC(key)
• #define STARPU_PTHREAD_RWLOCK_INIT(rwlock, attr)
• #define STARPU_PTHREAD_RWLOCK_INIT0(rwlock, attr)
• #define STARPU_PTHREAD_RWLOCK_RDLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_WRLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_UNLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_DESTROY(rwlock)
• #define STARPU_PTHREAD_COND_INIT(cond, attr)
• #define STARPU_PTHREAD_COND_INIT0(cond, attr)
• #define STARPU_PTHREAD_COND_DESTROY(cond)
• #define STARPU_PTHREAD_COND_SIGNAL(cond)
• #define STARPU_PTHREAD_COND_BROADCAST(cond)
• #define STARPU_PTHREAD_COND_WAIT(cond, mutex)
• #define STARPU_PTHREAD_BARRIER_INIT(barrier, attr, count)
• #define STARPU_PTHREAD_BARRIER_DESTROY(barrier)
• #define STARPU_PTHREAD_BARRIER_WAIT(barrier)
• #define STARPU_PTHREAD_MUTEX_INITIALIZER
• #define STARPU_PTHREAD_COND_INITIALIZER

Functions

• int starpu_pthread_create (starpu_pthread_t ∗thread, const starpu_pthread_attr_t ∗attr, void ∗(∗start_←↩

routine)(void ∗), void ∗arg)
• int starpu_pthread_join (starpu_pthread_t thread, void ∗∗retval)
• int starpu_pthread_exit (void ∗retval) STARPU_ATTRIBUTE_NORETURN
• int starpu_pthread_attr_init (starpu_pthread_attr_t ∗attr)
• int starpu_pthread_attr_destroy (starpu_pthread_attr_t ∗attr)
• int starpu_pthread_attr_setdetachstate (starpu_pthread_attr_t ∗attr, int detachstate)
• int starpu_pthread_mutex_init (starpu_pthread_mutex_t ∗mutex, const starpu_pthread_mutexattr_←↩

t ∗mutexattr)
• int starpu_pthread_mutex_destroy (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_lock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_unlock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_trylock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutexattr_gettype (const starpu_pthread_mutexattr_t ∗attr, int ∗type)
• int starpu_pthread_mutexattr_settype (starpu_pthread_mutexattr_t ∗attr, int type)
• int starpu_pthread_mutexattr_destroy (starpu_pthread_mutexattr_t ∗attr)
• int starpu_pthread_mutexattr_init (starpu_pthread_mutexattr_t ∗attr)

Generated by Doxygen

57.46 Threads 689

• int starpu_pthread_key_create (starpu_pthread_key_t ∗key, void(∗destr_function)(void ∗))
• int starpu_pthread_key_delete (starpu_pthread_key_t key)
• int starpu_pthread_setspecific (starpu_pthread_key_t key, const void ∗pointer)
• void ∗ starpu_pthread_getspecific (starpu_pthread_key_t key)
• int starpu_pthread_cond_init (starpu_pthread_cond_t ∗cond, starpu_pthread_condattr_t ∗cond_attr)
• int starpu_pthread_cond_signal (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_cond_broadcast (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_cond_wait (starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_cond_timedwait (starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex, const

struct timespec ∗abstime)
• int starpu_pthread_cond_destroy (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_rwlock_init (starpu_pthread_rwlock_t ∗rwlock, const starpu_pthread_rwlockattr_t ∗attr)
• int starpu_pthread_rwlock_destroy (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_rdlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_tryrdlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_wrlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_trywrlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_unlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_barrier_init (starpu_pthread_barrier_t ∗barrier, const starpu_pthread_barrierattr_t ∗attr,

unsigned count)
• int starpu_pthread_barrier_destroy (starpu_pthread_barrier_t ∗barrier)
• int starpu_pthread_barrier_wait (starpu_pthread_barrier_t ∗barrier)
• int starpu_pthread_spin_init (starpu_pthread_spinlock_t ∗lock, int pshared)
• int starpu_pthread_spin_destroy (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_lock (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_trylock (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_unlock (starpu_pthread_spinlock_t ∗lock)

57.46.1 Detailed Description

API for thread. The thread functions are either implemented on top of the pthread library or the SimGrid library
when the simulated performance mode is enabled (SimGrid Support).

57.46.2 Macro Definition Documentation

57.46.2.1 STARPU_PTHREAD_CREATE_ON

#define STARPU_PTHREAD_CREATE_ON(

name,

thread,

attr,

routine,

arg,

where)

Call starpu_pthread_create_on() and abort on error.

57.46.2.2 STARPU_PTHREAD_CREATE

#define STARPU_PTHREAD_CREATE(

thread,

attr,

routine,

arg)

Call starpu_pthread_create() and abort on error.

Generated by Doxygen

690 Module Documentation a.k.a StarPU’s API

57.46.2.3 STARPU_PTHREAD_MUTEX_INIT

#define STARPU_PTHREAD_MUTEX_INIT(

mutex,

attr)

Call starpu_pthread_mutex_init() and abort on error.

57.46.2.4 STARPU_PTHREAD_MUTEX_INIT0

#define STARPU_PTHREAD_MUTEX_INIT0(

mutex,

attr)

Call starpu_pthread_mutex_init() only if the content of PTHREAD_MUTEX_INITIALIZER is not zero. This should
be called instead of STARPU_PTHREAD_MUTEX_INIT when it is known that the content of the pthread_mutex_t
was already zeroed.

57.46.2.5 STARPU_PTHREAD_MUTEX_DESTROY

#define STARPU_PTHREAD_MUTEX_DESTROY(

mutex)

Call starpu_pthread_mutex_destroy() and abort on error.

57.46.2.6 STARPU_PTHREAD_MUTEX_LOCK

#define STARPU_PTHREAD_MUTEX_LOCK(

mutex)

Call starpu_pthread_mutex_lock() and abort on error.

57.46.2.7 STARPU_PTHREAD_MUTEX_UNLOCK

#define STARPU_PTHREAD_MUTEX_UNLOCK(

mutex)

Call starpu_pthread_mutex_unlock() and abort on error.

57.46.2.8 STARPU_PTHREAD_KEY_CREATE

#define STARPU_PTHREAD_KEY_CREATE(

key,

destr)

Call starpu_pthread_key_create() and abort on error.

57.46.2.9 STARPU_PTHREAD_KEY_DELETE

#define STARPU_PTHREAD_KEY_DELETE(

key)

Call starpu_pthread_key_delete() and abort on error.

57.46.2.10 STARPU_PTHREAD_SETSPECIFIC

#define STARPU_PTHREAD_SETSPECIFIC(

key,

ptr)

Call starpu_pthread_setspecific() and abort on error.

57.46.2.11 STARPU_PTHREAD_GETSPECIFIC

#define STARPU_PTHREAD_GETSPECIFIC(

key)

Call starpu_pthread_getspecific() and abort on error.

Generated by Doxygen

57.46 Threads 691

57.46.2.12 STARPU_PTHREAD_RWLOCK_INIT

#define STARPU_PTHREAD_RWLOCK_INIT(

rwlock,

attr)

Call starpu_pthread_rwlock_init() and abort on error.

57.46.2.13 STARPU_PTHREAD_RWLOCK_INIT0

#define STARPU_PTHREAD_RWLOCK_INIT0(

rwlock,

attr)

Call starpu_pthread_rwlock_init() only if the content of PTHREAD_RWLOCK_INITIALIZER is not zero. This should
be called instead of STARPU_PTHREAD_RWLOCK_INIT when it is known that the content of the pthread_rwlock←↩

_t was already zeroed.

57.46.2.14 STARPU_PTHREAD_RWLOCK_RDLOCK

#define STARPU_PTHREAD_RWLOCK_RDLOCK(

rwlock)

Call starpu_pthread_rwlock_rdlock() and abort on error.

57.46.2.15 STARPU_PTHREAD_RWLOCK_WRLOCK

#define STARPU_PTHREAD_RWLOCK_WRLOCK(

rwlock)

Call starpu_pthread_rwlock_wrlock() and abort on error.

57.46.2.16 STARPU_PTHREAD_RWLOCK_UNLOCK

#define STARPU_PTHREAD_RWLOCK_UNLOCK(

rwlock)

Call starpu_pthread_rwlock_unlock() and abort on error.

57.46.2.17 STARPU_PTHREAD_RWLOCK_DESTROY

#define STARPU_PTHREAD_RWLOCK_DESTROY(

rwlock)

Call starpu_pthread_rwlock_destroy() and abort on error.

57.46.2.18 STARPU_PTHREAD_COND_INIT

#define STARPU_PTHREAD_COND_INIT(

cond,

attr)

Call starpu_pthread_cond_init() and abort on error.

57.46.2.19 STARPU_PTHREAD_COND_INIT0

#define STARPU_PTHREAD_COND_INIT0(

cond,

attr)

Call starpu_pthread_cond_init() only if the content of PTHREAD_COND_INITIALIZER is not zero. This should be
called instead of STARPU_PTHREAD_COND_INIT when it is known that the content of the pthread_cond_t was
already zeroed.

57.46.2.20 STARPU_PTHREAD_COND_DESTROY

#define STARPU_PTHREAD_COND_DESTROY(

cond)

Generated by Doxygen

692 Module Documentation a.k.a StarPU’s API

Call starpu_pthread_cond_destroy() and abort on error.

57.46.2.21 STARPU_PTHREAD_COND_SIGNAL

#define STARPU_PTHREAD_COND_SIGNAL(

cond)

Call starpu_pthread_cond_signal() and abort on error.

57.46.2.22 STARPU_PTHREAD_COND_BROADCAST

#define STARPU_PTHREAD_COND_BROADCAST(

cond)

Call starpu_pthread_cond_broadcast() and abort on error.

57.46.2.23 STARPU_PTHREAD_COND_WAIT

#define STARPU_PTHREAD_COND_WAIT(

cond,

mutex)

Call starpu_pthread_cond_wait() and abort on error.

57.46.2.24 STARPU_PTHREAD_BARRIER_INIT

#define STARPU_PTHREAD_BARRIER_INIT(

barrier,

attr,

count)

Call starpu_pthread_barrier_init() and abort on error.

57.46.2.25 STARPU_PTHREAD_BARRIER_DESTROY

#define STARPU_PTHREAD_BARRIER_DESTROY(

barrier)

Call starpu_pthread_barrier_destroy() and abort on error.

57.46.2.26 STARPU_PTHREAD_BARRIER_WAIT

#define STARPU_PTHREAD_BARRIER_WAIT(

barrier)

Call starpu_pthread_barrier_wait() and abort on error.

57.46.2.27 STARPU_PTHREAD_MUTEX_INITIALIZER

STARPU_PTHREAD_MUTEX_INITIALIZER

Initialize the mutex given in parameter.

57.46.2.28 STARPU_PTHREAD_COND_INITIALIZER

STARPU_PTHREAD_COND_INITIALIZER

Initialize the condition variable given in parameter.

57.46.3 Function Documentation

Generated by Doxygen

57.46 Threads 693

57.46.3.1 starpu_pthread_create()

int starpu_pthread_create (

starpu_pthread_t ∗ thread,

const starpu_pthread_attr_t ∗ attr,

void ∗(∗)(void ∗) start_routine,

void ∗ arg)

Start a new thread in the calling process. The new thread starts execution by invoking start_routine; arg is
passed as the sole argument of start_routine.

57.46.3.2 starpu_pthread_join()

int starpu_pthread_join (

starpu_pthread_t thread,

void ∗∗ retval)

Wait for the thread specified by thread to terminate. If that thread has already terminated, then the function
returns immediately. The thread specified by thread must be joinable.

57.46.3.3 starpu_pthread_exit()

int starpu_pthread_exit (

void ∗ retval)

Terminate the calling thread and return a value via retval that (if the thread is joinable) is available to another
thread in the same process that calls starpu_pthread_join().

57.46.3.4 starpu_pthread_attr_init()

int starpu_pthread_attr_init (

starpu_pthread_attr_t ∗ attr)

Initialize the thread attributes object pointed to by attr with default attribute values.
Do not do anything when the simulated performance mode is enabled (SimGrid Support).

57.46.3.5 starpu_pthread_attr_destroy()

int starpu_pthread_attr_destroy (

starpu_pthread_attr_t ∗ attr)

Destroy a thread attributes object which is no longer required. Destroying a thread attributes object has no effect on
threads that were created using that object.
Do not do anything when the simulated performance mode is enabled (SimGrid Support).

57.46.3.6 starpu_pthread_attr_setdetachstate()

int starpu_pthread_attr_setdetachstate (

starpu_pthread_attr_t ∗ attr,

int detachstate)

Set the detach state attribute of the thread attributes object referred to by attr to the value specified in
detachstate. The detach state attribute determines whether a thread created using the thread attributes object
attr will be created in a joinable or a detached state.
Do not do anything when the simulated performance mode is enabled (SimGrid Support).

57.46.3.7 starpu_pthread_mutex_init()

int starpu_pthread_mutex_init (

starpu_pthread_mutex_t ∗ mutex,

const starpu_pthread_mutexattr_t ∗ mutexattr)

Initialize the mutex object pointed to by mutex according to the mutex attributes specified in mutexattr. If
mutexattr is NULL, default attributes are used instead.

Generated by Doxygen

694 Module Documentation a.k.a StarPU’s API

57.46.3.8 starpu_pthread_mutex_destroy()

int starpu_pthread_mutex_destroy (

starpu_pthread_mutex_t ∗ mutex)

Destroy a mutex object, and free the resources it might hold. The mutex must be unlocked on entrance.

57.46.3.9 starpu_pthread_mutex_lock()

int starpu_pthread_mutex_lock (

starpu_pthread_mutex_t ∗ mutex)

Lock the given mutex. If mutex is currently unlocked, it becomes locked and owned by the calling thread, and
the function returns immediately. If mutex is already locked by another thread, the function suspends the calling
thread until mutex is unlocked.
This function also produces trace when the configure option --enable-fxt-lock is enabled.

57.46.3.10 starpu_pthread_mutex_unlock()

int starpu_pthread_mutex_unlock (

starpu_pthread_mutex_t ∗ mutex)

Unlock the given mutex. The mutex is assumed to be locked and owned by the calling thread on entrance to
starpu_pthread_mutex_unlock().
This function also produces trace when the configure option --enable-fxt-lock is enabled.

57.46.3.11 starpu_pthread_mutex_trylock()

int starpu_pthread_mutex_trylock (

starpu_pthread_mutex_t ∗ mutex)

Behave identically to starpu_pthread_mutex_lock(), except that it does not block the calling thread if the mutex is
already locked by another thread (or by the calling thread in the case of a `‘fast’' mutex). Instead, the function returns
immediately with the error code EBUSY.
This function also produces trace when the configure option --enable-fxt-lock is enabled.

57.46.3.12 starpu_pthread_mutexattr_gettype()

int starpu_pthread_mutexattr_gettype (

const starpu_pthread_mutexattr_t ∗ attr,

int ∗ type)

todo

57.46.3.13 starpu_pthread_mutexattr_settype()

int starpu_pthread_mutexattr_settype (

starpu_pthread_mutexattr_t ∗ attr,

int type)

todo

57.46.3.14 starpu_pthread_mutexattr_destroy()

int starpu_pthread_mutexattr_destroy (

starpu_pthread_mutexattr_t ∗ attr)

todo

57.46.3.15 starpu_pthread_mutexattr_init()

int starpu_pthread_mutexattr_init (

starpu_pthread_mutexattr_t ∗ attr)

todo

Generated by Doxygen

57.46 Threads 695

57.46.3.16 starpu_pthread_key_create()

int starpu_pthread_key_create (

starpu_pthread_key_t ∗ key,

void(∗)(void ∗) destr_function)

Allocate a new TSD key. The key is stored in the location pointed to by key.

57.46.3.17 starpu_pthread_key_delete()

int starpu_pthread_key_delete (

starpu_pthread_key_t key)

Deallocate a TSD key. Do not check whether non-NULL values are associated with that key in the currently execut-
ing threads, nor call the destructor function associated with the key.

57.46.3.18 starpu_pthread_setspecific()

int starpu_pthread_setspecific (

starpu_pthread_key_t key,

const void ∗ pointer)

Change the value associated with key in the calling thread, storing the given pointer instead.

57.46.3.19 starpu_pthread_getspecific()

void ∗ starpu_pthread_getspecific (

starpu_pthread_key_t key)

Return the value associated with key on success, and NULL on error.

57.46.3.20 starpu_pthread_cond_init()

int starpu_pthread_cond_init (

starpu_pthread_cond_t ∗ cond,

starpu_pthread_condattr_t ∗ cond_attr)

Initialize the condition variable cond, using the condition attributes specified in cond_attr, or default attributes
if cond_attr is NULL.

57.46.3.21 starpu_pthread_cond_signal()

int starpu_pthread_cond_signal (

starpu_pthread_cond_t ∗ cond)

Restart one of the threads that are waiting on the condition variable cond. If no threads are waiting on cond,
nothing happens. If several threads are waiting on cond, exactly one is restarted, but it is not specified which.

57.46.3.22 starpu_pthread_cond_broadcast()

int starpu_pthread_cond_broadcast (

starpu_pthread_cond_t ∗ cond)

Restart all the threads that are waiting on the condition variable cond. Nothing happens if no threads are waiting
on cond.

57.46.3.23 starpu_pthread_cond_wait()

int starpu_pthread_cond_wait (

starpu_pthread_cond_t ∗ cond,

starpu_pthread_mutex_t ∗ mutex)

Atomically unlock mutex (as per starpu_pthread_mutex_unlock()) and wait for the condition variable cond to be
signaled. The thread execution is suspended and does not consume any CPU time until the condition variable
is signaled. The mutex must be locked by the calling thread on entrance to starpu_pthread_cond_wait(). Before
returning to the calling thread, the function re-acquires mutex (as per starpu_pthread_mutex_lock()).
This function also produces trace when the configure option --enable-fxt-lock is enabled.

Generated by Doxygen

696 Module Documentation a.k.a StarPU’s API

57.46.3.24 starpu_pthread_cond_timedwait()

int starpu_pthread_cond_timedwait (

starpu_pthread_cond_t ∗ cond,

starpu_pthread_mutex_t ∗ mutex,

const struct timespec ∗ abstime)

Atomicall unlocks mutex and wait on cond, as starpu_pthread_cond_wait() does, but also bound the duration of
the wait with abstime.

57.46.3.25 starpu_pthread_cond_destroy()

int starpu_pthread_cond_destroy (

starpu_pthread_cond_t ∗ cond)

Destroy a condition variable, freeing the resources it might hold. No threads must be waiting on the condition
variable on entrance to the function.

57.46.3.26 starpu_pthread_rwlock_init()

int starpu_pthread_rwlock_init (

starpu_pthread_rwlock_t ∗ rwlock,

const starpu_pthread_rwlockattr_t ∗ attr)

Similar to starpu_pthread_mutex_init().

57.46.3.27 starpu_pthread_rwlock_destroy()

int starpu_pthread_rwlock_destroy (

starpu_pthread_rwlock_t ∗ rwlock)

Similar to starpu_pthread_mutex_destroy().

57.46.3.28 starpu_pthread_rwlock_rdlock()

int starpu_pthread_rwlock_rdlock (

starpu_pthread_rwlock_t ∗ rwlock)

Similar to starpu_pthread_mutex_lock().

57.46.3.29 starpu_pthread_rwlock_tryrdlock()

int starpu_pthread_rwlock_tryrdlock (

starpu_pthread_rwlock_t ∗ rwlock)

todo

57.46.3.30 starpu_pthread_rwlock_wrlock()

int starpu_pthread_rwlock_wrlock (

starpu_pthread_rwlock_t ∗ rwlock)

Similar to starpu_pthread_mutex_lock().

57.46.3.31 starpu_pthread_rwlock_trywrlock()

int starpu_pthread_rwlock_trywrlock (

starpu_pthread_rwlock_t ∗ rwlock)

todo

57.46.3.32 starpu_pthread_rwlock_unlock()

int starpu_pthread_rwlock_unlock (

starpu_pthread_rwlock_t ∗ rwlock)

Similar to starpu_pthread_mutex_unlock().

Generated by Doxygen

57.46 Threads 697

57.46.3.33 starpu_pthread_barrier_init()

int starpu_pthread_barrier_init (

starpu_pthread_barrier_t ∗ barrier,

const starpu_pthread_barrierattr_t ∗ attr,

unsigned count)

todo

57.46.3.34 starpu_pthread_barrier_destroy()

int starpu_pthread_barrier_destroy (

starpu_pthread_barrier_t ∗ barrier)

todo

57.46.3.35 starpu_pthread_barrier_wait()

int starpu_pthread_barrier_wait (

starpu_pthread_barrier_t ∗ barrier)

todo

57.46.3.36 starpu_pthread_spin_init()

int starpu_pthread_spin_init (

starpu_pthread_spinlock_t ∗ lock,

int pshared)

todo

57.46.3.37 starpu_pthread_spin_destroy()

int starpu_pthread_spin_destroy (

starpu_pthread_spinlock_t ∗ lock)

todo

57.46.3.38 starpu_pthread_spin_lock()

int starpu_pthread_spin_lock (

starpu_pthread_spinlock_t ∗ lock)

todo

57.46.3.39 starpu_pthread_spin_trylock()

int starpu_pthread_spin_trylock (

starpu_pthread_spinlock_t ∗ lock)

todo

57.46.3.40 starpu_pthread_spin_unlock()

int starpu_pthread_spin_unlock (

starpu_pthread_spinlock_t ∗ lock)

todo

Generated by Doxygen

698 Module Documentation a.k.a StarPU’s API

57.47 Toolbox

The following macros allow to make GCC extensions portable, and to have a code which can be compiled with any
C compiler.

Macros

• #define STARPU_GNUC_PREREQ(maj, min)
• #define STARPU_UNLIKELY(expr)
• #define STARPU_LIKELY(expr)
• #define STARPU_ATTRIBUTE_UNUSED
• #define STARPU_ATTRIBUTE_NORETURN
• #define STARPU_ATTRIBUTE_VISIBILITY_DEFAULT
• #define STARPU_VISIBILITY_PUSH_HIDDEN
• #define STARPU_VISIBILITY_POP
• #define STARPU_ATTRIBUTE_MALLOC
• #define STARPU_ATTRIBUTE_WARN_UNUSED_RESULT
• #define STARPU_ATTRIBUTE_PURE
• #define STARPU_ATTRIBUTE_ALIGNED(size)
• #define STARPU_ATTRIBUTE_FORMAT(type, string, first)
• #define STARPU_INLINE
• #define STARPU_ATTRIBUTE_CALLOC_SIZE(num, size)
• #define STARPU_ATTRIBUTE_ALLOC_SIZE(size)
• #define STARPU_BACKTRACE_LENGTH
• #define STARPU_DUMP_BACKTRACE()
• #define STARPU_SIMGRID_ASSERT(x)
• #define STARPU_ASSERT(x)
• #define STARPU_ASSERT_ACCESSIBLE(ptr)
• #define STARPU_STATIC_ASSERT(x)
• #define STARPU_ASSERT_MSG(x, msg, ...)
• #define _starpu_abort()
• #define STARPU_ABORT()
• #define STARPU_ABORT_MSG(msg, ...)
• #define STARPU_CHECK_RETURN_VALUE(err, message, ...)
• #define STARPU_CHECK_RETURN_VALUE_IS(err, value, message, ...)
• #define STARPU_ATOMIC_SOMETHING(name, expr)
• #define STARPU_ATOMIC_SOMETHINGL(name, expr)
• #define STARPU_ATOMIC_SOMETHING64(name, expr)
• #define STARPU_BOOL_COMPARE_AND_SWAP_PTR(ptr, old, value)
• #define STARPU_VAL_COMPARE_AND_SWAP_PTR(ptr, old, value)
• #define STARPU_RMB()
• #define STARPU_WMB()
• #define STARPU_CACHELINE_SIZE

57.47.1 Detailed Description

The following macros allow to make GCC extensions portable, and to have a code which can be compiled with any
C compiler.

57.47.2 Macro Definition Documentation

Generated by Doxygen

57.47 Toolbox 699

57.47.2.1 STARPU_GNUC_PREREQ

#define STARPU_GNUC_PREREQ(

maj,

min)

Return true (non-zero) if GCC version maj.min or later is being used (macro taken from glibc.)

57.47.2.2 STARPU_UNLIKELY

#define STARPU_UNLIKELY(

expr)

When building with a GNU C Compiler, allow programmers to mark an expression as unlikely.

57.47.2.3 STARPU_LIKELY

#define STARPU_LIKELY(

expr)

When building with a GNU C Compiler, allow programmers to mark an expression as likely.

57.47.2.4 STARPU_ATTRIBUTE_UNUSED

#define STARPU_ATTRIBUTE_UNUSED

When building with a GNU C Compiler, defined to attribute((unused))

57.47.2.5 STARPU_ATTRIBUTE_NORETURN

#define STARPU_ATTRIBUTE_NORETURN

When building with a GNU C Compiler, defined to attribute((noreturn))

57.47.2.6 STARPU_ATTRIBUTE_VISIBILITY_DEFAULT

#define STARPU_ATTRIBUTE_VISIBILITY_DEFAULT

When building with a GNU C Compiler, defined to attribute((visibility ("default")))

57.47.2.7 STARPU_VISIBILITY_PUSH_HIDDEN

#define STARPU_VISIBILITY_PUSH_HIDDEN

When building with a GNU C Compiler, defined to #pragma GCC visibility push(hidden)

57.47.2.8 STARPU_VISIBILITY_POP

#define STARPU_VISIBILITY_POP

When building with a GNU C Compiler, defined to #pragma GCC visibility pop

57.47.2.9 STARPU_ATTRIBUTE_MALLOC

#define STARPU_ATTRIBUTE_MALLOC

When building with a GNU C Compiler, defined to attribute((malloc))

57.47.2.10 STARPU_ATTRIBUTE_WARN_UNUSED_RESULT

#define STARPU_ATTRIBUTE_WARN_UNUSED_RESULT

When building with a GNU C Compiler, defined to attribute((warn_unused_result))

57.47.2.11 STARPU_ATTRIBUTE_PURE

#define STARPU_ATTRIBUTE_PURE

When building with a GNU C Compiler, defined to attribute((pure))

Generated by Doxygen

700 Module Documentation a.k.a StarPU’s API

57.47.2.12 STARPU_ATTRIBUTE_ALIGNED

#define STARPU_ATTRIBUTE_ALIGNED(

size)

When building with a GNU C Compiler, defined to__attribute__((aligned(size)))

57.47.2.13 STARPU_ASSERT

#define STARPU_ASSERT(

x)

Unless StarPU has been configured with the option --enable-fast, this macro will abort if the expression x is false.

57.47.2.14 STARPU_ASSERT_ACCESSIBLE

#define STARPU_ASSERT_ACCESSIBLE(

ptr)

Unless StarPU has been configured with the option --enable-fast, this macro will abort if the pointer x is not pointing
to valid memory.

57.47.2.15 STARPU_STATIC_ASSERT

#define STARPU_STATIC_ASSERT(

x)

This macro will abort compilation if the expression x is false.

57.47.2.16 STARPU_ASSERT_MSG

#define STARPU_ASSERT_MSG(

x,

msg,

...)

Unless StarPU has been configured with the option --enable-fast, this macro will abort if the expression x is false.
The string msg will be displayed.

57.47.2.17 STARPU_ABORT

#define STARPU_ABORT()

Abort the program.

57.47.2.18 STARPU_ABORT_MSG

#define STARPU_ABORT_MSG(

msg,

...)

Print the string '[starpu][abort][name of the calling function:name of the file:line in the file]' followed by the
given string msg and abort the program

57.47.2.19 STARPU_CHECK_RETURN_VALUE

#define STARPU_CHECK_RETURN_VALUE(

err,

message,

...)

Abort the program (after displaying message) if err has a value which is not 0.

57.47.2.20 STARPU_CHECK_RETURN_VALUE_IS

#define STARPU_CHECK_RETURN_VALUE_IS(

err,

value,

Generated by Doxygen

57.47 Toolbox 701

message,

...)

Abort the program (after displaying message) if err is different from value.

57.47.2.21 STARPU_RMB

#define STARPU_RMB()

This macro can be used to do a synchronization.

57.47.2.22 STARPU_WMB

#define STARPU_WMB()

This macro can be used to do a synchronization.

Generated by Doxygen

702 Module Documentation a.k.a StarPU’s API

57.48 Transactions

Functions

• struct starpu_transaction ∗ starpu_transaction_open (int(∗do_start_func)(void ∗buffer, void ∗arg), void ∗do←↩

_start_arg)
• void starpu_transaction_next_epoch (struct starpu_transaction ∗p_trs, void ∗do_start_arg)
• void starpu_transaction_close (struct starpu_transaction ∗p_trs)

57.48.1 Detailed Description

57.48.2 Function Documentation

57.48.2.1 starpu_transaction_open()

struct starpu_transaction ∗ starpu_transaction_open (

int(∗)(void ∗buffer, void ∗arg) do_start_func,

void ∗ do_start_arg)

Function to open a new transaction object and start the first transaction epoch.

Returns

A pointer to an initializes struct starpu_transaction or NULL if submitting the transaction begin
task failed with ENODEV. See Transaction Creation for more details.

57.48.2.2 starpu_transaction_next_epoch()

void starpu_transaction_next_epoch (

struct starpu_transaction ∗ p_trs,

void ∗ do_start_arg)

Function to mark the end of the current transaction epoch and start a new epoch. See Epoch Transition for more
details.

57.48.2.3 starpu_transaction_close()

void starpu_transaction_close (

struct starpu_transaction ∗ p_trs)

Function to mark the end of the last transaction epoch and free the transaction object. See Transaction Closing for
more details.

Generated by Doxygen

57.49 Tree 703

57.49 Tree

API tree facilities.

Data Structures

• struct starpu_tree

Functions

• void starpu_tree_reset_visited (struct starpu_tree ∗tree, char ∗visited)
• void starpu_tree_prepare_children (unsigned arity, struct starpu_tree ∗father)
• void starpu_tree_insert (struct starpu_tree ∗tree, int id, int level, int is_pu, int arity, struct starpu_tree ∗father)
• struct starpu_tree ∗ starpu_tree_get (struct starpu_tree ∗tree, int id)
• struct starpu_tree ∗ starpu_tree_get_neighbour (struct starpu_tree ∗tree, struct starpu_tree ∗node, char
∗visited, char ∗present)

• void starpu_tree_free (struct starpu_tree ∗tree)

57.49.1 Detailed Description

API tree facilities.

57.49.2 Data Structure Documentation

57.49.2.1 struct starpu_tree

todo

Data Fields

struct starpu_tree ∗ nodes

struct starpu_tree ∗ father

int arity

int id
int level
int is_pu

Generated by Doxygen

704 Module Documentation a.k.a StarPU’s API

57.50 Versioning

Macros

• #define STARPU_MAJOR_VERSION
• #define STARPU_MINOR_VERSION
• #define STARPU_RELEASE_VERSION

Functions

• void starpu_get_version (int ∗major, int ∗minor, int ∗release)

57.50.1 Detailed Description

57.50.2 Macro Definition Documentation

57.50.2.1 STARPU_MAJOR_VERSION

#define STARPU_MAJOR_VERSION

Define the major version of StarPU. This is the version used when compiling the application.

57.50.2.2 STARPU_MINOR_VERSION

#define STARPU_MINOR_VERSION

Define the minor version of StarPU. This is the version used when compiling the application.

57.50.2.3 STARPU_RELEASE_VERSION

#define STARPU_RELEASE_VERSION

Define the release version of StarPU. This is the version used when compiling the application.

57.50.3 Function Documentation

57.50.3.1 starpu_get_version()

void starpu_get_version (

int ∗ major,

int ∗ minor,

int ∗ release)

Return as 3 integers the version of StarPU used when running the application. See Configuration and Initialization
for more details.

Generated by Doxygen

57.51 Workers 705

57.51 Workers

Data Structures

• struct starpu_sched_ctx_iterator
• struct starpu_worker_collection

Macros

• #define starpu_worker_get_id_check()
• #define STARPU_MAXNODES
• #define STARPU_MAXCPUS
• #define STARPU_MAXNUMANODES
• #define STARPU_NMAXWORKERS
• #define STARPU_UNKNOWN_WORKER

Enumerations

• enum starpu_node_kind {
STARPU_UNUSED , STARPU_CPU_RAM , STARPU_CUDA_RAM , STARPU_OPENCL_RAM ,
STARPU_MAX_FPGA_RAM , STARPU_DISK_RAM , STARPU_MPI_MS_RAM , STARPU_TCPIP_MS_RAM
,
STARPU_HIP_RAM , STARPU_MAX_RAM , STARPU_NRAM }

• enum starpu_worker_archtype {
STARPU_CPU_WORKER , STARPU_CUDA_WORKER , STARPU_OPENCL_WORKER , STARPU_MAX_FPGA_WORKER
,
STARPU_MPI_MS_WORKER , STARPU_TCPIP_MS_WORKER , STARPU_HIP_WORKER , STARPU_NARCH
,
STARPU_ANY_WORKER }

• enum starpu_worker_collection_type { STARPU_WORKER_TREE , STARPU_WORKER_LIST }

Functions

• void starpu_worker_wait_for_initialisation (void)
• unsigned starpu_worker_archtype_is_valid (enum starpu_worker_archtype type)
• enum starpu_worker_archtype starpu_arch_mask_to_worker_archtype (unsigned mask)
• unsigned starpu_worker_get_count (void)
• unsigned starpu_cpu_worker_get_count (void)
• unsigned starpu_cuda_worker_get_count (void)
• unsigned starpu_hip_worker_get_count (void)
• unsigned starpu_opencl_worker_get_count (void)
• unsigned starpu_mpi_ms_worker_get_count (void)
• unsigned starpu_tcpip_ms_worker_get_count (void)
• int starpu_worker_get_id (void)
• unsigned _starpu_worker_get_id_check (const char ∗f, int l)
• int starpu_worker_get_bindid (int workerid)
• void starpu_sched_find_all_worker_combinations (void)
• enum starpu_worker_archtype starpu_worker_get_type (int id)
• int starpu_worker_get_count_by_type (enum starpu_worker_archtype type)
• unsigned starpu_worker_get_ids_by_type (enum starpu_worker_archtype type, int ∗workerids, unsigned

maxsize)
• int starpu_worker_get_by_type (enum starpu_worker_archtype type, int num)
• int starpu_worker_get_by_devid (enum starpu_worker_archtype type, int devid)
• unsigned starpu_worker_type_can_execute_task (enum starpu_worker_archtype worker_type, const struct

starpu_task ∗task)
• void starpu_worker_get_name (int id, char ∗dst, size_t maxlen)
• void starpu_worker_display_all (FILE ∗output)

Generated by Doxygen

706 Module Documentation a.k.a StarPU’s API

• void starpu_worker_display_names (FILE ∗output, enum starpu_worker_archtype type)
• void starpu_worker_display_count (FILE ∗output, enum starpu_worker_archtype type)
• int starpu_worker_get_devid (int id)
• int starpu_worker_get_devnum (int id)
• int starpu_worker_get_subworkerid (int id)
• struct starpu_tree ∗ starpu_workers_get_tree (void)
• unsigned starpu_worker_get_sched_ctx_list (int worker, unsigned ∗∗sched_ctx)
• void starpu_worker_get_current_task_exp_end (unsigned workerid, struct timespec ∗date)
• unsigned starpu_worker_is_blocked_in_parallel (int workerid)
• unsigned starpu_worker_is_slave_somewhere (int workerid)
• const char ∗ starpu_worker_get_type_as_string (enum starpu_worker_archtype type)
• enum starpu_worker_archtype starpu_worker_get_type_from_string (const char ∗type)
• const char ∗ starpu_worker_get_type_as_env_var (enum starpu_worker_archtype type)
• int starpu_bindid_get_workerids (int bindid, int ∗∗workerids)
• int starpu_worker_get_devids (enum starpu_worker_archtype type, int ∗devids, int num)
• int starpu_worker_get_stream_workerids (unsigned devid, int ∗workerids, enum starpu_worker_archtype

type)
• hwloc_cpuset_t starpu_worker_get_hwloc_cpuset (int workerid)
• hwloc_obj_t starpu_worker_get_hwloc_obj (int workerid)
• int starpu_memory_node_get_devid (unsigned node)
• unsigned starpu_worker_get_local_memory_node (void)
• unsigned starpu_worker_get_memory_node (unsigned workerid)
• unsigned starpu_memory_nodes_get_count (void)
• unsigned starpu_memory_nodes_get_count_by_kind (enum starpu_node_kind kind)
• unsigned starpu_memory_node_get_ids_by_type (enum starpu_node_kind kind, unsigned ∗memory_←↩

nodes_ids, unsigned maxsize)
• int starpu_memory_node_get_name (unsigned node, char ∗name, size_t size)
• unsigned starpu_memory_nodes_get_numa_count (void)
• int starpu_memory_nodes_numa_id_to_devid (int osid)
• int starpu_memory_nodes_numa_devid_to_id (unsigned id)
• enum starpu_node_kind starpu_node_get_kind (unsigned node)
• enum starpu_worker_archtype starpu_memory_node_get_worker_archtype (enum starpu_node_kind

node_kind)
• enum starpu_node_kind starpu_worker_get_memory_node_kind (enum starpu_worker_archtype type)

Variables

• struct starpu_worker_collection starpu_worker_list
• struct starpu_worker_collection starpu_worker_tree

Scheduling operations

• int starpu_worker_sched_op_pending (void)
• void starpu_worker_relax_on (void)
• void starpu_worker_relax_off (void)
• int starpu_worker_get_relax_state (void)
• void starpu_worker_lock (int workerid)
• int starpu_worker_trylock (int workerid)
• void starpu_worker_unlock (int workerid)
• void starpu_worker_lock_self (void)
• void starpu_worker_unlock_self (void)
• void starpu_worker_set_going_to_sleep_callback (void(∗callback)(unsigned workerid))
• void starpu_worker_set_waking_up_callback (void(∗callback)(unsigned workerid))

Generated by Doxygen

57.51 Workers 707

57.51.1 Detailed Description

57.51.2 Data Structure Documentation

57.51.2.1 struct starpu_sched_ctx_iterator

Structure needed to iterate on the collection

Data Fields

int cursor The index of the current worker in the collection, needed when
iterating on the collection.

void ∗ value
void ∗ possible_value

char visited[STARPU_NMAXWORKERS]

int possibly_parallel

57.51.2.2 struct starpu_worker_collection

A scheduling context manages a collection of workers that can be memorized using different data structures. Thus,
a generic structure is available in order to simplify the choice of its type. Only the list data structure is available but
further data structures(like tree) implementations are foreseen.

Data Fields

• int ∗ workerids
• void ∗ collection_private
• unsigned nworkers
• void ∗ unblocked_workers
• unsigned nunblocked_workers
• void ∗ masters
• unsigned nmasters
• char present [STARPU_NMAXWORKERS]
• char is_unblocked [STARPU_NMAXWORKERS]
• char is_master [STARPU_NMAXWORKERS]
• enum starpu_worker_collection_type type
• unsigned(∗ has_next)(struct starpu_worker_collection ∗workers, struct starpu_sched_ctx_iterator ∗it)
• int(∗ get_next)(struct starpu_worker_collection ∗workers, struct starpu_sched_ctx_iterator ∗it)
• int(∗ add)(struct starpu_worker_collection ∗workers, int worker)
• int(∗ remove)(struct starpu_worker_collection ∗workers, int worker)
• void(∗ init)(struct starpu_worker_collection ∗workers)
• void(∗ deinit)(struct starpu_worker_collection ∗workers)
• void(∗ init_iterator)(struct starpu_worker_collection ∗workers, struct starpu_sched_ctx_iterator ∗it)
• void(∗ init_iterator_for_parallel_tasks)(struct starpu_worker_collection ∗workers, struct starpu_sched_ctx_iterator
∗it, struct starpu_task ∗task)

57.51.2.2.1 Field Documentation

57.51.2.2.1.1 workerids int∗ starpu_worker_collection::workerids

The workerids managed by the collection

57.51.2.2.1.2 nworkers unsigned starpu_worker_collection::nworkers

The number of workers in the collection

57.51.2.2.1.3 type enum starpu_worker_collection_type starpu_worker_collection::type

The type of structure

Generated by Doxygen

708 Module Documentation a.k.a StarPU’s API

57.51.2.2.1.4 has_next unsigned(∗ starpu_worker_collection::has_next) (struct starpu_worker_collection

∗workers, struct starpu_sched_ctx_iterator ∗it)
Check if there is another element in collection

57.51.2.2.1.5 get_next int(∗ starpu_worker_collection::get_next) (struct starpu_worker_collection

∗workers, struct starpu_sched_ctx_iterator ∗it)
Return the next element in the collection

57.51.2.2.1.6 add int(∗ starpu_worker_collection::add) (struct starpu_worker_collection ∗workers,
int worker)

Add a new element in the collection

57.51.2.2.1.7 remove int(∗ starpu_worker_collection::remove) (struct starpu_worker_collection

∗workers, int worker)

Remove an element from the collection

57.51.2.2.1.8 init void(∗ starpu_worker_collection::init) (struct starpu_worker_collection ∗workers)
Initialize the collection

57.51.2.2.1.9 deinit void(∗ starpu_worker_collection::deinit) (struct starpu_worker_collection

∗workers)
Deinitialize the collection

57.51.2.2.1.10 init_iterator void(∗ starpu_worker_collection::init_iterator) (struct starpu_worker_collection

∗workers, struct starpu_sched_ctx_iterator ∗it)
Initialize the cursor if there is one

57.51.3 Macro Definition Documentation

57.51.3.1 starpu_worker_get_id_check

unsigned starpu_worker_get_id_check(

void)

Similar to starpu_worker_get_id(), but abort when called from outside a worker (i.e. when starpu_worker_get_id()
would return -1). See How To Initialize A Computation Library Once For Each Worker? for more details.

57.51.3.2 STARPU_MAXNODES

#define STARPU_MAXNODES

Define the maximum number of memory nodes managed by StarPU. The default value can be modified at configure
by using the option --enable-maxnodes. Reducing it allows to considerably reduce memory used by StarPU data
structures.

57.51.3.3 STARPU_MAXCPUS

#define STARPU_MAXCPUS

Define the maximum number of CPU workers managed by StarPU. The default value can be modified at configure
by using the option --enable-maxcpus.

57.51.3.4 STARPU_MAXNUMANODES

#define STARPU_MAXNUMANODES

Define the maximum number of NUMA nodes managed by StarPU. The default value can be modified at configure
by using the option --enable-maxnumanodes.

Generated by Doxygen

57.51 Workers 709

57.51.3.5 STARPU_NMAXWORKERS

#define STARPU_NMAXWORKERS

Define the maximum number of workers managed by StarPU.

57.51.3.6 STARPU_UNKNOWN_WORKER

#define STARPU_UNKNOWN_WORKER

Invalid worker value

57.51.4 Enumeration Type Documentation

57.51.4.1 starpu_node_kind

enum starpu_node_kind

Memory node Type

Enumerator

STARPU_CPU_RAM CPU core
STARPU_CUDA_RAM NVIDIA CUDA device

STARPU_OPENCL_RAM OpenCL device

STARPU_MAX_FPGA_RAM Maxeler FPGA device
STARPU_DISK_RAM Disk memory

STARPU_MPI_MS_RAM MPI Slave device
STARPU_TCPIP_MS_RAM TCPIP Slave device

STARPU_HIP_RAM NVIDIA/AMD HIP device
STARPU_MAX_RAM Maximum value of memory types

STARPU_NRAM Number of memory types

57.51.4.2 starpu_worker_archtype

enum starpu_worker_archtype

Worker Architecture Type
The value 4 which was used by the driver SCC is no longer used as renumbering workers would make unusable old
performance model files.

Enumerator

STARPU_CPU_WORKER CPU core
STARPU_CUDA_WORKER NVIDIA CUDA device

STARPU_OPENCL_WORKER OpenCL device

STARPU_MAX_FPGA_WORKER Maxeler FPGA device
STARPU_MPI_MS_WORKER MPI Slave device

STARPU_TCPIP_MS_WORKER TCPIP Slave device
STARPU_HIP_WORKER NVIDIA/AMD HIP device

STARPU_NARCH Number of arch types

STARPU_ANY_WORKER any worker, used in the hypervisor

Generated by Doxygen

710 Module Documentation a.k.a StarPU’s API

57.51.4.3 starpu_worker_collection_type

enum starpu_worker_collection_type

Types of structures the worker collection can implement

Enumerator

STARPU_WORKER_TREE The collection is a tree
STARPU_WORKER_LIST The collection is an array

57.51.5 Function Documentation

57.51.5.1 starpu_worker_wait_for_initialisation()

void starpu_worker_wait_for_initialisation (

void)

Wait for all workers to be initialised. Calling this function is normally not necessary. It is called for example in
tools/starpu_machine_display to make sure all workers information are correctly set before printing
their information. See Interleaving StarPU and non-StarPU code for more details.

57.51.5.2 starpu_worker_archtype_is_valid()

unsigned starpu_worker_archtype_is_valid (

enum starpu_worker_archtype type)

Return true if type matches one of StarPU's defined worker architectures. See Workers for more details.

57.51.5.3 starpu_arch_mask_to_worker_archtype()

enum starpu_worker_archtype starpu_arch_mask_to_worker_archtype (

unsigned mask)

Convert a mask of architectures to a worker archtype. See Workers for more details.

57.51.5.4 starpu_worker_get_count()

unsigned starpu_worker_get_count (

void)

Return the number of workers (i.e. processing units executing StarPU tasks). The return value should be at most
STARPU_NMAXWORKERS. See Workers for more details.

57.51.5.5 starpu_cpu_worker_get_count()

unsigned starpu_cpu_worker_get_count (

void)

Return the number of CPUs controlled by StarPU. The return value should be at most STARPU_MAXCPUS. See
Workers for more details.

57.51.5.6 starpu_cuda_worker_get_count()

unsigned starpu_cuda_worker_get_count (

void)

Return the number of CUDA devices controlled by StarPU. The return value should be at most STARPU_MAXCUDADEVS.
See Workers for more details.

Generated by Doxygen

57.51 Workers 711

57.51.5.7 starpu_hip_worker_get_count()

unsigned starpu_hip_worker_get_count (

void)

Return the number of HIP devices controlled by StarPU. The return value should be at most STARPU_MAXHIPDEVS.
See Workers for more details.

57.51.5.8 starpu_opencl_worker_get_count()

unsigned starpu_opencl_worker_get_count (

void)

Return the number of OpenCL devices controlled by StarPU. The return value should be at most
STARPU_MAXOPENCLDEVS. See Workers for more details.

57.51.5.9 starpu_mpi_ms_worker_get_count()

unsigned starpu_mpi_ms_worker_get_count (

void)

Return the number of MPI Master Slave workers controlled by StarPU. See Workers for more details.

57.51.5.10 starpu_tcpip_ms_worker_get_count()

unsigned starpu_tcpip_ms_worker_get_count (

void)

Return the number of TCPIP Master Slave workers controlled by StarPU. See Workers for more details.

57.51.5.11 starpu_worker_get_id()

int starpu_worker_get_id (

void)

Return the identifier of the current worker, i.e the one associated to the calling thread. The return
value is either -1 if the current context is not a StarPU worker (i.e. when called from the applica-
tion outside a task or a callback), or an integer between 0 and starpu_worker_get_count() - 1. See
How To Initialize A Computation Library Once For Each Worker? for more details.

57.51.5.12 starpu_worker_get_bindid()

int starpu_worker_get_bindid (

int workerid)

See Workers for more details.

57.51.5.13 starpu_sched_find_all_worker_combinations()

void starpu_sched_find_all_worker_combinations (

void)

See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.51.5.14 starpu_worker_get_type()

enum starpu_worker_archtype starpu_worker_get_type (

int id)

Return the type of processing unit associated to the worker id. The worker identifier is a value returned by the func-
tion starpu_worker_get_id()). The return value indicates the architecture of the worker: STARPU_CPU_WORKER
for a CPU core, STARPU_CUDA_WORKER for a CUDA device, and STARPU_OPENCL_WORKER for a OpenCL
device. The return value for an invalid identifier is unspecified. See Workers for more details.

57.51.5.15 starpu_worker_get_count_by_type()

int starpu_worker_get_count_by_type (

enum starpu_worker_archtype type)

Generated by Doxygen

712 Module Documentation a.k.a StarPU’s API

Return the number of workers of type. A positive (or NULL) value is returned in case of success, -EINVAL
indicates that type is not valid otherwise. See Workers for more details.

57.51.5.16 starpu_worker_get_ids_by_type()

unsigned starpu_worker_get_ids_by_type (

enum starpu_worker_archtype type,

int ∗ workerids,

unsigned maxsize)

Get the list of identifiers of workers of type. Fill the array workerids with the identifiers of the workers.
The argument maxsize indicates the size of the array workerids. The return value gives the number of
identifiers that were put in the array. -ERANGE is returned is maxsize is lower than the number of workers with
the appropriate type: in that case, the array is filled with the maxsize first elements. To avoid such overflows, the
value of maxsize can be chosen by the means of the function starpu_worker_get_count_by_type(), or by passing a
value greater or equal to STARPU_NMAXWORKERS. See Workers for more details.

57.51.5.17 starpu_worker_get_by_type()

int starpu_worker_get_by_type (

enum starpu_worker_archtype type,

int num)

Return the identifier of the num -th worker that has the specified type. If there is no such worker, -1 is returned.
See Workers for more details.

57.51.5.18 starpu_worker_get_by_devid()

int starpu_worker_get_by_devid (

enum starpu_worker_archtype type,

int devid)

Return the identifier of the worker that has the specified type and device id devid (which may not be the n-th, if
some devices are skipped for instance). If there is no such worker, -1 is returned. See Workers for more details.

57.51.5.19 starpu_worker_type_can_execute_task()

unsigned starpu_worker_type_can_execute_task (

enum starpu_worker_archtype worker_type,

const struct starpu_task ∗ task)

Return true if worker type can execute this task. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.51.5.20 starpu_worker_get_name()

void starpu_worker_get_name (

int id,

char ∗ dst,

size_t maxlen)

Get the name of the worker id. StarPU associates a unique human readable string to each processing unit. This
function copies at most the maxlen first bytes of the unique string associated to the worker id into the dst buffer.
The caller is responsible for ensuring that dst is a valid pointer to a buffer of maxlen bytes at least. Calling this
function on an invalid identifier results in an unspecified behaviour. See Workers for more details.

57.51.5.21 starpu_worker_display_all()

void starpu_worker_display_all (

FILE ∗ output)

Display on output the list (if any) of all workers. See Workers for more details.

Generated by Doxygen

57.51 Workers 713

57.51.5.22 starpu_worker_display_names()

void starpu_worker_display_names (

FILE ∗ output,

enum starpu_worker_archtype type)

Display on output the list (if any) of all the workers of the given type. See Workers for more details.

57.51.5.23 starpu_worker_display_count()

void starpu_worker_display_count (

FILE ∗ output,

enum starpu_worker_archtype type)

Display on output the number of workers of the given type. See Workers for more details.

57.51.5.24 starpu_worker_get_devid()

int starpu_worker_get_devid (

int id)

Return the device id of the worker id. The worker should be identified with the value returned by the
starpu_worker_get_id() function. In the case of a CUDA worker, this device identifier is the logical device identi-
fier exposed by CUDA (used by the function cudaGetDevice() for instance). The device identifier of a CPU
worker is the logical identifier of the core on which the worker was bound; this identifier is either provided by the OS
or by the library hwloc in case it is available. See Workers for more details.

57.51.5.25 starpu_worker_get_devnum()

int starpu_worker_get_devnum (

int id)

See Workers for more details.

57.51.5.26 starpu_worker_get_subworkerid()

int starpu_worker_get_subworkerid (

int id)

See Workers for more details.

57.51.5.27 starpu_workers_get_tree()

struct starpu_tree ∗ starpu_workers_get_tree (

void)

See Workers for more details.

57.51.5.28 starpu_worker_get_sched_ctx_list()

unsigned starpu_worker_get_sched_ctx_list (

int worker,

unsigned ∗∗ sched_ctx)

See Workers for more details.

57.51.5.29 starpu_worker_get_current_task_exp_end()

void starpu_worker_get_current_task_exp_end (

unsigned workerid,

struct timespec ∗ date)

Return when the current task is expected to be finished.
Note: the returned date should be used with caution since the task might very well end just after this function
returns.
See Per-task Feedback for more details.

Generated by Doxygen

714 Module Documentation a.k.a StarPU’s API

57.51.5.30 starpu_worker_is_blocked_in_parallel()

unsigned starpu_worker_is_blocked_in_parallel (

int workerid)

Return whether worker workerid is currently blocked in a parallel task. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

57.51.5.31 starpu_worker_is_slave_somewhere()

unsigned starpu_worker_is_slave_somewhere (

int workerid)

See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.51.5.32 starpu_worker_get_type_as_string()

const char ∗ starpu_worker_get_type_as_string (

enum starpu_worker_archtype type)

Return worker type as a string. See Workers for more details.

57.51.5.33 starpu_worker_get_type_from_string()

enum starpu_worker_archtype starpu_worker_get_type_from_string (

const char ∗ type)

Return worker type from a string. Returns STARPU_UNKNOWN_WORKER if the string doesn't match a worker
type. See Workers for more details.

57.51.5.34 starpu_worker_get_type_as_env_var()

const char ∗ starpu_worker_get_type_as_env_var (

enum starpu_worker_archtype type)

Return worker type as a string suitable for environment variable names (CPU, CUDA, etc.). See Workers for more
details.

57.51.5.35 starpu_bindid_get_workerids()

int starpu_bindid_get_workerids (

int bindid,

int ∗∗ workerids)

See Workers for more details.

57.51.5.36 starpu_worker_get_devids()

int starpu_worker_get_devids (

enum starpu_worker_archtype type,

int ∗ devids,

int num)

See Workers for more details.

57.51.5.37 starpu_worker_get_stream_workerids()

int starpu_worker_get_stream_workerids (

unsigned devid,

int ∗ workerids,

enum starpu_worker_archtype type)

See Workers for more details.

57.51.5.38 starpu_worker_get_hwloc_cpuset()

hwloc_cpuset_t starpu_worker_get_hwloc_cpuset (

int workerid)

Generated by Doxygen

57.51 Workers 715

If StarPU was compiled with hwloc support, return a duplicate of the hwloc cpuset associated with the worker
workerid. The returned cpuset is obtained from a hwloc_bitmap_dup() function call. It must be freed by
the caller using hwloc_bitmap_free(). See Interoperability hwloc for more details.

57.51.5.39 starpu_worker_get_hwloc_obj()

hwloc_obj_t starpu_worker_get_hwloc_obj (

int workerid)

If StarPU was compiled with hwloc support, return the hwloc object corresponding to the worker workerid.
See Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.51.5.40 starpu_memory_node_get_devid()

int starpu_memory_node_get_devid (

unsigned node)

See Memory for more details.

57.51.5.41 starpu_worker_get_local_memory_node()

unsigned starpu_worker_get_local_memory_node (

void)

Return the memory node associated to the current worker. See Workers for more details.

57.51.5.42 starpu_worker_get_memory_node()

unsigned starpu_worker_get_memory_node (

unsigned workerid)

Return the identifier of the memory node associated to the worker identified by workerid. See Workers for more
details.

57.51.5.43 starpu_memory_nodes_get_count()

unsigned starpu_memory_nodes_get_count (

void)

Return the number of memory nodes. See Workers for more details.

57.51.5.44 starpu_memory_nodes_get_count_by_kind()

unsigned starpu_memory_nodes_get_count_by_kind (

enum starpu_node_kind kind)

Return the number of memory nodes of a given kind. See Workers for more details.

57.51.5.45 starpu_memory_node_get_ids_by_type()

unsigned starpu_memory_node_get_ids_by_type (

enum starpu_node_kind kind,

unsigned ∗ memory_nodes_ids,

unsigned maxsize)

Get the list of memory nodes of kind kind. Fill the array memory_nodes_ids with the memory nodes numbers.
The argument maxsize indicates the size of the array memory_nodes_ids. The return value gives the number
of node numbers that were put in the array. -ERANGE is returned if maxsize is lower than the number of memory
nodes with the appropriate kind: in that case, the array is filled with the maxsize first elements. To avoid such over-
flows, the value of maxsize can be chosen by the means of function starpu_memory_nodes_get_count_by_kind(),
or by passing a value greater or equal to STARPU_MAXNODES. See Workers for more details.

57.51.5.46 starpu_memory_node_get_name()

int starpu_memory_node_get_name (

unsigned node,

Generated by Doxygen

716 Module Documentation a.k.a StarPU’s API

char ∗ name,

size_t size)

Return in name the name of a memory node (NUMA 0, CUDA 0, etc.) size is the size of the name array. See
Workers for more details.

57.51.5.47 starpu_memory_nodes_get_numa_count()

unsigned starpu_memory_nodes_get_numa_count (

void)

Return the number of NUMA nodes used by StarPU. See Workers for more details.

57.51.5.48 starpu_memory_nodes_numa_id_to_devid()

int starpu_memory_nodes_numa_id_to_devid (

int osid)

Return the identifier of the memory node associated to the NUMA node identified by osid by the Operating System.
See Workers for more details.

57.51.5.49 starpu_memory_nodes_numa_devid_to_id()

int starpu_memory_nodes_numa_devid_to_id (

unsigned id)

Return the Operating System identifier of the memory node whose StarPU identifier is id. See Workers for more
details.

57.51.5.50 starpu_node_get_kind()

enum starpu_node_kind starpu_node_get_kind (

unsigned node)

Return the type of node as defined by starpu_node_kind. For example, when defining a new data interface, this
function should be used in the allocation function to determine on which device the memory needs to be allocated.
See Workers for more details.

57.51.5.51 starpu_memory_node_get_worker_archtype()

enum starpu_worker_archtype starpu_memory_node_get_worker_archtype (

enum starpu_node_kind node_kind)

Return the type of worker which operates on memory node kind node_kind. See Workers for more details.

57.51.5.52 starpu_worker_get_memory_node_kind()

enum starpu_node_kind starpu_worker_get_memory_node_kind (

enum starpu_worker_archtype type)

Return the type of memory node that arch type type operates on. See Workers for more details.

57.51.5.53 starpu_worker_sched_op_pending()

int starpu_worker_sched_op_pending (

void)

Return !0 if current worker has a scheduling operation in progress, and 0 otherwise.

57.51.5.54 starpu_worker_relax_on()

void starpu_worker_relax_on (

void)

Allow other threads and workers to temporarily observe the current worker state, even though it is performing a
scheduling operation. Must be called by a worker before performing a potentially blocking call such as acquiring a
mutex other than its own sched_mutex. This function increases state_relax_refcnt from the current worker.
No more than UINT_MAX-1 nested starpu_worker_relax_on() calls should performed on the same worker. This

Generated by Doxygen

57.51 Workers 717

function is automatically called by starpu_worker_lock() to relax the caller worker state while attempting to lock the
target worker. See Defining A New Basic Scheduling Policy for more details.

57.51.5.55 starpu_worker_relax_off()

void starpu_worker_relax_off (

void)

Must be called after a potentially blocking call is complete, to restore the relax state in place before the correspond-
ing starpu_worker_relax_on(). Decreases state_relax_refcnt. Calls to starpu_worker_relax_on() and
starpu_worker_relax_off() must be properly paired. This function is automatically called by starpu_worker_unlock()
after the target worker has been unlocked. See Defining A New Basic Scheduling Policy for more details.

57.51.5.56 starpu_worker_get_relax_state()

int starpu_worker_get_relax_state (

void)

Return !0 if the current worker state_relax_refcnt!=0 and 0 otherwise. See Defining A New Basic Scheduling Policy
for more details.

57.51.5.57 starpu_worker_lock()

void starpu_worker_lock (

int workerid)

Acquire the sched mutex of workerid. If the caller is a worker, distinct from workerid, the caller worker auto-
matically enters a relax state while acquiring the target worker lock. See Defining A New Basic Scheduling Policy
for more details.

57.51.5.58 starpu_worker_trylock()

int starpu_worker_trylock (

int workerid)

Attempt to acquire the sched mutex of workerid. Returns 0 if successful, !0 if workerid sched mu-
tex is held or the corresponding worker is not in a relax state. If the caller is a worker, distinct from
workerid, the caller worker automatically enters relax state if successfully acquiring the target worker lock.
See Defining A New Basic Scheduling Policy for more details.

57.51.5.59 starpu_worker_unlock()

void starpu_worker_unlock (

int workerid)

Release the previously acquired sched mutex of workerid. Restore the relax state of the caller worker if needed.
See Defining A New Basic Scheduling Policy for more details.

57.51.5.60 starpu_worker_lock_self()

void starpu_worker_lock_self (

void)

Acquire the current worker sched mutex. See Defining A New Basic Scheduling Policy for more details.

57.51.5.61 starpu_worker_unlock_self()

void starpu_worker_unlock_self (

void)

Release the current worker sched mutex. See Defining A New Basic Scheduling Policy for more details.

57.51.5.62 starpu_worker_set_going_to_sleep_callback()

void starpu_worker_set_going_to_sleep_callback (

void(∗)(unsigned workerid) callback)

Generated by Doxygen

718 Module Documentation a.k.a StarPU’s API

If StarPU was compiled with blocking drivers support and worker callbacks support enabled, allow
to specify an external resource manager callback to be notified about workers going to sleep. See
Helper functions for defining a scheduling policy (Basic or modular) for more details.

57.51.5.63 starpu_worker_set_waking_up_callback()

void starpu_worker_set_waking_up_callback (

void(∗)(unsigned workerid) callback)

If StarPU was compiled with blocking drivers support and worker callbacks support enabled, allow to specify an ex-
ternal resource manager callback to be notified about workers waking-up. See Helper functions for defining a scheduling policy (Basic or modular)
for more details.

Generated by Doxygen

Chapter 58

File Index

58.1 File List

Here is a list of all documented files with brief descriptions:
starpu_config.h . 724
fstarpu_mod.f90 . ??
starpu_heteroprio.h . 743
starpu_scheduler_toolbox.h . 744
starpu.h . 721
starpu_bitmap.h . 722
starpu_bound.h . 723
starpu_cublas.h . 727
starpu_cublas_v2.h . 727
starpu_cuda.h . 727
starpu_cusolver.h . ??
starpu_cusparse.h . 727
starpu_data.h . 728
starpu_data_filters.h . 730
starpu_data_interfaces.h . 734
starpu_deprecated_api.h . 740
starpu_disk.h . 740
starpu_driver.h . 740
starpu_expert.h . 741
starpu_fxt.h . 741
starpu_hash.h . 741
starpu_helper.h . 742
starpu_hip.h . 743
starpu_max_fpga.h . 745
starpu_mod.f90 . 745
starpu_opencl.h . 750
starpu_openmp.h . 751
starpu_parallel_worker.h . 754
starpu_perf_monitoring.h . 755
starpu_perf_steering.h . 756
starpu_perfmodel.h . 757
starpu_profiling.h . 759
starpu_profiling_tool.h . 760
starpu_rand.h . 760
starpu_sched_component.h . 761
starpu_sched_ctx.h . 765
starpu_sched_ctx_hypervisor.h . 766
starpu_scheduler.h . 767
starpu_simgrid_wrap.h . 769
starpu_sink.h . 769

Generated by Doxygen

720 File Index

starpu_stdlib.h . 769
starpu_task.h . 770
starpu_task_bundle.h . 772
starpu_task_dep.h . 773
starpu_task_list.h . 773
starpu_task_util.h . 774
starpu_thread.h . 775
starpu_thread_util.h . 778
starpu_tree.h . 779
starpu_util.h . 780
starpu_worker.h . 781
starpu_mpi.h . 746
starpu_mpi_ft.h . 749
starpu_mpi_lb.h . 750
sc_hypervisor.h . 784
sc_hypervisor_config.h . 785
sc_hypervisor_lp.h . 786
sc_hypervisor_monitoring.h . 787
sc_hypervisor_policy.h . 789
starpufft.h . 783
starpurm.h . 790

Generated by Doxygen

Chapter 59

File Documentation

59.1 starpu.h File Reference

#include <stdlib.h>
#include <stdint.h>
#include <starpu_config.h>
#include <windows.h>
#include <starpu_opencl.h>
#include <starpu_thread.h>
#include <starpu_thread_util.h>
#include <starpu_util.h>
#include <starpu_data.h>
#include <starpu_helper.h>
#include <starpu_disk.h>
#include <starpu_data_interfaces.h>
#include <starpu_data_filters.h>
#include <starpu_stdlib.h>
#include <starpu_task_bundle.h>
#include <starpu_task_dep.h>
#include <starpu_task.h>
#include <starpu_worker.h>
#include <starpu_perfmodel.h>
#include <starpu_task_list.h>
#include <starpu_task_util.h>
#include <starpu_scheduler.h>
#include <starpu_sched_ctx.h>
#include <starpu_expert.h>
#include <starpu_rand.h>
#include <starpu_cuda.h>
#include <starpu_hip.h>
#include <starpu_hipblas.h>
#include <starpu_cublas.h>
#include <starpu_cusparse.h>
#include <starpu_bound.h>
#include <starpu_hash.h>
#include <starpu_profiling.h>
#include <starpu_profiling_tool.h>
#include <starpu_fxt.h>
#include <starpu_driver.h>
#include <starpu_tree.h>
#include <starpu_openmp.h>
#include <starpu_simgrid_wrap.h>
#include <starpu_bitmap.h>
#include <starpu_parallel_worker.h>

Generated by Doxygen

722 File Documentation

#include <starpu_perf_monitoring.h>
#include <starpu_perf_steering.h>
#include <starpu_max_fpga.h>
#include "starpu_deprecated_api.h"

Data Structures

• struct starpu_conf

Macros

• #define STARPU_THREAD_ACTIVE

Functions

• int starpu_conf_init (struct starpu_conf ∗conf)
• int starpu_conf_noworker (struct starpu_conf ∗conf)
• int starpu_init (struct starpu_conf ∗conf)
• int starpu_initialize (struct starpu_conf ∗user_conf, int ∗argc, char ∗∗∗argv)
• int starpu_is_initialized (void)
• void starpu_wait_initialized (void)
• void starpu_shutdown (void)
• void starpu_pause (void)
• void starpu_resume (void)
• int starpu_is_paused (void)
• unsigned starpu_get_next_bindid (unsigned flags, unsigned ∗preferred, unsigned npreferred)
• int starpu_bind_thread_on (int cpuid, unsigned flags, const char ∗name)
• void starpu_bind_thread_on_worker (unsigned workerid)
• void starpu_bind_thread_on_main (void)
• void starpu_bind_thread_on_cpu (int cpuid)
• int starpu_cpu_os_index (int cpuid)
• void starpu_topology_print (FILE ∗f)
• int starpu_asynchronous_copy_disabled (void)
• int starpu_asynchronous_cuda_copy_disabled (void)
• int starpu_asynchronous_hip_copy_disabled (void)
• int starpu_asynchronous_opencl_copy_disabled (void)
• int starpu_asynchronous_max_fpga_copy_disabled (void)
• int starpu_asynchronous_mpi_ms_copy_disabled (void)
• int starpu_asynchronous_tcpip_ms_copy_disabled (void)
• int starpu_asynchronous_copy_disabled_for (enum starpu_node_kind kind)
• int starpu_map_enabled (void)
• void starpu_display_stats (void)
• void starpu_get_version (int ∗major, int ∗minor, int ∗release)

59.2 starpu_bitmap.h File Reference

#include <starpu_util.h>
#include <starpu_config.h>
#include <string.h>
#include <stdlib.h>

Data Structures

• struct starpu_bitmap

Generated by Doxygen

59.3 starpu_bound.h File Reference 723

Macros

• #define _STARPU_LONG_BIT
• #define _STARPU_BITMAP_SIZE
• #define _starpu_check_bitmap(b)

Functions

• static struct starpu_bitmap ∗ starpu_bitmap_create (void) STARPU_ATTRIBUTE_MALLOC
• static void starpu_bitmap_init (struct starpu_bitmap ∗b)
• static void starpu_bitmap_destroy (struct starpu_bitmap ∗b)
• static void starpu_bitmap_set (struct starpu_bitmap ∗b, int e)
• static void starpu_bitmap_unset (struct starpu_bitmap ∗b, int e)
• static void starpu_bitmap_unset_all (struct starpu_bitmap ∗b)
• static int starpu_bitmap_get (struct starpu_bitmap ∗b, int e)
• static void starpu_bitmap_unset_and (struct starpu_bitmap ∗a, struct starpu_bitmap ∗b, struct starpu_bitmap
∗c)

• static void starpu_bitmap_or (struct starpu_bitmap ∗a, struct starpu_bitmap ∗b)
• static int starpu_bitmap_and_get (struct starpu_bitmap ∗b1, struct starpu_bitmap ∗b2, int e)
• static int starpu_bitmap_cardinal (struct starpu_bitmap ∗b)
• static int starpu_bitmap_first (struct starpu_bitmap ∗b)
• static int starpu_bitmap_last (struct starpu_bitmap ∗b)
• static int starpu_bitmap_next (struct starpu_bitmap ∗b, int e)
• static int starpu_bitmap_has_next (struct starpu_bitmap ∗b, int e)
• static int _starpu_count_bit_static (unsigned long e)
• static int _starpu_get_first_bit_rank (unsigned long ms)
• static int _starpu_get_last_bit_rank (unsigned long l)

59.2.1 Data Structure Documentation

59.2.1.1 struct starpu_bitmap

todo

Data Fields

unsigned long bits[_STARPU_BITMAP_SIZE]

int cardinal

59.3 starpu_bound.h File Reference

#include <stdio.h>

Functions

• void starpu_bound_start (int deps, int prio)
• void starpu_bound_stop (void)
• void starpu_bound_print_dot (FILE ∗output)
• void starpu_bound_compute (double ∗res, double ∗integer_res, int integer)
• void starpu_bound_print_lp (FILE ∗output)
• void starpu_bound_print_mps (FILE ∗output)
• void starpu_bound_print (FILE ∗output, int integer)

Generated by Doxygen

724 File Documentation

59.4 starpu_config.h File Reference

#include <sys/types.h>

Macros

• #define STARPU_MAJOR_VERSION
• #define STARPU_MINOR_VERSION
• #define STARPU_RELEASE_VERSION
• #define STARPU_USE_CPU
• #define STARPU_USE_CUDA
• #define STARPU_USE_CUDA0
• #define STARPU_USE_CUDA1
• #define STARPU_USE_HIP
• #define STARPU_USE_HIPBLAS
• #define STARPU_HAVE_NVML_H
• #define STARPU_USE_OPENCL
• #define STARPU_USE_MAX_FPGA
• #define STARPU_USE_MPI_MASTER_SLAVE
• #define STARPU_USE_TCPIP_MASTER_SLAVE
• #define STARPU_OPENMP
• #define STARPU_BUBBLE
• #define STARPU_PARALLEL_WORKER
• #define STARPU_SIMGRID
• #define STARPU_SIMGRID_MC
• #define STARPU_SIMGRID_HAVE_XBT_BARRIER_INIT
• #define STARPU_HAVE_SIMGRID_MSG_H
• #define STARPU_HAVE_MSG_MSG_H
• #define STARPU_HAVE_SIMGRID_ACTOR_H
• #define STARPU_HAVE_SIMGRID_SEMAPHORE_H
• #define STARPU_HAVE_SIMGRID_MUTEX_H
• #define STARPU_HAVE_SIMGRID_COND_H
• #define STARPU_HAVE_SIMGRID_BARRIER_H
• #define STARPU_HAVE_XBT_SYNCHRO_H
• #define STARPU_HAVE_VALGRIND_H
• #define STARPU_HAVE_MEMCHECK_H
• #define STARPU_VALGRIND_FULL
• #define STARPU_SANITIZE_LEAK
• #define STARPU_NON_BLOCKING_DRIVERS
• #define STARPU_WORKER_CALLBACKS
• #define STARPU_HAVE_ICC
• #define STARPU_USE_MPI
• #define STARPU_USE_MPI_MPI
• #define STARPU_USE_MPI_NMAD
• #define STARPU_USE_MPI_FT
• #define STARPU_USE_MPI_FT_STATS
• #define STARPU_ATLAS
• #define STARPU_GOTO
• #define STARPU_OPENBLAS
• #define STARPU_MKL
• #define STARPU_ARMPL
• #define STARPU_SYSTEM_BLAS
• #define STARPU_HAVE_CBLAS_H
• #define STARPU_HAVE_BLAS

Generated by Doxygen

59.4 starpu_config.h File Reference 725

• #define STARPU_OPENCL_DATADIR
• #define STARPU_HAVE_LIBCUSPARSE
• #define STARPU_HAVE_LIBCUSOLVER
• #define STARPU_HAVE_MAGMA
• #define STARPU_OPENGL_RENDER
• #define STARPU_USE_GTK
• #define STARPU_HAVE_X11
• #define STARPU_PAPI
• #define STARPU_HAVE_POSIX_MEMALIGN
• #define STARPU_HAVE_MEMALIGN
• #define STARPU_HAVE_MALLOC_H
• #define STARPU_HAVE_SYNC_BOOL_COMPARE_AND_SWAP
• #define STARPU_HAVE_SYNC_BOOL_COMPARE_AND_SWAP_8
• #define STARPU_HAVE_SYNC_VAL_COMPARE_AND_SWAP
• #define STARPU_HAVE_SYNC_VAL_COMPARE_AND_SWAP_8
• #define STARPU_HAVE_SYNC_FETCH_AND_ADD
• #define STARPU_HAVE_SYNC_FETCH_AND_ADD_8
• #define STARPU_HAVE_SYNC_FETCH_AND_OR
• #define STARPU_HAVE_SYNC_FETCH_AND_OR_8
• #define STARPU_HAVE_SYNC_LOCK_TEST_AND_SET
• #define STARPU_HAVE_ATOMIC_COMPARE_EXCHANGE_N
• #define STARPU_HAVE_ATOMIC_COMPARE_EXCHANGE_N_8
• #define STARPU_HAVE_ATOMIC_EXCHANGE_N
• #define STARPU_HAVE_ATOMIC_EXCHANGE_N_8
• #define STARPU_HAVE_ATOMIC_FETCH_ADD
• #define STARPU_HAVE_ATOMIC_FETCH_ADD_8
• #define STARPU_HAVE_ATOMIC_FETCH_OR
• #define STARPU_HAVE_ATOMIC_FETCH_OR_8
• #define STARPU_HAVE_ATOMIC_TEST_AND_SET
• #define STARPU_HAVE_SYNC_SYNCHRONIZE
• #define STARPU_DEVEL
• #define STARPU_MODEL_DEBUG
• #define STARPU_NO_ASSERT
• #define STARPU_DEBUG
• #define STARPU_VERBOSE
• #define STARPU_GDB_PATH
• #define STARPU_HAVE_FFTW
• #define STARPU_HAVE_FFTWF
• #define STARPU_HAVE_FFTWL
• #define STARPU_HAVE_CUFFTDOUBLECOMPLEX
• #define STARPU_HAVE_CURAND
• #define STARPU_MAXNODES
• #define STARPU_NMAXBUFS
• #define STARPU_FXT_MAX_FILES
• #define STARPU_MAXCPUS
• #define STARPU_MAXNUMANODES
• #define STARPU_MAXCUDADEVS
• #define STARPU_MAXOPENCLDEVS
• #define STARPU_MAXMAXFPGADEVS
• #define STARPU_MAXHIPDEVS
• #define STARPU_NMAXWORKERS
• #define STARPU_NMAX_SCHED_CTXS
• #define STARPU_MAXIMPLEMENTATIONS
• #define STARPU_USE_SC_HYPERVISOR
• #define STARPU_SC_HYPERVISOR_DEBUG

Generated by Doxygen

726 File Documentation

• #define STARPU_HAVE_GLPK_H
• #define STARPU_HAVE_CUDA_MEMCPY_PEER
• #define STARPU_HAVE_LIBNUMA
• #define STARPU_HAVE_WINDOWS
• #define STARPU_LINUX_SYS
• #define STARPU_HAVE_SETENV
• #define STARPU_HAVE_UNSETENV
• #define STARPU_HAVE_UNISTD_H
• #define STARPU_HAVE_HDF5
• #define STARPU_HAVE_MPI_COMM_CREATE_GROUP
• #define STARPU_USE_FXT
• #define STARPU_FXT_LOCK_TRACES
• #define __starpu_func__
• #define __starpu_inline
• #define STARPU_QUICK_CHECK
• #define STARPU_LONG_CHECK
• #define STARPU_USE_DRAND48
• #define STARPU_USE_ERAND48_R
• #define STARPU_HAVE_NEARBYINTF
• #define STARPU_HAVE_RINTF
• #define STARPU_HAVE_HWLOC
• #define STARPU_HAVE_PTHREAD_SPIN_LOCK
• #define STARPU_HAVE_PTHREAD_BARRIER
• #define STARPU_HAVE_PTHREAD_SETNAME_NP
• #define STARPU_HAVE_STRUCT_TIMESPEC
• #define STARPU_PTHREAD_MUTEX_INITIALIZER_ZERO
• #define STARPU_PTHREAD_COND_INITIALIZER_ZERO
• #define STARPU_PTHREAD_RWLOCK_INITIALIZER_ZERO
• #define STARPU_HAVE_HELGRIND_H
• #define HAVE_MPI_COMM_F2C
• #define STARPU_HAVE_DARWIN
• #define STARPU_HAVE_CXX11
• #define STARPU_HAVE_STRERROR_R
• #define STARPU_HAVE_STATEMENT_EXPRESSIONS
• #define STARPU_PERF_MODEL_DIR
• #define STARPU_PYTHON_HAVE_NUMPY
• #define STARPU_PROF_TOOL

Typedefs

• typedef ssize_t starpu_ssize_t

59.4.1 Macro Definition Documentation

59.4.1.1 STARPU_USE_CUDA0

#define STARPU_USE_CUDA0

Defined when StarPU is testing the CUDA0 driver.

59.4.1.2 STARPU_USE_CUDA1

#define STARPU_USE_CUDA1

Defined when StarPU is testing the CUDA1 driver.

Generated by Doxygen

59.5 starpu_cublas.h File Reference 727

59.4.1.3 STARPU_USE_TCPIP_MASTER_SLAVE

#define STARPU_USE_TCPIP_MASTER_SLAVE

Defined when StarPU has been installed with TCP/IP Master Slave support. It should be used in your code to detect
the availability of TCP/IP Master Slave.

59.4.1.4 STARPU_HAVE_HELGRIND_H

#define STARPU_HAVE_HELGRIND_H

This is only for building examples

59.4.1.5 HAVE_MPI_COMM_F2C

#define HAVE_MPI_COMM_F2C

Enable Fortran to C MPI interface

59.5 starpu_cublas.h File Reference

Functions

• void starpu_cublas_init (void)
• void starpu_cublas_set_stream (void)
• void starpu_cublas_shutdown (void)

59.6 starpu_cublas_v2.h File Reference

#include <cublas_v2.h>

Functions

• cublasHandle_t starpu_cublas_get_local_handle (void)

59.7 starpu_cusparse.h File Reference

#include <cusparse.h>

Functions

• void starpu_cusparse_init (void)
• void starpu_cusparse_shutdown (void)
• cusparseHandle_t starpu_cusparse_get_local_handle (void)

59.8 starpu_cuda.h File Reference

#include <starpu_config.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <nvml.h>

Generated by Doxygen

728 File Documentation

Macros

• #define STARPU_CUBLAS_REPORT_ERROR(status)
• #define STARPU_CUDA_REPORT_ERROR(status)

Functions

• void starpu_cublas_report_error (const char ∗func, const char ∗file, int line, int status)
• void starpu_cuda_report_error (const char ∗func, const char ∗file, int line, cudaError_t status)
• cudaStream_t starpu_cuda_get_local_stream (void)
• const struct cudaDeviceProp ∗ starpu_cuda_get_device_properties (unsigned workerid)
• int starpu_cuda_copy_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t ssize, cudaStream_t stream, enum cudaMemcpyKind kind)
• int starpu_cuda_copy2d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, cudaStream_t stream, enum cudaMemcpy←↩

Kind kind)
• int starpu_cuda_copy3d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks_1, size_t ld1_src, size_t ld1_dst, size_t numblocks_2, size_t ld2_src,
size_t ld2_dst, cudaStream_t stream, enum cudaMemcpyKind kind)

• void starpu_cuda_set_device (unsigned devid)
• nvmlDevice_t starpu_cuda_get_nvmldev (unsigned devid)

59.9 starpu_data.h File Reference

#include <starpu.h>

Typedefs

• typedef struct _starpu_data_state ∗ starpu_data_handle_t
• typedef struct starpu_arbiter ∗ starpu_arbiter_t

Enumerations

• enum starpu_data_access_mode {
STARPU_NONE , STARPU_R , STARPU_W , STARPU_RW ,
STARPU_SCRATCH , STARPU_REDUX , STARPU_COMMUTE , STARPU_SSEND ,
STARPU_LOCALITY , STARPU_MPI_REDUX , STARPU_NOPLAN , STARPU_UNMAP ,
STARPU_NOFOOTPRINT , STARPU_ACCESS_MODE_MAX }

• enum starpu_is_prefetch {
STARPU_FETCH , STARPU_TASK_PREFETCH , STARPU_PREFETCH , STARPU_IDLEFETCH ,
STARPU_NFETCH }

Functions

• void starpu_data_set_name (starpu_data_handle_t handle, const char ∗name)
• void starpu_data_set_coordinates_array (starpu_data_handle_t handle, unsigned dimensions, int dims[])
• void starpu_data_set_coordinates (starpu_data_handle_t handle, unsigned dimensions,...)
• unsigned starpu_data_get_coordinates_array (starpu_data_handle_t handle, unsigned dimensions, int

dims[])
• void starpu_data_unregister (starpu_data_handle_t handle)
• void starpu_data_unregister_no_coherency (starpu_data_handle_t handle)
• void starpu_data_unregister_submit (starpu_data_handle_t handle)
• void starpu_data_deinitialize (starpu_data_handle_t handle)
• void starpu_data_deinitialize_submit (starpu_data_handle_t handle)
• void starpu_data_invalidate (starpu_data_handle_t handle)

Generated by Doxygen

59.9 starpu_data.h File Reference 729

• void starpu_data_invalidate_submit (starpu_data_handle_t handle)
• void starpu_data_advise_as_important (starpu_data_handle_t handle, unsigned is_important)
• starpu_arbiter_t starpu_arbiter_create (void) STARPU_ATTRIBUTE_MALLOC
• void starpu_data_assign_arbiter (starpu_data_handle_t handle, starpu_arbiter_t arbiter)
• void starpu_arbiter_destroy (starpu_arbiter_t arbiter)
• int starpu_data_request_allocation (starpu_data_handle_t handle, unsigned node)
• int starpu_data_fetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_prefetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_prefetch_on_node_prio (starpu_data_handle_t handle, unsigned node, unsigned async, int

prio)
• int starpu_data_idle_prefetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_idle_prefetch_on_node_prio (starpu_data_handle_t handle, unsigned node, unsigned async,

int prio)
• unsigned starpu_data_is_on_node (starpu_data_handle_t handle, unsigned node)
• void starpu_data_wont_use (starpu_data_handle_t handle)
• int starpu_data_evict_from_node (starpu_data_handle_t handle, unsigned node)
• void starpu_data_set_wt_mask (starpu_data_handle_t handle, uint32_t wt_mask)
• void starpu_data_set_ooc_flag (starpu_data_handle_t handle, unsigned flag)
• unsigned starpu_data_get_ooc_flag (starpu_data_handle_t handle)
• void starpu_data_query_status2 (starpu_data_handle_t handle, int memory_node, int ∗is_allocated, int ∗is←↩

_valid, int ∗is_loading, int ∗is_requested)
• void starpu_data_query_status (starpu_data_handle_t handle, int memory_node, int ∗is_allocated, int ∗is←↩

_valid, int ∗is_requested)
• void starpu_data_set_reduction_methods (starpu_data_handle_t handle, struct starpu_codelet ∗redux_cl,

struct starpu_codelet ∗init_cl)
• void starpu_data_set_reduction_methods_with_args (starpu_data_handle_t handle, struct starpu_codelet
∗redux_cl, void ∗redux_cl_arg, struct starpu_codelet ∗init_cl, void ∗init_cl_arg)

• struct starpu_data_interface_ops ∗ starpu_data_get_interface_ops (starpu_data_handle_t handle)
• unsigned starpu_data_test_if_allocated_on_node (starpu_data_handle_t handle, unsigned memory_node)
• unsigned starpu_data_test_if_mapped_on_node (starpu_data_handle_t handle, unsigned memory_node)
• void starpu_memchunk_tidy (unsigned memory_node)
• void starpu_data_set_user_data (starpu_data_handle_t handle, void ∗user_data)
• void ∗ starpu_data_get_user_data (starpu_data_handle_t handle)
• void starpu_data_set_sched_data (starpu_data_handle_t handle, void ∗sched_data)
• void ∗ starpu_data_get_sched_data (starpu_data_handle_t handle)
• int starpu_data_can_evict (starpu_data_handle_t handle, unsigned node, enum starpu_is_prefetch is_←↩

prefetch)

Implicit Data Dependencies

In this section, we describe how StarPU makes it possible to insert implicit task dependencies in order to enforce
sequential data consistency. When this data consistency is enabled on a specific data handle, any data access
will appear as sequentially consistent from the application. For instance, if the application submits two tasks
that access the same piece of data in read-only mode, and then a third task that access it in write mode,
dependencies will be added between the two first tasks and the third one. Implicit data dependencies are also
inserted in the case of data accesses from the application.

• void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t handle, unsigned flag)
• unsigned starpu_data_get_sequential_consistency_flag (starpu_data_handle_t handle)
• unsigned starpu_data_get_default_sequential_consistency_flag (void)
• void starpu_data_set_default_sequential_consistency_flag (unsigned flag)

Generated by Doxygen

730 File Documentation

Access registered data from the application

• #define STARPU_ACQUIRE_NO_NODE
• #define STARPU_ACQUIRE_NO_NODE_LOCK_ALL
• #define STARPU_DATA_ACQUIRE_CB(handle, mode, code)
• int starpu_data_acquire (starpu_data_handle_t handle, enum starpu_data_access_mode mode)
• int starpu_data_acquire_on_node (starpu_data_handle_t handle, int node, enum starpu_data_access_mode

mode)
• int starpu_data_acquire_cb (starpu_data_handle_t handle, enum starpu_data_access_mode mode,

void(∗callback)(void ∗), void ∗arg)
• int starpu_data_acquire_on_node_cb (starpu_data_handle_t handle, int node, enum starpu_data_access_mode

mode, void(∗callback)(void ∗), void ∗arg)
• int starpu_data_acquire_cb_sequential_consistency (starpu_data_handle_t handle, enum starpu_data_access_mode

mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency)
• int starpu_data_acquire_on_node_cb_sequential_consistency (starpu_data_handle_t handle, int node, enum

starpu_data_access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency)
• int starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids (starpu_data_handle_t handle,

int node, enum starpu_data_access_mode mode, void(∗callback_acquired)(void ∗arg, int ∗node, enum
starpu_data_access_mode mode), void(∗callback)(void ∗arg), void ∗arg, int sequential_consistency, int quick,
long ∗pre_sync_jobid, long ∗post_sync_jobid, int prio)

• int starpu_data_acquire_try (starpu_data_handle_t handle, enum starpu_data_access_mode mode)
• int starpu_data_acquire_on_node_try (starpu_data_handle_t handle, int node, enum starpu_data_access_mode

mode)
• void starpu_data_release (starpu_data_handle_t handle)
• void starpu_data_release_on_node (starpu_data_handle_t handle, int node)
• void starpu_data_release_to (starpu_data_handle_t handle, enum starpu_data_access_mode down_to_←↩

mode)
• void starpu_data_release_to_on_node (starpu_data_handle_t handle, enum starpu_data_access_mode

down_to_mode, int node)

59.10 starpu_data_filters.h File Reference

#include <starpu.h>
#include <stdarg.h>

Data Structures

• struct starpu_data_filter

Functions

Basic API

• void starpu_data_partition (starpu_data_handle_t initial_handle, struct starpu_data_filter ∗f)
• void starpu_data_unpartition (starpu_data_handle_t root_data, unsigned gathering_node)
• starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t handle, unsigned i)
• int starpu_data_get_nb_children (starpu_data_handle_t handle)
• starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t root_data, unsigned depth,...)
• starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t root_data, unsigned depth,

va_list pa)
• void starpu_data_map_filters (starpu_data_handle_t root_data, unsigned nfilters,...)
• void starpu_data_vmap_filters (starpu_data_handle_t root_data, unsigned nfilters, va_list pa)
• void starpu_data_map_filters_parray (starpu_data_handle_t root_handle, int nfilters, struct starpu_data_filter
∗∗filters)

• void starpu_data_map_filters_array (starpu_data_handle_t root_handle, int nfilters, struct starpu_data_filter
∗filters)

Generated by Doxygen

59.10 starpu_data_filters.h File Reference 731

Asynchronous API

• void starpu_data_partition_plan (starpu_data_handle_t initial_handle, struct starpu_data_filter ∗f,
starpu_data_handle_t ∗children)

• void starpu_data_partition_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t
∗children)

• void starpu_data_partition_readonly_submit (starpu_data_handle_t initial_handle, unsigned nparts,
starpu_data_handle_t ∗children)

• void starpu_data_partition_readonly_submit_sequential_consistency (starpu_data_handle_t initial_←↩

handle, unsigned nparts, starpu_data_handle_t ∗children, int sequential_consistency)
• void starpu_data_partition_readwrite_upgrade_submit (starpu_data_handle_t initial_handle, unsigned

nparts, starpu_data_handle_t ∗children)
• void starpu_data_partition_readonly_downgrade_submit (starpu_data_handle_t initial_handle, unsigned

nparts, starpu_data_handle_t ∗children)
• void starpu_data_unpartition_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t
∗children, int gathering_node)

• void starpu_data_unpartition_readonly_submit (starpu_data_handle_t initial_handle, unsigned nparts,
starpu_data_handle_t ∗children, int gathering_node)

• void starpu_data_partition_clean (starpu_data_handle_t root_data, unsigned nparts, starpu_data_handle_t
∗children)

• void starpu_data_partition_clean_node (starpu_data_handle_t root_data, unsigned nparts, starpu_data_handle_t
∗children, int gather_node)

• void starpu_data_unpartition_submit_sequential_consistency_cb (starpu_data_handle_t initial_←↩

handle, unsigned nparts, starpu_data_handle_t ∗children, int gather_node, int sequential_consistency,
void(∗callback_func)(void ∗), void ∗callback_arg)

• void starpu_data_partition_submit_sequential_consistency (starpu_data_handle_t initial_handle, un-
signed nparts, starpu_data_handle_t ∗children, int sequential_consistency)

• void starpu_data_unpartition_submit_sequential_consistency (starpu_data_handle_t initial_handle, un-
signed nparts, starpu_data_handle_t ∗children, int gathering_node, int sequential_consistency)

Predefined BCSR Filter Functions

Predefined partitioning functions for BCSR data. Examples on how to use them are shown in Partitioning Data.

• void starpu_bcsr_filter_canonical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• unsigned starpu_bcsr_filter_canonical_block_get_nchildren (struct starpu_data_filter ∗f, starpu_data_handle_t
handle)

• struct starpu_data_interface_ops ∗ starpu_bcsr_filter_canonical_block_child_ops (struct starpu_data_filter
∗f, unsigned child)

• void starpu_bcsr_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

Predefined CSR Filter Functions

Predefined partitioning functions for CSR data. Examples on how to use them are shown in Partitioning Data.

• void starpu_csr_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

Predefined Matrix Filter Functions

Predefined partitioning functions for matrix data. Examples on how to use them are shown in Partitioning Data.
Note: this is using the C element order which is row-major, i.e. elements with consecutive x coordinates are
consecutive in memory.

• void starpu_matrix_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_matrix_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

Generated by Doxygen

732 File Documentation

• void starpu_matrix_filter_pick_vector_y (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_matrix_filter_pick_vector_child_ops (struct starpu_data_filter
∗f, unsigned child)

• void starpu_matrix_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_matrix_filter_pick_variable_child_ops (struct starpu_data_filter
∗f, unsigned child)

Predefined Vector Filter Functions

Predefined partitioning functions for vector data. Examples on how to use them are shown in Partitioning Data.

• void starpu_vector_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_vector_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_vector_filter_list_long (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_vector_filter_list (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_vector_filter_divide_in_2 (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_vector_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_vector_filter_pick_variable_child_ops (struct starpu_data_filter
∗f, unsigned child)

Predefined Block Filter Functions

Predefined partitioning functions for block data. Examples on how to use them are shown in Partitioning Data.
An example is available in examples/filters/shadow3d.c Note: this is using the C element order
which is row-major, i.e. elements with consecutive x coordinates are consecutive in memory.

• void starpu_block_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_block_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_depth_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_depth_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_pick_matrix_z (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_pick_matrix_y (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_block_filter_pick_matrix_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• void starpu_block_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_block_filter_pick_variable_child_ops (struct starpu_data_filter
∗f, unsigned child)

Predefined Tensor Filter Functions

Predefined partitioning functions for tensor data.

• void starpu_tensor_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

Generated by Doxygen

59.10 starpu_data_filters.h File Reference 733

• void starpu_tensor_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_depth_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_depth_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_time_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_time_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_pick_block_t (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_pick_block_z (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_tensor_filter_pick_block_y (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_tensor_filter_pick_block_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• void starpu_tensor_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_tensor_filter_pick_variable_child_ops (struct starpu_data_filter
∗f, unsigned child)

Predefined Ndim Filter Functions

Predefined partitioning functions for ndim array data.

• void starpu_ndim_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_ndim_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_tensor (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_matrix (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_vector (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_ndim_filter_to_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_pick_ndim (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_5d_pick_tensor (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_4d_pick_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_3d_pick_matrix (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_2d_pick_vector (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_1d_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_ndim_filter_pick_variable (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_tensor_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_block_child_ops (struct starpu_data_filter ∗f,
unsigned child)

Generated by Doxygen

734 File Documentation

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_matrix_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_vector_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_pick_variable_child_ops (struct starpu_data_filter
∗f, unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_tensor_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_block_child_ops (struct starpu_data_filter ∗f, un-
signed child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_matrix_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_vector_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• struct starpu_data_interface_ops ∗ starpu_ndim_filter_to_variable_child_ops (struct starpu_data_filter ∗f,
unsigned child)

• void starpu_filter_nparts_compute_chunk_size_and_offset (unsigned n, unsigned nparts, size_t elemsize,
unsigned id, unsigned blocksize, unsigned ∗chunk_size, size_t ∗offset)

59.11 starpu_data_interfaces.h File Reference

#include <starpu.h>
#include <cuda_runtime.h>
#include <hip/hip_runtime.h>

Data Structures

• struct starpu_data_copy_methods
• struct starpu_data_interface_ops
• struct starpu_matrix_interface
• struct starpu_coo_interface
• struct starpu_block_interface
• struct starpu_tensor_interface
• struct starpu_ndim_interface
• struct starpu_vector_interface
• struct starpu_variable_interface
• struct starpu_csr_interface
• struct starpu_bcsr_interface
• struct starpu_multiformat_data_interface_ops
• struct starpu_multiformat_interface

Typedefs

• typedef cudaStream_t starpu_cudaStream_t
• typedef hipStream_t starpu_hipStream_t

Enumerations

• enum starpu_data_interface_id {
STARPU_UNKNOWN_INTERFACE_ID , STARPU_MATRIX_INTERFACE_ID , STARPU_BLOCK_INTERFACE_ID
, STARPU_VECTOR_INTERFACE_ID ,
STARPU_CSR_INTERFACE_ID , STARPU_BCSR_INTERFACE_ID , STARPU_VARIABLE_INTERFACE_ID
, STARPU_VOID_INTERFACE_ID ,
STARPU_MULTIFORMAT_INTERFACE_ID , STARPU_COO_INTERFACE_ID , STARPU_TENSOR_INTERFACE_ID
, STARPU_NDIM_INTERFACE_ID ,
STARPU_MAX_INTERFACE_ID }

Generated by Doxygen

59.11 starpu_data_interfaces.h File Reference 735

Functions

Basic API

• void starpu_data_register (starpu_data_handle_t ∗handleptr, int home_node, void ∗data_interface, struct
starpu_data_interface_ops ∗ops)

• void starpu_data_register_ops (struct starpu_data_interface_ops ∗ops)
• void starpu_data_ptr_register (starpu_data_handle_t handle, unsigned node)
• void starpu_data_register_same (starpu_data_handle_t ∗handledst, starpu_data_handle_t handlesrc)
• void ∗ starpu_data_handle_to_pointer (starpu_data_handle_t handle, unsigned node)
• void ∗ starpu_data_get_local_ptr (starpu_data_handle_t handle)
• void ∗ starpu_data_get_interface_on_node (starpu_data_handle_t handle, unsigned memory_node)
• enum starpu_data_interface_id starpu_data_get_interface_id (starpu_data_handle_t handle)
• int starpu_data_pack_node (starpu_data_handle_t handle, unsigned node, void ∗∗ptr, starpu_ssize_←↩

t ∗count)
• int starpu_data_pack (starpu_data_handle_t handle, void ∗∗ptr, starpu_ssize_t ∗count)
• int starpu_data_peek_node (starpu_data_handle_t handle, unsigned node, void ∗ptr, size_t count)
• int starpu_data_peek (starpu_data_handle_t handle, void ∗ptr, size_t count)
• int starpu_data_unpack_node (starpu_data_handle_t handle, unsigned node, void ∗ptr, size_t count)
• int starpu_data_unpack (starpu_data_handle_t handle, void ∗ptr, size_t count)
• size_t starpu_data_get_size (starpu_data_handle_t handle)
• size_t starpu_data_get_alloc_size (starpu_data_handle_t handle)
• starpu_ssize_t starpu_data_get_max_size (starpu_data_handle_t handle)
• int starpu_data_get_home_node (starpu_data_handle_t handle)
• void starpu_data_print (starpu_data_handle_t handle, unsigned node, FILE ∗stream)
• int starpu_data_interface_get_next_id (void)
• int starpu_interface_copy (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t size, void ∗async_data)
• int starpu_interface_copy2d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst←↩

_offset, unsigned dst_node, size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, void ∗async←↩

_data)
• int starpu_interface_copy3d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst←↩

_offset, unsigned dst_node, size_t blocksize, size_t numblocks1, size_t ld1_src, size_t ld1_dst, size_t
numblocks2, size_t ld2_src, size_t ld2_dst, void ∗async_data)

• int starpu_interface_copy4d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t blocksize, size_t numblocks1, size_t ld1_src, size_t ld1_dst, size_t num-
blocks2, size_t ld2_src, size_t ld2_dst, size_t numblocks3, size_t ld3_src, size_t ld3_dst, void ∗async_←↩

data)
• int starpu_interface_copynd (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t elemsize, size_t ndim, uint32_t ∗nn, uint32_t ∗ldn_src, uint32_t ∗ldn_dst,
void ∗async_data)

• void starpu_interface_start_driver_copy_async (unsigned src_node, unsigned dst_node, double ∗start)
• void starpu_interface_end_driver_copy_async (unsigned src_node, unsigned dst_node, double start)
• void starpu_interface_data_copy (unsigned src_node, unsigned dst_node, size_t size)
• uintptr_t starpu_malloc_on_node_flags (unsigned dst_node, size_t size, int flags)
• uintptr_t starpu_malloc_on_node (unsigned dst_node, size_t size)
• void starpu_free_on_node_flags (unsigned dst_node, uintptr_t addr, size_t size, int flags)
• void starpu_free_on_node (unsigned dst_node, uintptr_t addr, size_t size)
• void starpu_malloc_on_node_set_default_flags (unsigned node, int flags)

MAP API

• uintptr_t starpu_interface_map (uintptr_t src, size_t src_offset, unsigned src_node, unsigned dst_node,
size_t size, int ∗ret)

• int starpu_interface_unmap (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, unsigned
dst_node, size_t size)

• int starpu_interface_update_map (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t
dst_offset, unsigned dst_node, size_t size)

Generated by Doxygen

736 File Documentation

Accessing Matrix Data Interfaces

• #define STARPU_MATRIX_GET_PTR(interface)
• #define STARPU_MATRIX_GET_DEV_HANDLE(interface)
• #define STARPU_MATRIX_GET_OFFSET(interface)
• #define STARPU_MATRIX_GET_NX(interface)
• #define STARPU_MATRIX_GET_NY(interface)
• #define STARPU_MATRIX_GET_LD(interface)
• #define STARPU_MATRIX_GET_ELEMSIZE(interface)
• #define STARPU_MATRIX_GET_ALLOCSIZE(interface)
• #define STARPU_MATRIX_SET_NX(interface, newnx)
• #define STARPU_MATRIX_SET_NY(interface, newny)
• #define STARPU_MATRIX_SET_LD(interface, newld)
• struct starpu_data_interface_ops starpu_interface_matrix_ops
• void starpu_matrix_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ld,

uint32_t nx, uint32_t ny, size_t elemsize)
• void starpu_matrix_data_register_allocsize (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr,

uint32_t ld, uint32_t nx, uint32_t ny, size_t elemsize, size_t allocsize)
• void starpu_matrix_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ld)
• uint32_t starpu_matrix_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_matrix_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t handle)
• uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_matrix_get_elemsize (starpu_data_handle_t handle)
• size_t starpu_matrix_get_allocsize (starpu_data_handle_t handle)

Accessing COO Data Interfaces

• #define STARPU_COO_GET_COLUMNS(interface)
• #define STARPU_COO_GET_COLUMNS_DEV_HANDLE(interface)
• #define STARPU_COO_GET_ROWS(interface)
• #define STARPU_COO_GET_ROWS_DEV_HANDLE(interface)
• #define STARPU_COO_GET_VALUES(interface)
• #define STARPU_COO_GET_VALUES_DEV_HANDLE(interface)
• #define STARPU_COO_GET_OFFSET
• #define STARPU_COO_GET_NX(interface)
• #define STARPU_COO_GET_NY(interface)
• #define STARPU_COO_GET_NVALUES(interface)
• #define STARPU_COO_GET_ELEMSIZE(interface)
• struct starpu_data_interface_ops starpu_interface_coo_ops
• void starpu_coo_data_register (starpu_data_handle_t ∗handleptr, int home_node, uint32_t nx, uint32_t ny,

uint32_t n_values, uint32_t ∗columns, uint32_t ∗rows, uintptr_t values, size_t elemsize)

Block Data Interface

• #define STARPU_BLOCK_GET_PTR(interface)
• #define STARPU_BLOCK_GET_DEV_HANDLE(interface)
• #define STARPU_BLOCK_GET_OFFSET(interface)
• #define STARPU_BLOCK_GET_NX(interface)
• #define STARPU_BLOCK_GET_NY(interface)
• #define STARPU_BLOCK_GET_NZ(interface)
• #define STARPU_BLOCK_GET_LDY(interface)
• #define STARPU_BLOCK_GET_LDZ(interface)
• #define STARPU_BLOCK_GET_ELEMSIZE(interface)
• struct starpu_data_interface_ops starpu_interface_block_ops

Generated by Doxygen

59.11 starpu_data_interfaces.h File Reference 737

• void starpu_block_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ldy,
uint32_t ldz, uint32_t nx, uint32_t ny, uint32_t nz, size_t elemsize)

• void starpu_block_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ldy, uint32_t ldz)
• uint32_t starpu_block_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_block_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_block_get_nz (starpu_data_handle_t handle)
• uint32_t starpu_block_get_local_ldy (starpu_data_handle_t handle)
• uint32_t starpu_block_get_local_ldz (starpu_data_handle_t handle)
• uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_block_get_elemsize (starpu_data_handle_t handle)

Tensor Data Interface

• #define STARPU_TENSOR_GET_PTR(interface)
• #define STARPU_TENSOR_GET_DEV_HANDLE(interface)
• #define STARPU_TENSOR_GET_OFFSET(interface)
• #define STARPU_TENSOR_GET_NX(interface)
• #define STARPU_TENSOR_GET_NY(interface)
• #define STARPU_TENSOR_GET_NZ(interface)
• #define STARPU_TENSOR_GET_NT(interface)
• #define STARPU_TENSOR_GET_LDY(interface)
• #define STARPU_TENSOR_GET_LDZ(interface)
• #define STARPU_TENSOR_GET_LDT(interface)
• #define STARPU_TENSOR_GET_ELEMSIZE(interface)
• struct starpu_data_interface_ops starpu_interface_tensor_ops
• void starpu_tensor_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ldy,

uint32_t ldz, uint32_t ldt, uint32_t nx, uint32_t ny, uint32_t nz, uint32_t nt, size_t elemsize)
• void starpu_tensor_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ldy, uint32_t ldz, uint32_t ldt)
• uint32_t starpu_tensor_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_nz (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_nt (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_local_ldy (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_local_ldz (starpu_data_handle_t handle)
• uint32_t starpu_tensor_get_local_ldt (starpu_data_handle_t handle)
• uintptr_t starpu_tensor_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_tensor_get_elemsize (starpu_data_handle_t handle)

Ndim Array Data Interface

• #define STARPU_NDIM_GET_PTR(interface)
• #define STARPU_NDIM_GET_DEV_HANDLE(interface)
• #define STARPU_NDIM_GET_OFFSET(interface)
• #define STARPU_NDIM_GET_NN(interface)
• #define STARPU_NDIM_GET_LDN(interface)
• #define STARPU_NDIM_GET_NDIM(interface)
• #define STARPU_NDIM_GET_ELEMSIZE(interface)
• struct starpu_data_interface_ops starpu_interface_ndim_ops
• void starpu_ndim_data_register (starpu_data_handle_t ∗handleptr, int home_node, uintptr_t ptr, uint32_←↩

t ∗ldn, uint32_t ∗nn, size_t ndim, size_t elemsize)
• void starpu_ndim_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ∗ldn)
• uint32_t ∗ starpu_ndim_get_nn (starpu_data_handle_t handle)

Generated by Doxygen

738 File Documentation

• uint32_t starpu_ndim_get_ni (starpu_data_handle_t handle, size_t i)
• uint32_t ∗ starpu_ndim_get_local_ldn (starpu_data_handle_t handle)
• uint32_t starpu_ndim_get_local_ldi (starpu_data_handle_t handle, size_t i)
• uintptr_t starpu_ndim_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_ndim_get_ndim (starpu_data_handle_t handle)
• size_t starpu_ndim_get_elemsize (starpu_data_handle_t handle)

Vector Data Interface

• #define STARPU_VECTOR_GET_PTR(interface)
• #define STARPU_VECTOR_GET_DEV_HANDLE(interface)
• #define STARPU_VECTOR_GET_OFFSET(interface)
• #define STARPU_VECTOR_GET_NX(interface)
• #define STARPU_VECTOR_GET_ELEMSIZE(interface)
• #define STARPU_VECTOR_GET_ALLOCSIZE(interface)
• #define STARPU_VECTOR_GET_SLICE_BASE(interface)
• #define STARPU_VECTOR_SET_NX(interface, newnx)
• struct starpu_data_interface_ops starpu_interface_vector_ops
• void starpu_vector_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t nx,

size_t elemsize)
• void starpu_vector_data_register_allocsize (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr,

uint32_t nx, size_t elemsize, size_t allocsize)
• void starpu_vector_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset)
• uint32_t starpu_vector_get_nx (starpu_data_handle_t handle)
• size_t starpu_vector_get_elemsize (starpu_data_handle_t handle)
• size_t starpu_vector_get_allocsize (starpu_data_handle_t handle)
• uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t handle)

Variable Data Interface

• #define STARPU_VARIABLE_GET_PTR(interface)
• #define STARPU_VARIABLE_GET_OFFSET(interface)
• #define STARPU_VARIABLE_GET_ELEMSIZE(interface)
• #define STARPU_VARIABLE_GET_DEV_HANDLE(interface)
• struct starpu_data_interface_ops starpu_interface_variable_ops
• void starpu_variable_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, size_t size)
• void starpu_variable_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev←↩

_handle, size_t offset)
• size_t starpu_variable_get_elemsize (starpu_data_handle_t handle)
• uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t handle)

CSR Data Interface

• #define STARPU_CSR_GET_NNZ(interface)
• #define STARPU_CSR_GET_NROW(interface)
• #define STARPU_CSR_GET_NZVAL(interface)
• #define STARPU_CSR_GET_NZVAL_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_COLIND(interface)
• #define STARPU_CSR_GET_RAM_COLIND(interface)
• #define STARPU_CSR_GET_COLIND_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_ROWPTR(interface)
• #define STARPU_CSR_GET_RAM_ROWPTR(interface)
• #define STARPU_CSR_GET_ROWPTR_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_OFFSET

Generated by Doxygen

59.11 starpu_data_interfaces.h File Reference 739

• #define STARPU_CSR_GET_FIRSTENTRY(interface)
• #define STARPU_CSR_GET_ELEMSIZE(interface)
• struct starpu_data_interface_ops starpu_interface_csr_ops
• void starpu_csr_data_register (starpu_data_handle_t ∗handle, int home_node, uint32_t nnz, uint32_t nrow,

uintptr_t nzval, uint32_t ∗colind, uint32_t ∗rowptr, uint32_t firstentry, size_t elemsize)
• uint32_t starpu_csr_get_nnz (starpu_data_handle_t handle)
• uint32_t starpu_csr_get_nrow (starpu_data_handle_t handle)
• uint32_t starpu_csr_get_firstentry (starpu_data_handle_t handle)
• uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t handle)
• uint32_t ∗ starpu_csr_get_local_colind (starpu_data_handle_t handle)
• uint32_t ∗ starpu_csr_get_local_rowptr (starpu_data_handle_t handle)
• size_t starpu_csr_get_elemsize (starpu_data_handle_t handle)

BCSR Data Interface

• #define STARPU_BCSR_GET_NNZ(interface)
• #define STARPU_BCSR_GET_NROW(interface)
• #define STARPU_BCSR_GET_NZVAL(interface)
• #define STARPU_BCSR_GET_NZVAL_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_COLIND(interface)
• #define STARPU_BCSR_GET_RAM_COLIND(interface)
• #define STARPU_BCSR_GET_COLIND_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_ROWPTR(interface)
• #define STARPU_BCSR_GET_RAM_ROWPTR(interface)
• #define STARPU_BCSR_GET_ROWPTR_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_FIRSTENTRY(interface)
• #define STARPU_BCSR_GET_R(interface)
• #define STARPU_BCSR_GET_C(interface)
• #define STARPU_BCSR_GET_ELEMSIZE(interface)
• #define STARPU_BCSR_GET_OFFSET
• struct starpu_data_interface_ops starpu_interface_bcsr_ops
• void starpu_bcsr_data_register (starpu_data_handle_t ∗handle, int home_node, uint32_t nnz, uint32_t nrow,

uintptr_t nzval, uint32_t ∗colind, uint32_t ∗rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize)
• uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t handle)
• uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t handle)
• uint32_t ∗ starpu_bcsr_get_local_colind (starpu_data_handle_t handle)
• uint32_t ∗ starpu_bcsr_get_local_rowptr (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_r (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_c (starpu_data_handle_t handle)
• size_t starpu_bcsr_get_elemsize (starpu_data_handle_t handle)

Multiformat Data Interface

• #define STARPU_MULTIFORMAT_GET_CPU_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_CUDA_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_HIP_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_OPENCL_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_NX(interface)
• void starpu_multiformat_data_register (starpu_data_handle_t ∗handle, int home_node, void ∗ptr, uint32_t

nobjects, struct starpu_multiformat_data_interface_ops ∗format_ops)

Generated by Doxygen

740 File Documentation

Void Data Interface

• struct starpu_data_interface_ops starpu_interface_void_ops
• void starpu_void_data_register (starpu_data_handle_t ∗handle)

59.12 starpu_deprecated_api.h File Reference

Macros

• #define starpu_permodel_history_based_expected_perf

59.13 starpu_disk.h File Reference

#include <sys/types.h>
#include <starpu_config.h>

Data Structures

• struct starpu_disk_ops

Macros

• #define STARPU_DISK_SIZE_MIN

Functions

• void starpu_disk_close (unsigned node, void ∗obj, size_t size)
• void ∗ starpu_disk_open (unsigned node, void ∗pos, size_t size)
• int starpu_disk_register (struct starpu_disk_ops ∗func, void ∗parameter, starpu_ssize_t size)

Variables

• struct starpu_disk_ops starpu_disk_stdio_ops
• struct starpu_disk_ops starpu_disk_hdf5_ops
• struct starpu_disk_ops starpu_disk_unistd_ops
• struct starpu_disk_ops starpu_disk_unistd_o_direct_ops
• struct starpu_disk_ops starpu_disk_leveldb_ops
• int starpu_disk_swap_node

59.14 starpu_driver.h File Reference

#include <starpu_config.h>
#include <starpu_opencl.h>
#include <starpu_max_fpga.h>

Data Structures

• struct starpu_driver
• union starpu_driver.id

Generated by Doxygen

59.15 starpu_expert.h File Reference 741

Functions

• void starpu_drivers_preinit (void)
• int starpu_driver_run (struct starpu_driver ∗d)
• void starpu_drivers_request_termination (void)
• int starpu_driver_init (struct starpu_driver ∗d)
• int starpu_driver_run_once (struct starpu_driver ∗d)
• int starpu_driver_deinit (struct starpu_driver ∗d)

59.15 starpu_expert.h File Reference

Functions

• void starpu_wake_all_blocked_workers (void)
• int starpu_progression_hook_register (unsigned(∗func)(void ∗arg), void ∗arg)
• void starpu_progression_hook_deregister (int hook_id)
• int starpu_idle_hook_register (unsigned(∗func)(void ∗arg), void ∗arg)
• void starpu_idle_hook_deregister (int hook_id)

59.16 starpu_fxt.h File Reference

#include <starpu_config.h>
#include <starpu_perfmodel.h>

Data Structures

• struct starpu_fxt_codelet_event
• struct starpu_fxt_mpi_offset
• struct starpu_fxt_options

Functions

• void starpu_fxt_options_init (struct starpu_fxt_options ∗options)
• void starpu_fxt_options_shutdown (struct starpu_fxt_options ∗options)
• void starpu_fxt_generate_trace (struct starpu_fxt_options ∗options)
• void starpu_fxt_autostart_profiling (int autostart)
• void starpu_fxt_start_profiling (void)
• void starpu_fxt_stop_profiling (void)
• void starpu_fxt_write_data_trace (char ∗filename_in)
• void starpu_fxt_write_data_trace_in_dir (char ∗filename_in, char ∗dir)
• int starpu_fxt_is_enabled (void)
• void starpu_fxt_trace_user_event (unsigned long code)
• void starpu_fxt_trace_user_event_string (const char ∗s)

59.17 starpu_hash.h File Reference

#include <stdint.h>
#include <stddef.h>

Generated by Doxygen

742 File Documentation

Functions

• uint32_t starpu_hash_crc32c_be_n (const void ∗input, size_t n, uint32_t inputcrc)
• uint32_t starpu_hash_crc32c_be_ptr (void ∗input, uint32_t inputcrc)
• uint32_t starpu_hash_crc32c_be (uint32_t input, uint32_t inputcrc)
• uint32_t starpu_hash_crc32c_string (const char ∗str, uint32_t inputcrc)

59.18 starpu_helper.h File Reference

#include <stdio.h>
#include <starpu.h>
#include <hwloc.h>

Macros

• #define STARPU_MIN(a, b)
• #define STARPU_MAX(a, b)
• #define STARPU_POISON_PTR
• #define starpu_getenv_string_var_default(s, ss, d)
• #define starpu_getenv_size_default(s, d)
• #define starpu_getenv_number(s)
• #define starpu_getenv_number_default(s, d)
• #define starpu_getenv_float_default(s, d)

Functions

• char ∗ starpu_getenv (const char ∗str)
• int starpu_get_env_string_var_default (const char ∗str, const char ∗strings[], int defvalue)
• int starpu_get_env_size_default (const char ∗str, int defval)
• static __starpu_inline int starpu_get_env_number (const char ∗str)
• static __starpu_inline int starpu_get_env_number_default (const char ∗str, int defval)
• static __starpu_inline float starpu_get_env_float_default (const char ∗str, float defval)
• void starpu_execute_on_each_worker (void(∗func)(void ∗), void ∗arg, uint32_t where)
• void starpu_execute_on_each_worker_ex (void(∗func)(void ∗), void ∗arg, uint32_t where, const char ∗name)
• void starpu_execute_on_specific_workers (void(∗func)(void ∗), void ∗arg, unsigned num_workers, unsigned
∗workers, const char ∗name)

• double starpu_timing_now (void)
• int starpu_data_cpy (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle, int asynchronous,

void(∗callback_func)(void ∗), void ∗callback_arg)
• int starpu_data_cpy_priority (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle, int asyn-

chronous, void(∗callback_func)(void ∗), void ∗callback_arg, int priority)
• int starpu_data_dup_ro (starpu_data_handle_t ∗dst_handle, starpu_data_handle_t src_handle, int asyn-

chronous)
• void starpu_display_bindings (void)
• int starpu_get_pu_os_index (unsigned logical_index)
• long starpu_get_memory_location_bitmap (void ∗ptr, size_t size)
• hwloc_topology_t starpu_get_hwloc_topology (void)

Variables

• int _starpu_silent

Generated by Doxygen

59.19 starpu_heteroprio.h File Reference 743

59.19 starpu_heteroprio.h File Reference

#include <starpu.h>

Macros

• #define STARPU_HETEROPRIO_MAX_PREFETCH
• #define STARPU_AUTOHETEROPRIO_PRIORITY_ORDERING_POLICY_COUNT

Enumerations

• enum starpu_autoheteroprio_priority_ordering_policy {
STARPU_HETEROPRIO_NOD_TIME_COMBINATION , STARPU_HETEROPRIO_BEST_NODS_SCORE ,
STARPU_HETEROPRIO_BEST_NODS , STARPU_HETEROPRIO_URT_PURE ,
STARPU_HETEROPRIO_URT , STARPU_HETEROPRIO_URT_2 , STARPU_HETEROPRIO_URT_DOT←↩

_DIFF_PURE , STARPU_HETEROPRIO_URT_DOT_DIFF_PURE_2 ,
STARPU_HETEROPRIO_URT_DOT_REL_DIFF_PURE , STARPU_HETEROPRIO_URT_DOT_REL_←↩

DIFF_PURE_2 , STARPU_HETEROPRIO_URT_DOT_DIFF_2 , STARPU_HETEROPRIO_URT_DOT_←↩

DIFF_3 ,
STARPU_HETEROPRIO_URT_DOT_DIFF_4 , STARPU_HETEROPRIO_URT_DOT_DIFF_5 , STARPU_←↩

HETEROPRIO_URT_DOT_DIFF_6 , STARPU_HETEROPRIO_URT_DOT_DIFF_7 ,
STARPU_HETEROPRIO_URT_DOT_DIFF_8 , STARPU_HETEROPRIO_URT_DOT_DIFF_9 , STARPU_←↩

HETEROPRIO_URT_DOT_DIFF_10 , STARPU_HETEROPRIO_URT_DOT_DIFF_11 ,
STARPU_HETEROPRIO_URTS_PER_SECONDS , STARPU_HETEROPRIO_URTS_PER_SECONDS_2
, STARPU_HETEROPRIO_URTS_PER_SECONDS_DIFF , STARPU_HETEROPRIO_URTS_TIME_←↩

RELEASED_DIFF ,
STARPU_HETEROPRIO_URTS_TIME_COMBINATION , STARPU_HETEROPRIO_NODS_PER_←↩

SECOND , STARPU_HETEROPRIO_NODS_TIME_RELEASED , STARPU_HETEROPRIO_NODS_←↩

TIME_RELEASED_DIFF }

Functions

• void starpu_heteroprio_set_use_locality (unsigned sched_ctx_id, unsigned use_locality)
• void starpu_heteroprio_set_nb_prios (unsigned sched_ctx_id, enum starpu_worker_archtype arch, unsigned

max_prio)
• void starpu_heteroprio_set_mapping (unsigned sched_ctx_id, enum starpu_worker_archtype arch, unsigned

source_prio, unsigned dest_bucket_id)
• void starpu_heteroprio_set_faster_arch (unsigned sched_ctx_id, enum starpu_worker_archtype arch, un-

signed bucket_id)
• void starpu_heteroprio_set_arch_slow_factor (unsigned sched_ctx_id, enum starpu_worker_archtype arch,

unsigned bucket_id, float slow_factor)
• void starpu_heteroprio_map_wgroup_memory_nodes (unsigned sched_ctx_id)
• void starpu_heteroprio_print_wgroups (FILE ∗stream, unsigned sched_ctx_id)

Variables

• static const char starpu_autoheteroprio_priority_ordering_policy_names [STARPU_AUTOHETEROPRIO←↩

_PRIORITY_ORDERING_POLICY_COUNT][64]

59.20 starpu_hip.h File Reference

#include <starpu_config.h>
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>

Generated by Doxygen

744 File Documentation

Macros

• #define STARPU_HIPBLAS_REPORT_ERROR(status)
• #define STARPU_HIP_REPORT_ERROR(status)

Functions

• void starpu_hipblas_report_error (const char ∗func, const char ∗file, int line, int status)
• void starpu_hip_report_error (const char ∗func, const char ∗file, int line, hipError_t status)
• hipStream_t starpu_hip_get_local_stream (void)
• const struct hipDeviceProp_t ∗ starpu_hip_get_device_properties (unsigned workerid)
• int starpu_hip_copy_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node, size←↩

_t ssize, hipStream_t stream, hipMemcpyKind kind)
• int starpu_hip_copy2d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, hipStream_t stream, hipMemcpyKind kind)
• int starpu_hip_copy3d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks_1, size_t ld1_src, size_t ld1_dst, size_t numblocks_2, size_t ld2_src,
size_t ld2_dst, hipStream_t stream, hipMemcpyKind kind)

• void starpu_hip_set_device (int devid)

59.21 starpu_scheduler_toolbox.h File Reference

#include <starpu.h>
#include <starpu_scheduler.h>

Typedefs

• typedef struct starpu_st_fifo_taskq ∗ starpu_st_fifo_taskq_t
• typedef struct starpu_st_prio_deque ∗ starpu_st_prio_deque_t

Functions

• starpu_st_fifo_taskq_t starpu_st_fifo_taskq_create (void) STARPU_ATTRIBUTE_MALLOC
• void starpu_st_fifo_taskq_init (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_taskq_destroy (starpu_st_fifo_taskq_t fifo)
• int starpu_st_fifo_taskq_empty (starpu_st_fifo_taskq_t fifo)
• double starpu_st_fifo_taskq_get_exp_len_prev_task_list (starpu_st_fifo_taskq_t fifo_queue, struct

starpu_task ∗task, int workerid, int nimpl, int ∗fifo_ntasks)
• unsigned starpu_st_fifo_ntasks_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_ntasks_inc (starpu_st_fifo_taskq_t fifo, int n)
• unsigned ∗ starpu_st_fifo_ntasks_per_priority_get (starpu_st_fifo_taskq_t fifo)
• unsigned starpu_st_fifo_nprocessed_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_nprocessed_inc (starpu_st_fifo_taskq_t fifo, int n)
• double starpu_st_fifo_exp_start_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_exp_start_set (starpu_st_fifo_taskq_t fifo, double exp_start)
• double starpu_st_fifo_exp_end_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_exp_end_set (starpu_st_fifo_taskq_t fifo, double exp_end)
• double starpu_st_fifo_exp_len_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_exp_len_set (starpu_st_fifo_taskq_t fifo, double exp_len)
• void starpu_st_fifo_exp_len_inc (starpu_st_fifo_taskq_t fifo, double exp_len)
• double ∗ starpu_st_fifo_exp_len_per_priority_get (starpu_st_fifo_taskq_t fifo)
• double starpu_st_fifo_pipeline_len_get (starpu_st_fifo_taskq_t fifo)
• void starpu_st_fifo_pipeline_len_set (starpu_st_fifo_taskq_t fifo, double pipeline_len)
• void starpu_st_fifo_pipeline_len_inc (starpu_st_fifo_taskq_t fifo, double pipeline_len)
• int starpu_st_fifo_taskq_push_sorted_task (starpu_st_fifo_taskq_t fifo_queue, struct starpu_task ∗task)

Generated by Doxygen

59.22 starpu_max_fpga.h File Reference 745

• int starpu_st_fifo_taskq_push_task (starpu_st_fifo_taskq_t fifo, struct starpu_task ∗task)
• int starpu_st_fifo_taskq_push_back_task (starpu_st_fifo_taskq_t fifo_queue, struct starpu_task ∗task)
• int starpu_st_fifo_taskq_pop_this_task (starpu_st_fifo_taskq_t fifo_queue, int workerid, struct starpu_task
∗task)

• struct starpu_task ∗ starpu_st_fifo_taskq_pop_task (starpu_st_fifo_taskq_t fifo, int workerid)
• struct starpu_task ∗ starpu_st_fifo_taskq_pop_local_task (starpu_st_fifo_taskq_t fifo)
• struct starpu_task ∗ starpu_st_fifo_taskq_pop_first_ready_task (starpu_st_fifo_taskq_t fifo_queue, unsigned

workerid, int num_priorities)
• void starpu_st_prio_deque_init (starpu_st_prio_deque_t pdeque)
• void starpu_st_prio_deque_destroy (starpu_st_prio_deque_t pdeque)
• int starpu_st_prio_deque_is_empty (starpu_st_prio_deque_t pdeque)
• int starpu_st_prio_deque_push_back_task (starpu_st_prio_deque_t pdeque, struct starpu_task ∗task)
• int starpu_st_prio_deque_push_front_task (starpu_st_prio_deque_t pdeque, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_st_prio_deque_pop_task_for_worker (starpu_st_prio_deque_t pdeque, int work-

erid, struct starpu_task ∗∗skipped)
• struct starpu_task ∗ starpu_st_prio_deque_deque_task_for_worker (starpu_st_prio_deque_t pdeque, int

workerid, struct starpu_task ∗∗skipped)
• struct starpu_task ∗ starpu_st_prio_deque_deque_first_ready_task (starpu_st_prio_deque_t pdeque, un-

signed workerid)
• struct starpu_task ∗ starpu_st_prio_deque_pop_task (starpu_st_prio_deque_t pdeque)
• struct starpu_task ∗ starpu_st_prio_deque_highest_task (starpu_st_prio_deque_t pdeque)
• struct starpu_task ∗ starpu_st_prio_deque_pop_back_task (starpu_st_prio_deque_t pdeque)
• int starpu_st_prio_deque_pop_this_task (starpu_st_prio_deque_t pdeque, int workerid, struct starpu_task
∗task)

• void starpu_st_prio_deque_erase (starpu_st_prio_deque_t pdeque, struct starpu_task ∗task)
• int starpu_st_normalize_prio (int priority, int num_priorities, unsigned sched_ctx_id)
• int starpu_st_non_ready_buffers_count (struct starpu_task ∗task, unsigned worker)
• void starpu_st_non_ready_buffers_size (struct starpu_task ∗task, unsigned worker, size_t ∗non_readyp,

size_t ∗non_loadingp, size_t ∗non_allocatedp)

59.22 starpu_max_fpga.h File Reference

#include <starpu_config.h>
#include <MaxSLiCInterface.h>

Data Structures

• struct starpu_max_load

Functions

• max_engine_t ∗ starpu_max_fpga_get_local_engine (void)

59.23 starpu_mod.f90 File Reference

Data Types

• interface starpu_mod::starpu_conf_init
• interface starpu_mod::starpu_init
• interface starpu_mod::starpu_pause
• interface starpu_mod::starpu_resume
• interface starpu_mod::starpu_shutdown
• interface starpu_mod::starpu_asynchronous_copy_disabled
• interface starpu_mod::starpu_asynchronous_cuda_copy_disabled

Generated by Doxygen

746 File Documentation

• interface starpu_mod::starpu_asynchronous_opencl_copy_disabled
• interface starpu_mod::starpu_display_stats
• interface starpu_mod::starpu_get_version
• interface starpu_mod::starpu_cpu_worker_get_count
• interface starpu_mod::starpu_task_wait_for_all

59.24 starpu_mpi.h File Reference

#include <starpu.h>
#include <mpi.h>
#include <starpu_mpi_ft.h>
#include <stdint.h>

Data Structures

• struct starpu_mpi_task_exchange_params

Functions

Communication Cache

• int starpu_mpi_cache_is_enabled (void)
• int starpu_mpi_cache_set (int enabled)
• void starpu_mpi_cache_flush (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_cache_flush_all_data (MPI_Comm comm)
• int starpu_mpi_cached_receive (starpu_data_handle_t data_handle)
• int starpu_mpi_cached_receive_set (starpu_data_handle_t data)
• int starpu_mpi_cached_cp_receive_set (starpu_data_handle_t data_handle)
• void starpu_mpi_cached_receive_clear (starpu_data_handle_t data)
• int starpu_mpi_cached_send (starpu_data_handle_t data_handle, int dest)
• int starpu_mpi_cached_send_set (starpu_data_handle_t data, int dest)
• void starpu_mpi_cached_send_clear (starpu_data_handle_t data)

Collective Operations

• int starpu_mpi_redux_data (MPI_Comm comm, starpu_data_handle_t data_handle)
• int starpu_mpi_redux_data_prio (MPI_Comm comm, starpu_data_handle_t data_handle, int prio)
• int starpu_mpi_redux_data_tree (MPI_Comm comm, starpu_data_handle_t data_handle, int arity)
• int starpu_mpi_redux_data_prio_tree (MPI_Comm comm, starpu_data_handle_t data_handle, int prio, int

arity)
• int starpu_mpi_scatter_detached (starpu_data_handle_t ∗data_handles, int count, int root, MPI_Comm

comm, void(∗scallback)(void ∗), void ∗sarg, void(∗rcallback)(void ∗), void ∗rarg)
• int starpu_mpi_gather_detached (starpu_data_handle_t ∗data_handles, int count, int root, MPI_Comm

comm, void(∗scallback)(void ∗), void ∗sarg, void(∗rcallback)(void ∗), void ∗rarg)

Dynamic Broadcasts

• void starpu_mpi_coop_sends_set_use (int use_coop_sends)
• int starpu_mpi_coop_sends_get_use (void)
• void starpu_mpi_coop_sends_data_handle_nb_sends (starpu_data_handle_t data_handle, int nb_sends)

Statistics

• void starpu_mpi_comm_stats_disable (void)
• void starpu_mpi_comm_stats_enable (void)
• void starpu_mpi_comm_stats_retrieve (size_t ∗comm_stats)

Miscellaneous

• int starpu_mpi_pre_submit_hook_register (void(∗f)(struct starpu_task ∗))

Generated by Doxygen

59.24 starpu_mpi.h File Reference 747

• int starpu_mpi_pre_submit_hook_unregister (void)
• int starpu_mpi_data_cpy (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle, MPI_←↩

Comm comm, int asynchronous, void(∗callback_func)(void ∗), void ∗callback_arg)
• int starpu_mpi_data_cpy_priority (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle,

MPI_Comm comm, int asynchronous, void(∗callback_func)(void ∗), void ∗callback_arg, int priority)

Data Tags Management

• int64_t starpu_mpi_tags_allocate (int64_t nbtags)
• void starpu_mpi_tags_free (int64_t mintag)

Initialisation

• #define STARPU_MPI_TAG_UB
• int starpu_mpi_init_conf (int ∗argc, char ∗∗∗argv, int initialize_mpi, MPI_Comm comm, struct starpu_conf
∗conf)

• int starpu_mpi_init_comm (int ∗argc, char ∗∗∗argv, int initialize_mpi, MPI_Comm comm)
• int starpu_mpi_init (int ∗argc, char ∗∗∗argv, int initialize_mpi)
• int starpu_mpi_initialize (void)
• int starpu_mpi_initialize_extended (int ∗rank, int ∗world_size)
• int starpu_mpi_shutdown (void)
• int starpu_mpi_shutdown_comm (MPI_Comm comm)
• int starpu_mpi_comm_register (MPI_Comm comm)
• int starpu_mpi_comm_size (MPI_Comm comm, int ∗size)
• int starpu_mpi_comm_rank (MPI_Comm comm, int ∗rank)
• int starpu_mpi_world_rank (void)
• int starpu_mpi_world_size (void)
• int starpu_mpi_comm_get_attr (MPI_Comm comm, int keyval, void ∗attribute_val, int ∗flag)
• int starpu_mpi_get_thread_cpuid (void)
• int starpu_mpi_get_communication_tag (void)
• void starpu_mpi_set_communication_tag (int tag)

MPI Insert Task

• #define STARPU_MPI_PER_NODE
• #define starpu_mpi_data_register(data_handle, data_tag, rank)
• #define starpu_data_set_tag
• #define starpu_mpi_data_set_rank(handle, rank)
• #define starpu_data_set_rank
• #define starpu_data_get_rank
• #define starpu_data_get_tag
• void starpu_mpi_data_register_comm (starpu_data_handle_t data_handle, starpu_mpi_tag_t data_tag, int

rank, MPI_Comm comm)
• void starpu_mpi_data_set_tag (starpu_data_handle_t handle, starpu_mpi_tag_t data_tag)
• void starpu_mpi_data_set_rank_comm (starpu_data_handle_t handle, int rank, MPI_Comm comm)
• int starpu_mpi_data_get_rank (starpu_data_handle_t handle)
• starpu_mpi_tag_t starpu_mpi_data_get_tag (starpu_data_handle_t handle)
• char ∗ starpu_mpi_data_get_redux_map (starpu_data_handle_t handle)
• int starpu_mpi_task_insert (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• int starpu_mpi_insert_task (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• struct starpu_task ∗ starpu_mpi_task_build (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• struct starpu_task ∗ starpu_mpi_task_build_v (MPI_Comm comm, struct starpu_codelet ∗codelet, va_list

varg_list)
• int starpu_mpi_task_post_build (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• int starpu_mpi_task_post_build_v (MPI_Comm comm, struct starpu_codelet ∗codelet, va_list varg_list)
• int starpu_mpi_task_exchange_data_before_execution (MPI_Comm comm, struct starpu_task ∗task, struct

starpu_data_descr ∗descrs, struct starpu_mpi_task_exchange_params ∗params)

Generated by Doxygen

748 File Documentation

• int starpu_mpi_task_exchange_data_after_execution (MPI_Comm comm, struct starpu_data_descr ∗descrs,
unsigned nb_data, struct starpu_mpi_task_exchange_params params)

• int starpu_mpi_get_data_on_node (MPI_Comm comm, starpu_data_handle_t data_handle, int node)
• int starpu_mpi_get_data_on_node_detached (MPI_Comm comm, starpu_data_handle_t data_handle, int

node, void(∗callback)(void ∗), void ∗arg)
• void starpu_mpi_get_data_on_all_nodes_detached (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_data_migrate (MPI_Comm comm, starpu_data_handle_t handle, int new_rank)

Node Selection Policy

• #define STARPU_MPI_NODE_SELECTION_CURRENT_POLICY
• #define STARPU_MPI_NODE_SELECTION_MOST_R_DATA
• typedef int(∗ starpu_mpi_select_node_policy_func_t) (int me, int nb_nodes, struct starpu_data_descr
∗descr, int nb_data)

• int starpu_mpi_node_selection_register_policy (starpu_mpi_select_node_policy_func_t policy_func)
• int starpu_mpi_node_selection_unregister_policy (int policy)
• int starpu_mpi_node_selection_get_current_policy (void)
• int starpu_mpi_node_selection_set_current_policy (int policy)

Communication

• typedef void ∗ starpu_mpi_req
• typedef int64_t starpu_mpi_tag_t
• typedef int(∗ starpu_mpi_datatype_allocate_func_t) (starpu_data_handle_t, MPI_Datatype ∗)
• typedef int(∗ starpu_mpi_datatype_node_allocate_func_t) (starpu_data_handle_t, unsigned node, MPI←↩

_Datatype ∗)
• typedef void(∗ starpu_mpi_datatype_free_func_t) (MPI_Datatype ∗)
• int starpu_mpi_isend (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, MPI_Comm comm)
• int starpu_mpi_isend_prio (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, int prio, MPI_Comm comm)
• int starpu_mpi_irecv (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int source, starpu_mpi_tag_t

data_tag, MPI_Comm comm)
• int starpu_mpi_send (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag, MPI_Comm

comm)
• int starpu_mpi_send_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag, int prio,

MPI_Comm comm)
• int starpu_mpi_recv (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag, MPI_Comm

comm, MPI_Status ∗status)
• int starpu_mpi_recv_prio (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag, int prio,

MPI_Comm comm, MPI_Status ∗status)
• int starpu_mpi_isend_detached (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag,

MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_isend_detached_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data←↩

_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_irecv_detached (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag,

MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_irecv_detached_prio (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t

data_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_irecv_detached_sequential_consistency (starpu_data_handle_t data_handle, int source,

starpu_mpi_tag_t data_tag, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg, int sequential_←↩

consistency)
• int starpu_mpi_issend (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, MPI_Comm comm)
• int starpu_mpi_issend_prio (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, int prio, MPI_Comm comm)

Generated by Doxygen

59.25 starpu_mpi_ft.h File Reference 749

• int starpu_mpi_issend_detached (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag,
MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)

• int starpu_mpi_issend_detached_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data←↩

_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_wait (starpu_mpi_req ∗req, MPI_Status ∗status)
• int starpu_mpi_test (starpu_mpi_req ∗req, int ∗flag, MPI_Status ∗status)
• int starpu_mpi_barrier (MPI_Comm comm)
• int starpu_mpi_wait_for_all (MPI_Comm comm)
• int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t

data_tag, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_isend_detached_unlock_tag_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t

data_tag, int prio, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t

data_tag, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_isend_array_detached_unlock_tag (unsigned array_size, starpu_data_handle_t ∗data_←↩

handle, int ∗dest, starpu_mpi_tag_t ∗data_tag, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_isend_array_detached_unlock_tag_prio (unsigned array_size, starpu_data_handle_t ∗data←↩

_handle, int ∗dest, starpu_mpi_tag_t ∗data_tag, int ∗prio, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_irecv_array_detached_unlock_tag (unsigned array_size, starpu_data_handle_t ∗data_←↩

handle, int ∗source, starpu_mpi_tag_t ∗data_tag, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_datatype_register (starpu_data_handle_t handle, starpu_mpi_datatype_allocate_func_←↩

t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_interface_datatype_register (enum starpu_data_interface_id id, starpu_mpi_datatype_←↩

allocate_func_t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_datatype_node_register (starpu_data_handle_t handle, starpu_mpi_datatype_node_←↩

allocate_func_t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_interface_datatype_node_register (enum starpu_data_interface_id id, starpu_mpi_datatype←↩

_node_allocate_func_t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_datatype_unregister (starpu_data_handle_t handle)
• int starpu_mpi_interface_datatype_unregister (enum starpu_data_interface_id id)

59.25 starpu_mpi_ft.h File Reference

#include <starpu.h>

Typedefs

• typedef struct _starpu_mpi_checkpoint_template ∗ starpu_mpi_checkpoint_template_t

Functions

• int starpu_mpi_checkpoint_init (void)
• int starpu_mpi_checkpoint_shutdown (void)
• int starpu_mpi_checkpoint_template_register (starpu_mpi_checkpoint_template_t ∗cp_template, int cp_id,

int cp_domain,...)
• int starpu_mpi_checkpoint_template_create (starpu_mpi_checkpoint_template_t ∗cp_template, int cp_id, int

cp_domain)
• int starpu_mpi_checkpoint_template_add_entry (starpu_mpi_checkpoint_template_t ∗cp_template,...)
• int starpu_mpi_checkpoint_template_freeze (starpu_mpi_checkpoint_template_t ∗cp_template)
• int starpu_mpi_checkpoint_template_submit (starpu_mpi_checkpoint_template_t cp_template, int prio)
• int starpu_mpi_checkpoint_template_print (starpu_mpi_checkpoint_template_t cp_template)

Generated by Doxygen

750 File Documentation

59.26 starpu_mpi_lb.h File Reference

#include <starpu.h>

Data Structures

• struct starpu_mpi_lb_conf

Functions

• void starpu_mpi_lb_init (const char ∗lb_policy_name, struct starpu_mpi_lb_conf ∗)
• void starpu_mpi_lb_shutdown (void)

59.26.1 Function Documentation

59.26.1.1 starpu_mpi_lb_init()

void starpu_mpi_lb_init (

const char ∗ lb_policy_name,

struct starpu_mpi_lb_conf ∗)

Initialize the load balancer's environment with the load policy provided by the user

59.27 starpu_opencl.h File Reference

#include <starpu_config.h>
#include <CL/cl.h>
#include <assert.h>

Data Structures

• struct starpu_opencl_program

Macros

• #define CL_TARGET_OPENCL_VERSION

Functions

Writing OpenCL kernels

• void starpu_opencl_get_context (int devid, cl_context ∗context)
• void starpu_opencl_get_device (int devid, cl_device_id ∗device)
• void starpu_opencl_get_queue (int devid, cl_command_queue ∗queue)
• void starpu_opencl_get_current_context (cl_context ∗context)
• void starpu_opencl_get_current_queue (cl_command_queue ∗queue)
• int starpu_opencl_set_kernel_args (cl_int ∗err, cl_kernel ∗kernel,...)

Compiling OpenCL kernels

Source codes for OpenCL kernels can be stored in a file or in a string. StarPU provides functions to build the
program executable for each available OpenCL device as a cl_program object. This program executable can
then be loaded within a specific queue as explained in the next section. These are only helpers, Applications
can also fill a starpu_opencl_program array by hand for more advanced use (e.g. different programs on the
different OpenCL devices, for relocation purpose for instance).

Generated by Doxygen

59.28 starpu_openmp.h File Reference 751

• void starpu_opencl_load_program_source (const char ∗source_file_name, char ∗located_file_name, char
∗located_dir_name, char ∗opencl_program_source)

• void starpu_opencl_load_program_source_malloc (const char ∗source_file_name, char ∗∗located_file_←↩

name, char ∗∗located_dir_name, char ∗∗opencl_program_source)
• int starpu_opencl_compile_opencl_from_file (const char ∗source_file_name, const char ∗build_options)
• int starpu_opencl_compile_opencl_from_string (const char ∗opencl_program_source, const char ∗file_←↩

name, const char ∗build_options)
• int starpu_opencl_load_binary_opencl (const char ∗kernel_id, struct starpu_opencl_program ∗opencl_←↩

programs)
• int starpu_opencl_load_opencl_from_file (const char ∗source_file_name, struct starpu_opencl_program
∗opencl_programs, const char ∗build_options)

• int starpu_opencl_load_opencl_from_string (const char ∗opencl_program_source, struct starpu_opencl_program
∗opencl_programs, const char ∗build_options)

• int starpu_opencl_unload_opencl (struct starpu_opencl_program ∗opencl_programs)

Loading OpenCL kernels

• int starpu_opencl_load_kernel (cl_kernel ∗kernel, cl_command_queue ∗queue, struct starpu_opencl_program
∗opencl_programs, const char ∗kernel_name, int devid)

• int starpu_opencl_release_kernel (cl_kernel kernel)

OpenCL Statistics

• int starpu_opencl_collect_stats (cl_event event)

OpenCL Utilities

• #define STARPU_OPENCL_DISPLAY_ERROR(status)
• #define STARPU_OPENCL_REPORT_ERROR(status)
• #define STARPU_OPENCL_REPORT_ERROR_WITH_MSG(msg, status)
• const char ∗ starpu_opencl_error_string (cl_int status)
• void starpu_opencl_display_error (const char ∗func, const char ∗file, int line, const char ∗msg, cl_int status)
• static __starpu_inline void starpu_opencl_report_error (const char ∗func, const char ∗file, int line, const char
∗msg, cl_int status)

• cl_int starpu_opencl_allocate_memory (int devid, cl_mem ∗addr, size_t size, cl_mem_flags flags)
• cl_int starpu_opencl_copy_ram_to_opencl (void ∗ptr, unsigned src_node, cl_mem buffer, unsigned dst_node,

size_t size, size_t offset, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_opencl_to_ram (cl_mem buffer, unsigned src_node, void ∗ptr, unsigned dst_node,

size_t size, size_t offset, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem src, unsigned src_node, size_t src_offset, cl_mem

dst, unsigned dst_node, size_t dst_offset, size_t size, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_async_sync (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst,

size_t dst_offset, unsigned dst_node, size_t size, cl_event ∗event)

59.28 starpu_openmp.h File Reference

#include <starpu_config.h>

Data Structures

• struct starpu_omp_lock_t
• struct starpu_omp_nest_lock_t
• struct starpu_omp_parallel_region_attr
• struct starpu_omp_task_region_attr

Macros

• #define __STARPU_OMP_NOTHROW

Generated by Doxygen

752 File Documentation

Enumerations

• enum starpu_omp_sched_value {
starpu_omp_sched_undefined , starpu_omp_sched_static , starpu_omp_sched_dynamic , starpu_omp_sched_guided
,
starpu_omp_sched_auto , starpu_omp_sched_runtime }

• enum starpu_omp_proc_bind_value {
starpu_omp_proc_bind_undefined , starpu_omp_proc_bind_false , starpu_omp_proc_bind_true ,
starpu_omp_proc_bind_master ,
starpu_omp_proc_bind_close , starpu_omp_proc_bind_spread }

Functions

Initialisation

• int starpu_omp_init (void) __STARPU_OMP_NOTHROW
• void starpu_omp_shutdown (void) __STARPU_OMP_NOTHROW

Parallel

• void starpu_omp_parallel_region (const struct starpu_omp_parallel_region_attr ∗attr) __STARPU_OMP←↩

_NOTHROW
• void starpu_omp_master (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• int starpu_omp_master_inline (void) __STARPU_OMP_NOTHROW

Synchronization

• void starpu_omp_barrier (void) __STARPU_OMP_NOTHROW
• void starpu_omp_critical (void(∗f)(void ∗arg), void ∗arg, const char ∗name) __STARPU_OMP_NOTHROW
• void starpu_omp_critical_inline_begin (const char ∗name) __STARPU_OMP_NOTHROW
• void starpu_omp_critical_inline_end (const char ∗name) __STARPU_OMP_NOTHROW

Worksharing

• void starpu_omp_single (void(∗f)(void ∗arg), void ∗arg, int nowait) __STARPU_OMP_NOTHROW
• int starpu_omp_single_inline (void) __STARPU_OMP_NOTHROW
• void starpu_omp_single_copyprivate (void(∗f)(void ∗arg, void ∗data, unsigned long long data_size), void
∗arg, void ∗data, unsigned long long data_size) __STARPU_OMP_NOTHROW

• void ∗ starpu_omp_single_copyprivate_inline_begin (void ∗data) __STARPU_OMP_NOTHROW
• void starpu_omp_single_copyprivate_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_for (void(∗f)(unsigned long long _first_i, unsigned long long _nb_i, void ∗arg), void ∗arg,

unsigned long long nb_iterations, unsigned long long chunk, int schedule, int ordered, int nowait) __←↩

STARPU_OMP_NOTHROW
• int starpu_omp_for_inline_first (unsigned long long nb_iterations, unsigned long long chunk, int schedule,

int ordered, unsigned long long ∗_first_i, unsigned long long ∗_nb_i) __STARPU_OMP_NOTHROW
• int starpu_omp_for_inline_next (unsigned long long nb_iterations, unsigned long long chunk, int schedule,

int ordered, unsigned long long ∗_first_i, unsigned long long ∗_nb_i) __STARPU_OMP_NOTHROW
• void starpu_omp_for_alt (void(∗f)(unsigned long long _begin_i, unsigned long long _end_i, void ∗arg), void
∗arg, unsigned long long nb_iterations, unsigned long long chunk, int schedule, int ordered, int nowait) ←↩

__STARPU_OMP_NOTHROW
• int starpu_omp_for_inline_first_alt (unsigned long long nb_iterations, unsigned long long chunk, int sched-

ule, int ordered, unsigned long long ∗_begin_i, unsigned long long ∗_end_i) __STARPU_OMP_NOTHROW
• int starpu_omp_for_inline_next_alt (unsigned long long nb_iterations, unsigned long long chunk, int sched-

ule, int ordered, unsigned long long ∗_begin_i, unsigned long long ∗_end_i) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_sections (unsigned long long nb_sections, void(∗∗section_f)(void ∗arg), void ∗∗section←↩

_arg, int nowait) __STARPU_OMP_NOTHROW
• void starpu_omp_sections_combined (unsigned long long nb_sections, void(∗section_f)(unsigned long

long section_num, void ∗arg), void ∗section_arg, int nowait) __STARPU_OMP_NOTHROW

Task

Generated by Doxygen

59.28 starpu_openmp.h File Reference 753

• void starpu_omp_task_region (const struct starpu_omp_task_region_attr ∗attr) __STARPU_OMP_←↩

NOTHROW
• void starpu_omp_taskwait (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskloop_inline_begin (struct starpu_omp_task_region_attr ∗attr) __STARPU_←↩

OMP_NOTHROW
• void starpu_omp_taskloop_inline_end (const struct starpu_omp_task_region_attr ∗attr) __STARPU_←↩

OMP_NOTHROW

API

• void starpu_omp_set_num_threads (int threads) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_threads (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_thread_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_threads (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_procs (void) __STARPU_OMP_NOTHROW
• int starpu_omp_in_parallel (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_dynamic (int dynamic_threads) __STARPU_OMP_NOTHROW
• int starpu_omp_get_dynamic (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_nested (int nested) __STARPU_OMP_NOTHROW
• int starpu_omp_get_nested (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_cancellation (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_schedule (enum starpu_omp_sched_value kind, int modifier) __STARPU_OMP_←↩

NOTHROW
• void starpu_omp_get_schedule (enum starpu_omp_sched_value ∗kind, int ∗modifier) __STARPU_OMP←↩

_NOTHROW
• int starpu_omp_get_thread_limit (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_max_active_levels (int max_levels) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_active_levels (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_level (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_ancestor_thread_num (int level) __STARPU_OMP_NOTHROW
• int starpu_omp_get_team_size (int level) __STARPU_OMP_NOTHROW
• int starpu_omp_get_active_level (void) __STARPU_OMP_NOTHROW
• int starpu_omp_in_final (void) __STARPU_OMP_NOTHROW
• enum starpu_omp_proc_bind_value starpu_omp_get_proc_bind (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_places (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_place_num_procs (int place_num) __STARPU_OMP_NOTHROW
• void starpu_omp_get_place_proc_ids (int place_num, int ∗ids) __STARPU_OMP_NOTHROW
• int starpu_omp_get_place_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_partition_num_places (void) __STARPU_OMP_NOTHROW
• void starpu_omp_get_partition_place_nums (int ∗place_nums) __STARPU_OMP_NOTHROW
• void starpu_omp_set_default_device (int device_num) __STARPU_OMP_NOTHROW
• int starpu_omp_get_default_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_devices (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_teams (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_team_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_is_initial_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_initial_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_task_priority (void) __STARPU_OMP_NOTHROW
• void starpu_omp_init_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_destroy_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_set_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_unset_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• int starpu_omp_test_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_init_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_destroy_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_set_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_unset_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• int starpu_omp_test_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_atomic_fallback_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_atomic_fallback_inline_end (void) __STARPU_OMP_NOTHROW
• double starpu_omp_get_wtime (void) __STARPU_OMP_NOTHROW

Generated by Doxygen

754 File Documentation

• double starpu_omp_get_wtick (void) __STARPU_OMP_NOTHROW
• void starpu_omp_vector_annotate (starpu_data_handle_t handle, uint32_t slice_base) __STARPU_←↩

OMP_NOTHROW
• struct starpu_arbiter ∗ starpu_omp_get_default_arbiter (void) __STARPU_OMP_NOTHROW
• void starpu_omp_handle_register (starpu_data_handle_t handle) __STARPU_OMP_NOTHROW
• void starpu_omp_handle_unregister (starpu_data_handle_t handle) __STARPU_OMP_NOTHROW
• starpu_data_handle_t starpu_omp_data_lookup (const void ∗ptr) __STARPU_OMP_NOTHROW

59.29 starpu_parallel_worker.h File Reference

#include <starpu_config.h>
#include <hwloc.h>

Macros

• #define STARPU_PARALLEL_WORKER_MIN_NB
• #define STARPU_PARALLEL_WORKER_MAX_NB
• #define STARPU_PARALLEL_WORKER_NB
• #define STARPU_PARALLEL_WORKER_PREFERE_MIN
• #define STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS
• #define STARPU_PARALLEL_WORKER_POLICY_NAME
• #define STARPU_PARALLEL_WORKER_POLICY_STRUCT
• #define STARPU_PARALLEL_WORKER_CREATE_FUNC
• #define STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG
• #define STARPU_PARALLEL_WORKER_TYPE
• #define STARPU_PARALLEL_WORKER_AWAKE_WORKERS
• #define STARPU_PARALLEL_WORKER_PARTITION_ONE
• #define STARPU_PARALLEL_WORKER_NEW
• #define STARPU_PARALLEL_WORKER_NCORES
• #define starpu_parallel_worker_intel_openmp_mkl_prologue
• #define STARPU_CLUSTER_MIN_NB
• #define STARPU_CLUSTER_MAX_NB
• #define STARPU_CLUSTER_NB
• #define STARPU_CLUSTER_PREFERE_MIN
• #define STARPU_CLUSTER_KEEP_HOMOGENEOUS
• #define STARPU_CLUSTER_POLICY_NAME
• #define STARPU_CLUSTER_POLICY_STRUCT
• #define STARPU_CLUSTER_CREATE_FUNC
• #define STARPU_CLUSTER_CREATE_FUNC_ARG
• #define STARPU_CLUSTER_TYPE
• #define STARPU_CLUSTER_AWAKE_WORKERS
• #define STARPU_CLUSTER_PARTITION_ONE
• #define STARPU_CLUSTER_NEW
• #define STARPU_CLUSTER_NCORES

Enumerations

• enum starpu_parallel_worker_types { STARPU_PARALLEL_WORKER_OPENMP , STARPU_PARALLEL_WORKER_INTEL_OPENMP_MKL
, STARPU_PARALLEL_WORKER_GNU_OPENMP_MKL }

• enum starpu_cluster_types { STARPU_CLUSTER_OPENMP , STARPU_CLUSTER_INTEL_OPENMP_MKL
, STARPU_CLUSTER_GNU_OPENMP_MKL }

Generated by Doxygen

59.30 starpu_perf_monitoring.h File Reference 755

Functions

• struct starpu_parallel_worker_config ∗ starpu_parallel_worker_init (hwloc_obj_type_t parallel_worker_←↩

level,...)
• int starpu_parallel_worker_shutdown (struct starpu_parallel_worker_config ∗parallel_workers)
• int starpu_parallel_worker_print (struct starpu_parallel_worker_config ∗parallel_workers)
• void starpu_parallel_worker_openmp_prologue (void ∗)
• void starpu_parallel_worker_gnu_openmp_mkl_prologue (void ∗)
• struct starpu_cluster_machine ∗ starpu_cluster_machine (hwloc_obj_type_t cluster_level,...)
• int starpu_uncluster_machine (struct starpu_cluster_machine ∗clusters)
• int starpu_cluster_print (struct starpu_cluster_machine ∗clusters)

59.30 starpu_perf_monitoring.h File Reference

#include <starpu.h>

Functions

Scope Related Routines

• int starpu_perf_counter_scope_name_to_id (const char ∗name)
• const char ∗ starpu_perf_counter_scope_id_to_name (enum starpu_perf_counter_scope scope)

Type Related Routines

• int starpu_perf_counter_type_name_to_id (const char ∗name)
• const char ∗ starpu_perf_counter_type_id_to_name (enum starpu_perf_counter_type type)

Counter Related Routines

• int starpu_perf_counter_nb (enum starpu_perf_counter_scope scope)
• int starpu_perf_counter_name_to_id (enum starpu_perf_counter_scope scope, const char ∗name)
• int starpu_perf_counter_nth_to_id (enum starpu_perf_counter_scope scope, int nth)
• const char ∗ starpu_perf_counter_id_to_name (int id)
• int starpu_perf_counter_get_type_id (int id)
• const char ∗ starpu_perf_counter_get_help_string (int id)

Listener Related Routines

• void starpu_perf_counter_list_avail (enum starpu_perf_counter_scope scope)
• void starpu_perf_counter_list_all_avail (void)
• struct starpu_perf_counter_set ∗ starpu_perf_counter_set_alloc (enum starpu_perf_counter_scope

scope)
• void starpu_perf_counter_set_free (struct starpu_perf_counter_set ∗set)
• void starpu_perf_counter_set_enable_id (struct starpu_perf_counter_set ∗set, int id)
• void starpu_perf_counter_set_disable_id (struct starpu_perf_counter_set ∗set, int id)
• struct starpu_perf_counter_listener ∗ starpu_perf_counter_listener_init (struct starpu_perf_counter_←↩

set ∗set, void(∗callback)(struct starpu_perf_counter_listener ∗listener, struct starpu_perf_counter_sample
∗sample, void ∗context), void ∗user_arg)

• void starpu_perf_counter_listener_exit (struct starpu_perf_counter_listener ∗listener)
• void starpu_perf_counter_set_global_listener (struct starpu_perf_counter_listener ∗listener)
• void starpu_perf_counter_set_per_worker_listener (unsigned workerid, struct starpu_perf_counter_←↩

listener ∗listener)
• void starpu_perf_counter_set_all_per_worker_listeners (struct starpu_perf_counter_listener ∗listener)
• void starpu_perf_counter_set_per_codelet_listener (struct starpu_codelet ∗cl, struct starpu_perf_←↩

counter_listener ∗listener)
• void starpu_perf_counter_unset_global_listener (void)
• void starpu_perf_counter_unset_per_worker_listener (unsigned workerid)
• void starpu_perf_counter_unset_all_per_worker_listeners (void)
• void starpu_perf_counter_unset_per_codelet_listener (struct starpu_codelet ∗cl)

Generated by Doxygen

756 File Documentation

Sample Related Routines

• int32_t starpu_perf_counter_sample_get_int32_value (struct starpu_perf_counter_sample ∗sample, const
int counter_id)

• int64_t starpu_perf_counter_sample_get_int64_value (struct starpu_perf_counter_sample ∗sample, const
int counter_id)

• float starpu_perf_counter_sample_get_float_value (struct starpu_perf_counter_sample ∗sample, const int
counter_id)

• double starpu_perf_counter_sample_get_double_value (struct starpu_perf_counter_sample ∗sample,
const int counter_id)

API

• enum starpu_perf_counter_scope { starpu_perf_counter_scope_undefined , starpu_perf_counter_scope_global
, starpu_perf_counter_scope_per_worker , starpu_perf_counter_scope_per_codelet }

• enum starpu_perf_counter_type {
starpu_perf_counter_type_undefined , starpu_perf_counter_type_int32 , starpu_perf_counter_type_int64 ,
starpu_perf_counter_type_float ,
starpu_perf_counter_type_double }

• void starpu_perf_counter_collection_start (void)
• void starpu_perf_counter_collection_stop (void)

59.31 starpu_perf_steering.h File Reference

#include <starpu.h>

Enumerations

API

• enum starpu_perf_knob_scope { starpu_perf_knob_scope_undefined , starpu_perf_knob_scope_global ,
starpu_perf_knob_scope_per_worker , starpu_perf_knob_scope_per_scheduler }

• enum starpu_perf_knob_type {
starpu_perf_knob_type_undefined , starpu_perf_knob_type_int32 , starpu_perf_knob_type_int64 ,
starpu_perf_knob_type_float ,
starpu_perf_knob_type_double }

Functions

Scope Related Routines

• int starpu_perf_knob_scope_name_to_id (const char ∗name)
• const char ∗ starpu_perf_knob_scope_id_to_name (enum starpu_perf_knob_scope scope)

Type Related Routines

• int starpu_perf_knob_type_name_to_id (const char ∗name)
• const char ∗ starpu_perf_knob_type_id_to_name (enum starpu_perf_knob_type type)

Performance Steering Knob Related Routines

• int starpu_perf_knob_nb (enum starpu_perf_knob_scope scope)
• int starpu_perf_knob_name_to_id (enum starpu_perf_knob_scope scope, const char ∗name)
• int starpu_perf_knob_nth_to_id (enum starpu_perf_knob_scope scope, int nth)
• const char ∗ starpu_perf_knob_id_to_name (int id)
• int starpu_perf_knob_get_type_id (int id)
• const char ∗ starpu_perf_knob_get_help_string (int id)
• void starpu_perf_knob_list_avail (enum starpu_perf_knob_scope scope)
• void starpu_perf_knob_list_all_avail (void)

Generated by Doxygen

59.32 starpu_perfmodel.h File Reference 757

• int32_t starpu_perf_knob_get_global_int32_value (const int knob_id)
• int64_t starpu_perf_knob_get_global_int64_value (const int knob_id)
• float starpu_perf_knob_get_global_float_value (const int knob_id)
• double starpu_perf_knob_get_global_double_value (const int knob_id)
• void starpu_perf_knob_set_global_int32_value (const int knob_id, int32_t new_value)
• void starpu_perf_knob_set_global_int64_value (const int knob_id, int64_t new_value)
• void starpu_perf_knob_set_global_float_value (const int knob_id, float new_value)
• void starpu_perf_knob_set_global_double_value (const int knob_id, double new_value)
• int32_t starpu_perf_knob_get_per_worker_int32_value (const int knob_id, unsigned workerid)
• int64_t starpu_perf_knob_get_per_worker_int64_value (const int knob_id, unsigned workerid)
• float starpu_perf_knob_get_per_worker_float_value (const int knob_id, unsigned workerid)
• double starpu_perf_knob_get_per_worker_double_value (const int knob_id, unsigned workerid)
• void starpu_perf_knob_set_per_worker_int32_value (const int knob_id, unsigned workerid, int32_t new←↩

_value)
• void starpu_perf_knob_set_per_worker_int64_value (const int knob_id, unsigned workerid, int64_t new←↩

_value)
• void starpu_perf_knob_set_per_worker_float_value (const int knob_id, unsigned workerid, float new_←↩

value)
• void starpu_perf_knob_set_per_worker_double_value (const int knob_id, unsigned workerid, double

new_value)
• int32_t starpu_perf_knob_get_per_scheduler_int32_value (const int knob_id, const char ∗sched_policy←↩

_name)
• int64_t starpu_perf_knob_get_per_scheduler_int64_value (const int knob_id, const char ∗sched_policy←↩

_name)
• float starpu_perf_knob_get_per_scheduler_float_value (const int knob_id, const char ∗sched_policy_←↩

name)
• double starpu_perf_knob_get_per_scheduler_double_value (const int knob_id, const char ∗sched_←↩

policy_name)
• void starpu_perf_knob_set_per_scheduler_int32_value (const int knob_id, const char ∗sched_policy_←↩

name, int32_t new_value)
• void starpu_perf_knob_set_per_scheduler_int64_value (const int knob_id, const char ∗sched_policy_←↩

name, int64_t new_value)
• void starpu_perf_knob_set_per_scheduler_float_value (const int knob_id, const char ∗sched_policy_←↩

name, float new_value)
• void starpu_perf_knob_set_per_scheduler_double_value (const int knob_id, const char ∗sched_policy_←↩

name, double new_value)

59.32 starpu_perfmodel.h File Reference

#include <starpu.h>
#include <stdio.h>

Data Structures

• struct starpu_perfmodel_device
• struct starpu_perfmodel_arch
• struct starpu_perfmodel_history_entry
• struct starpu_perfmodel_history_list
• struct starpu_perfmodel_regression_model
• struct starpu_perfmodel_per_arch
• struct starpu_perfmodel

Macros

• #define starpu_per_arch_perfmodel

Generated by Doxygen

758 File Documentation

Typedefs

• typedef double(∗ starpu_perfmodel_per_arch_cost_function) (struct starpu_task ∗task, struct
starpu_perfmodel_arch ∗arch, unsigned nimpl)

• typedef size_t(∗ starpu_perfmodel_per_arch_size_base) (struct starpu_task ∗task, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• typedef struct _starpu_perfmodel_state ∗ starpu_perfmodel_state_t

Enumerations

• enum starpu_perfmodel_type {
STARPU_PERFMODEL_INVALID , STARPU_PER_WORKER , STARPU_PER_ARCH , STARPU_COMMON
,
STARPU_HISTORY_BASED , STARPU_REGRESSION_BASED , STARPU_NL_REGRESSION_BASED ,
STARPU_MULTIPLE_REGRESSION_BASED }

Functions

• void starpu_perfmodel_init (struct starpu_perfmodel ∗model)
• int starpu_perfmodel_deinit (struct starpu_perfmodel ∗model)
• int starpu_energy_start (int workerid, enum starpu_worker_archtype archi)
• int starpu_energy_stop (struct starpu_perfmodel ∗model, struct starpu_task ∗task, unsigned nimpl, unsigned

ntasks, int workerid, enum starpu_worker_archtype archi)
• int starpu_perfmodel_load_file (const char ∗filename, struct starpu_perfmodel ∗model)
• int starpu_perfmodel_load_symbol (const char ∗symbol, struct starpu_perfmodel ∗model)
• int starpu_perfmodel_unload_model (struct starpu_perfmodel ∗model)
• void starpu_save_history_based_model (struct starpu_perfmodel ∗model)
• void starpu_perfmodel_get_model_path (const char ∗symbol, char ∗path, size_t maxlen)
• void starpu_perfmodel_dump_xml (FILE ∗output, struct starpu_perfmodel ∗model)
• void starpu_perfmodel_free_sampling (void)
• struct starpu_perfmodel_arch ∗ starpu_worker_get_perf_archtype (int workerid, unsigned sched_ctx_id)
• int starpu_perfmodel_get_narch_combs (void)
• int starpu_perfmodel_arch_comb_add (int ndevices, struct starpu_perfmodel_device ∗devices)
• int starpu_perfmodel_arch_comb_get (int ndevices, struct starpu_perfmodel_device ∗devices)
• struct starpu_perfmodel_arch ∗ starpu_perfmodel_arch_comb_fetch (int comb)
• struct starpu_perfmodel_per_arch ∗ starpu_perfmodel_get_model_per_arch (struct starpu_perfmodel
∗model, struct starpu_perfmodel_arch ∗arch, unsigned impl)

• struct starpu_perfmodel_per_arch ∗ starpu_perfmodel_get_model_per_devices (struct starpu_perfmodel
∗model, int impl,...)

• int starpu_perfmodel_set_per_devices_cost_function (struct starpu_perfmodel ∗model, int impl, starpu←↩

_perfmodel_per_arch_cost_function func,...)
• int starpu_perfmodel_set_per_devices_size_base (struct starpu_perfmodel ∗model, int impl, starpu_←↩

perfmodel_per_arch_size_base func,...)
• void starpu_perfmodel_debugfilepath (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch ∗arch,

char ∗path, size_t maxlen, unsigned nimpl)
• const char ∗ starpu_perfmodel_get_archtype_name (enum starpu_worker_archtype archtype)
• void starpu_perfmodel_get_arch_name (struct starpu_perfmodel_arch ∗arch, char ∗archname, size_←↩

t maxlen, unsigned nimpl)
• double starpu_perfmodel_history_based_expected_perf (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch
∗arch, uint32_t footprint)

• void starpu_perfmodel_initialize (void)
• int starpu_perfmodel_list (FILE ∗output)
• void starpu_perfmodel_print (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl, char ∗parameter, uint32_t ∗footprint, FILE ∗output)
• int starpu_perfmodel_print_all (struct starpu_perfmodel ∗model, char ∗arch, char ∗parameter, uint32_←↩

t ∗footprint, FILE ∗output)
• int starpu_perfmodel_print_estimations (struct starpu_perfmodel ∗model, uint32_t footprint, FILE ∗output)

Generated by Doxygen

59.33 starpu_profiling.h File Reference 759

• int starpu_perfmodel_list_combs (FILE ∗output, struct starpu_perfmodel ∗model)
• void starpu_perfmodel_update_history (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct

starpu_perfmodel_arch ∗arch, unsigned cpuid, unsigned nimpl, double measured)
• void starpu_perfmodel_update_history_n (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct

starpu_perfmodel_arch ∗arch, unsigned cpuid, unsigned nimpl, double average_measured, unsigned num-
ber)

• void starpu_perfmodel_directory (FILE ∗output)
• void starpu_bus_print_bandwidth (FILE ∗f)
• void starpu_bus_print_affinity (FILE ∗f)
• void starpu_bus_print_filenames (FILE ∗f)
• double starpu_transfer_bandwidth (unsigned src_node, unsigned dst_node)
• double starpu_transfer_latency (unsigned src_node, unsigned dst_node)
• double starpu_transfer_predict (unsigned src_node, unsigned dst_node, size_t size)

Variables

• struct starpu_perfmodel starpu_perfmodel_nop

59.33 starpu_profiling.h File Reference

#include <starpu.h>
#include <errno.h>
#include <time.h>
#include <starpu_config.h>

Data Structures

• struct starpu_profiling_task_info
• struct starpu_profiling_worker_info
• struct starpu_profiling_bus_info

Macros

• #define STARPU_PROFILING_DISABLE
• #define STARPU_PROFILING_ENABLE
• #define STARPU_NS_PER_S
• #define starpu_timespec_cmp(a, b, CMP)

Functions

• void starpu_profiling_init (void)
• void starpu_profiling_set_id (int new_id)
• int starpu_profiling_status_set (int status)
• int starpu_profiling_status_get (void)
• int starpu_profiling_worker_get_info (int workerid, struct starpu_profiling_worker_info ∗worker_info)
• int starpu_bus_get_count (void)
• int starpu_bus_get_id (int src, int dst)
• int starpu_bus_get_src (int busid)
• int starpu_bus_get_dst (int busid)
• void starpu_bus_set_direct (int busid, int direct)
• int starpu_bus_get_direct (int busid)
• void starpu_bus_set_ngpus (int busid, int ngpus)
• int starpu_bus_get_ngpus (int busid)
• int starpu_bus_get_profiling_info (int busid, struct starpu_profiling_bus_info ∗bus_info)

Generated by Doxygen

760 File Documentation

• static __starpu_inline void starpu_timespec_clear (struct timespec ∗tsp)
• static __starpu_inline void starpu_timespec_add (struct timespec ∗a, struct timespec ∗b, struct timespec
∗result)

• static __starpu_inline void starpu_timespec_accumulate (struct timespec ∗result, struct timespec ∗a)
• static __starpu_inline void starpu_timespec_sub (const struct timespec ∗a, const struct timespec ∗b, struct

timespec ∗result)
• double starpu_timing_timespec_delay_us (struct timespec ∗start, struct timespec ∗end)
• double starpu_timing_timespec_to_us (struct timespec ∗ts)
• void starpu_profiling_bus_helper_display_summary (void)
• void starpu_profiling_worker_helper_display_summary (void)
• void starpu_data_display_memory_stats (void)

59.34 starpu_profiling_tool.h File Reference

#include <starpu.h>

Data Structures

• struct starpu_prof_tool_info
• union starpu_prof_tool_event_info
• struct starpu_prof_tool_api_info

Typedefs

• typedef void(∗ starpu_prof_tool_cb_func) (struct starpu_prof_tool_info ∗, union starpu_prof_tool_event_info
∗, struct starpu_prof_tool_api_info ∗)

• typedef void(∗ starpu_prof_tool_entry_register_func) (enum starpu_prof_tool_event event_type, starpu_←↩

prof_tool_cb_func cb, enum starpu_prof_tool_command info)
• typedef void(∗ starpu_prof_tool_entry_func) (starpu_prof_tool_entry_register_func reg, starpu_prof_tool_entry_register_func

unreg)

Enumerations

• enum starpu_prof_tool_event {
starpu_prof_tool_event_none , starpu_prof_tool_event_init , starpu_prof_tool_event_terminate ,
starpu_prof_tool_event_init_begin ,
starpu_prof_tool_event_init_end , starpu_prof_tool_event_driver_init , starpu_prof_tool_event_←↩

driver_deinit , starpu_prof_tool_event_driver_init_start ,
starpu_prof_tool_event_driver_init_end , starpu_prof_tool_event_start_cpu_exec , starpu_prof_←↩

tool_event_end_cpu_exec , starpu_prof_tool_event_start_gpu_exec ,
starpu_prof_tool_event_end_gpu_exec , starpu_prof_tool_event_start_transfer , starpu_prof_tool_←↩

event_end_transfer , starpu_prof_tool_event_user_start ,
starpu_prof_tool_event_user_end }

• enum starpu_prof_tool_driver_type { starpu_prof_tool_driver_cpu , starpu_prof_tool_driver_gpu ,
starpu_prof_tool_driver_hip , starpu_prof_tool_driver_ocl }

• enum starpu_prof_tool_command { starpu_prof_tool_command_reg , starpu_prof_tool_command_←↩

toggle , starpu_prof_tool_command_toggle_per_thread }

59.35 starpu_rand.h File Reference

#include <stdlib.h>
#include <starpu_config.h>

Generated by Doxygen

59.36 starpu_sched_component.h File Reference 761

Macros

• #define starpu_seed(seed)
• #define starpu_srand48(seed)
• #define starpu_drand48()
• #define starpu_lrand48()
• #define starpu_erand48(xsubi)
• #define starpu_srand48_r(seed, buffer)
• #define starpu_erand48_r(xsubi, buffer, result)

Typedefs

• typedef int starpu_drand48_data

59.36 starpu_sched_component.h File Reference

#include <starpu.h>
#include <hwloc.h>

Data Structures

• struct starpu_sched_component
• struct starpu_sched_tree
• struct starpu_sched_component_fifo_data
• struct starpu_sched_component_prio_data
• struct starpu_sched_component_mct_data
• struct starpu_sched_component_heteroprio_data
• struct starpu_sched_component_perfmodel_select_data
• struct starpu_sched_component_specs

Macros

• #define STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS(component)
• #define STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE(component)
• #define STARPU_COMPONENT_MUTEX_LOCK(m)
• #define STARPU_COMPONENT_MUTEX_TRYLOCK(m)
• #define STARPU_COMPONENT_MUTEX_UNLOCK(m)

Enumerations

• enum starpu_sched_component_properties { STARPU_SCHED_COMPONENT_HOMOGENEOUS ,
STARPU_SCHED_COMPONENT_SINGLE_MEMORY_NODE }

Functions

Scheduling Tree API

• struct starpu_sched_tree ∗ starpu_sched_tree_create (unsigned sched_ctx_id) STARPU_ATTRIBUTE_MALLOC
• void starpu_sched_tree_destroy (struct starpu_sched_tree ∗tree)
• void starpu_sched_tree_deinitialize (unsigned sched_ctx_id)
• struct starpu_sched_tree ∗ starpu_sched_tree_get (unsigned sched_ctx_id)
• void starpu_sched_tree_update_workers (struct starpu_sched_tree ∗t)
• void starpu_sched_tree_update_workers_in_ctx (struct starpu_sched_tree ∗t)
• int starpu_sched_tree_push_task (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_sched_tree_pop_task (unsigned sched_ctx)
• int starpu_sched_component_push_task (struct starpu_sched_component ∗from, struct starpu_sched_component
∗to, struct starpu_task ∗task)

Generated by Doxygen

762 File Documentation

• struct starpu_task ∗ starpu_sched_component_pull_task (struct starpu_sched_component ∗from, struct
starpu_sched_component ∗to)

• struct starpu_task ∗ starpu_sched_component_pump_to (struct starpu_sched_component ∗component,
struct starpu_sched_component ∗to, int ∗success)

• struct starpu_task ∗ starpu_sched_component_pump_downstream (struct starpu_sched_component
∗component, int ∗success)

• int starpu_sched_component_send_can_push_to_parents (struct starpu_sched_component
∗component)

• void starpu_sched_tree_add_workers (unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void starpu_sched_tree_remove_workers (unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void starpu_sched_tree_do_schedule (unsigned sched_ctx_id)
• void starpu_sched_component_connect (struct starpu_sched_component ∗parent, struct starpu_sched_component
∗child)

Worker Component API

• struct starpu_sched_component ∗ starpu_sched_component_worker_get (unsigned sched_ctx, int work-
erid)

• struct starpu_sched_component ∗ starpu_sched_component_worker_new (unsigned sched_ctx, int
workerid)

• struct starpu_sched_component ∗ starpu_sched_component_parallel_worker_create (struct starpu_sched_tree
∗tree, unsigned nworkers, unsigned ∗workers)

• int starpu_sched_component_worker_get_workerid (struct starpu_sched_component ∗worker_←↩

component)
• int starpu_sched_component_is_worker (struct starpu_sched_component ∗component)
• int starpu_sched_component_is_simple_worker (struct starpu_sched_component ∗component)
• int starpu_sched_component_is_combined_worker (struct starpu_sched_component ∗component)
• void starpu_sched_component_worker_pre_exec_hook (struct starpu_task ∗task, unsigned sched_ctx_id)
• void starpu_sched_component_worker_post_exec_hook (struct starpu_task ∗task, unsigned sched_ctx←↩

_id)

Flow-control Fifo Component API

These can be used as methods of components. Note: they are not to be called directly, one should really call
the methods of the components.

• struct starpu_task ∗ starpu_sched_component_parents_pull_task (struct starpu_sched_component
∗component, struct starpu_sched_component ∗to)

• int starpu_sched_component_can_push (struct starpu_sched_component ∗component, struct starpu_sched_component
∗to)

• int starpu_sched_component_can_pull (struct starpu_sched_component ∗component)
• int starpu_sched_component_can_pull_all (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_load (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_end_min (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_end_min_add (struct starpu_sched_component ∗component,

double exp_len)
• double starpu_sched_component_estimated_end_average (struct starpu_sched_component ∗component)
• struct starpu_sched_component ∗ starpu_sched_component_fifo_create (struct starpu_sched_tree ∗tree,

struct starpu_sched_component_fifo_data ∗fifo_data) STARPU_ATTRIBUTE_MALLOC
• int starpu_sched_component_is_fifo (struct starpu_sched_component ∗component)

Flow-control Prio Component API

• struct starpu_sched_component ∗ starpu_sched_component_prio_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_prio_data ∗prio_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_prio (struct starpu_sched_component ∗component)

Resource-mapping Work-Stealing Component API

• struct starpu_sched_component ∗ starpu_sched_component_work_stealing_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_work_stealing (struct starpu_sched_component ∗component)
• int starpu_sched_tree_work_stealing_push_task (struct starpu_task ∗task)

Generated by Doxygen

59.36 starpu_sched_component.h File Reference 763

Resource-mapping Random Component API

• struct starpu_sched_component ∗ starpu_sched_component_random_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_random (struct starpu_sched_component ∗)

Resource-mapping Eager Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager (struct starpu_sched_component ∗)

Resource-mapping Eager Prio Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_prio_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager_prio (struct starpu_sched_component ∗)

Resource-mapping Eager-Calibration Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_calibration_create (struct
starpu_sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager_calibration (struct starpu_sched_component ∗)

Resource-mapping MCT Component API

• struct starpu_sched_component ∗ starpu_sched_component_mct_create (struct starpu_sched_tree ∗tree,
struct starpu_sched_component_mct_data ∗mct_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_mct (struct starpu_sched_component ∗component)

Resource-mapping Heft Component API

• struct starpu_sched_component ∗ starpu_sched_component_heft_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_mct_data ∗mct_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_heft (struct starpu_sched_component ∗component)

Resource-mapping Heteroprio Component API

• struct starpu_sched_component ∗ starpu_sched_component_heteroprio_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_heteroprio_data ∗params) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_heteroprio (struct starpu_sched_component ∗component)

Special-purpose Best_Implementation Component API

• struct starpu_sched_component ∗ starpu_sched_component_best_implementation_create (struct
starpu_sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

Special-purpose Perfmodel_Select Component API

• struct starpu_sched_component ∗ starpu_sched_component_perfmodel_select_create (struct
starpu_sched_tree ∗tree, struct starpu_sched_component_perfmodel_select_data ∗perfmodel_select_←↩

data) STARPU_ATTRIBUTE_MALLOC
• int starpu_sched_component_is_perfmodel_select (struct starpu_sched_component ∗component)

Staged pull Component API

• struct starpu_sched_component ∗ starpu_sched_component_stage_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_stage (struct starpu_sched_component ∗component)

User-choice push Component API

• struct starpu_sched_component ∗ starpu_sched_component_userchoice_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

Generated by Doxygen

764 File Documentation

• int starpu_sched_component_is_userchoice (struct starpu_sched_component ∗component)

Recipe Component API

• struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_create
(void) STARPU_ATTRIBUTE_MALLOC

• struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_create_singleton
(struct starpu_sched_component ∗(∗create_component)(struct starpu_sched_tree ∗tree, void ∗arg), void
∗arg) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_component_composed_recipe_add (struct starpu_sched_component_composed_←↩

recipe ∗recipe, struct starpu_sched_component ∗(∗create_component)(struct starpu_sched_tree ∗tree,
void ∗arg), void ∗arg)

• void starpu_sched_component_composed_recipe_destroy (struct starpu_sched_component_composed←↩

_recipe ∗)
• struct starpu_sched_component ∗ starpu_sched_component_composed_component_create (struct

starpu_sched_tree ∗tree, struct starpu_sched_component_composed_recipe ∗recipe) STARPU_ATTRIBUTE_MALLOC
• struct starpu_sched_tree ∗ starpu_sched_component_make_scheduler (unsigned sched_ctx_id, struct

starpu_sched_component_specs s)

Basic API

• #define STARPU_SCHED_SIMPLE_DECIDE_MASK
• #define STARPU_SCHED_SIMPLE_DECIDE_WORKERS
• #define STARPU_SCHED_SIMPLE_DECIDE_MEMNODES
• #define STARPU_SCHED_SIMPLE_DECIDE_ARCHS
• #define STARPU_SCHED_SIMPLE_DECIDE_ALWAYS
• #define STARPU_SCHED_SIMPLE_PERFMODEL
• #define STARPU_SCHED_SIMPLE_IMPL
• #define STARPU_SCHED_SIMPLE_FIFO_ABOVE
• #define STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_NOLIMIT
• #define STARPU_SCHED_SIMPLE_WS_BELOW
• #define STARPU_SCHED_SIMPLE_COMBINED_WORKERS
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_EXP
• #define STARPU_SCHED_SIMPLE_PRE_DECISION
• void starpu_sched_component_initialize_simple_scheduler (starpu_sched_component_create_t create_←↩

decision_component, void ∗data, unsigned flags, unsigned sched_ctx_id)
• void starpu_sched_component_initialize_simple_schedulers (unsigned sched_ctx_id, unsigned ndeci-

sions,...)

Generic Scheduling Component API

• typedef struct starpu_sched_component ∗(∗ starpu_sched_component_create_t) (struct starpu_sched_tree
∗tree, void ∗data)

• struct starpu_sched_component ∗ starpu_sched_component_create (struct starpu_sched_tree ∗tree, const
char ∗name) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_component_destroy (struct starpu_sched_component ∗component)
• void starpu_sched_component_destroy_rec (struct starpu_sched_component ∗component)
• void starpu_sched_component_add_child (struct starpu_sched_component ∗component, struct

starpu_sched_component ∗child)
• int starpu_sched_component_can_execute_task (struct starpu_sched_component ∗component, struct

starpu_task ∗task)
• int starpu_sched_component_execute_preds (struct starpu_sched_component ∗component, struct

starpu_task ∗task, double ∗length)

Generated by Doxygen

59.37 starpu_sched_ctx.h File Reference 765

• double starpu_sched_component_transfer_length (struct starpu_sched_component ∗component, struct
starpu_task ∗task)

• void starpu_sched_component_prefetch_on_node (struct starpu_sched_component ∗component, struct
starpu_task ∗task)

59.37 starpu_sched_ctx.h File Reference

#include <starpu.h>

Functions

Scheduling Context Worker Collection

• struct starpu_worker_collection ∗ starpu_sched_ctx_create_worker_collection (unsigned sched_ctx_id,
enum starpu_worker_collection_type type) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_ctx_delete_worker_collection (unsigned sched_ctx_id)
• struct starpu_worker_collection ∗ starpu_sched_ctx_get_worker_collection (unsigned sched_ctx_id)

Scheduling Contexts Basic API

• #define STARPU_SCHED_CTX_POLICY_NAME
• #define STARPU_SCHED_CTX_POLICY_STRUCT
• #define STARPU_SCHED_CTX_POLICY_MIN_PRIO
• #define STARPU_SCHED_CTX_POLICY_MAX_PRIO
• #define STARPU_SCHED_CTX_HIERARCHY_LEVEL
• #define STARPU_SCHED_CTX_NESTED
• #define STARPU_SCHED_CTX_AWAKE_WORKERS
• #define STARPU_SCHED_CTX_POLICY_INIT
• #define STARPU_SCHED_CTX_USER_DATA
• #define STARPU_SCHED_CTX_CUDA_NSMS
• #define STARPU_SCHED_CTX_SUB_CTXS
• void(∗)(unsigned) starpu_sched_ctx_get_sched_policy_callback (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_create (int ∗workerids_ctx, int nworkers_ctx, const char ∗sched_ctx_name,...)
• unsigned starpu_sched_ctx_create_inside_interval (const char ∗policy_name, const char ∗sched_ctx_name,

int min_ncpus, int max_ncpus, int min_ngpus, int max_ngpus, unsigned allow_overlap)
• void starpu_sched_ctx_register_close_callback (unsigned sched_ctx_id, void(∗close_callback)(unsigned

sched_ctx_id, void ∗args), void ∗args)
• void starpu_sched_ctx_add_workers (int ∗workerids_ctx, unsigned nworkers_ctx, unsigned sched_ctx_id)
• void starpu_sched_ctx_remove_workers (int ∗workerids_ctx, unsigned nworkers_ctx, unsigned sched_ctx←↩

_id)
• void starpu_sched_ctx_display_workers (unsigned sched_ctx_id, FILE ∗f)
• void starpu_sched_ctx_delete (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_inheritor (unsigned sched_ctx_id, unsigned inheritor)
• unsigned starpu_sched_ctx_get_inheritor (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_hierarchy_level (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_context (unsigned ∗sched_ctx_id)
• unsigned starpu_sched_ctx_get_context (void)
• void starpu_sched_ctx_stop_task_submission (void)
• void starpu_sched_ctx_finished_submit (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_workers_list (unsigned sched_ctx_id, int ∗∗workerids)
• unsigned starpu_sched_ctx_get_workers_list_raw (unsigned sched_ctx_id, int ∗∗workerids)
• unsigned starpu_sched_ctx_get_nworkers (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_nshared_workers (unsigned sched_ctx_id, unsigned sched_ctx_id2)
• unsigned starpu_sched_ctx_contains_worker (int workerid, unsigned sched_ctx_id)

Generated by Doxygen

766 File Documentation

• unsigned starpu_sched_ctx_contains_type_of_worker (enum starpu_worker_archtype arch, unsigned
sched_ctx_id)

• unsigned starpu_sched_ctx_worker_get_id (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_ctx_for_task (struct starpu_task ∗task)
• unsigned starpu_worker_get_sched_ctx_id_stream (unsigned stream_workerid)
• unsigned starpu_sched_ctx_overlapping_ctxs_on_worker (int workerid)
• void ∗ starpu_sched_ctx_get_user_data (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_user_data (unsigned sched_ctx_id, void ∗user_data)
• void starpu_sched_ctx_set_policy_data (unsigned sched_ctx_id, void ∗policy_data)
• void ∗ starpu_sched_ctx_get_policy_data (unsigned sched_ctx_id)
• struct starpu_sched_policy ∗ starpu_sched_ctx_get_sched_policy (unsigned sched_ctx_id)
• void ∗ starpu_sched_ctx_exec_parallel_code (void ∗(∗func)(void ∗), void ∗param, unsigned sched_ctx_id)
• int starpu_sched_ctx_get_nready_tasks (unsigned sched_ctx_id)
• double starpu_sched_ctx_get_nready_flops (unsigned sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_increment (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_decrement (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_reset (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_increment_all_ctx_locked (struct starpu_task ∗task, un-

signed sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_decrement_all_ctx_locked (struct starpu_task ∗task, un-

signed sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_reset_all (struct starpu_task ∗task, unsigned sched_ctx_id)
• void starpu_sched_ctx_set_priority (int ∗workers, int nworkers, unsigned sched_ctx_id, unsigned priority)
• unsigned starpu_sched_ctx_get_priority (int worker, unsigned sched_ctx_id)
• void starpu_sched_ctx_get_available_cpuids (unsigned sched_ctx_id, int ∗∗cpuids, int ∗ncpuids)
• void starpu_sched_ctx_bind_current_thread_to_cpuid (unsigned cpuid)
• int starpu_sched_ctx_book_workers_for_task (unsigned sched_ctx_id, int ∗workerids, int nworkers)
• void starpu_sched_ctx_unbook_workers_for_task (unsigned sched_ctx_id, int master)
• unsigned starpu_sched_ctx_worker_is_master_for_child_ctx (int workerid, unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_master_get_context (int masterid)
• void starpu_sched_ctx_revert_task_counters_ctx_locked (unsigned sched_ctx_id, double flops)
• void starpu_sched_ctx_move_task_to_ctx_locked (struct starpu_task ∗task, unsigned sched_ctx, un-

signed with_repush)
• int starpu_sched_ctx_get_worker_rank (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_has_starpu_scheduler (unsigned sched_ctx_id, unsigned ∗awake_workers)
• int starpu_sched_ctx_get_stream_worker (unsigned sub_ctx)
• int starpu_sched_ctx_get_nsms (unsigned sched_ctx)
• void starpu_sched_ctx_get_sms_interval (int stream_workerid, int ∗start, int ∗end)

Scheduling Context Priorities

• #define STARPU_MIN_PRIO
• #define STARPU_MAX_PRIO
• #define STARPU_DEFAULT_PRIO
• int starpu_sched_ctx_get_min_priority (unsigned sched_ctx_id)
• int starpu_sched_ctx_get_max_priority (unsigned sched_ctx_id)
• int starpu_sched_ctx_set_min_priority (unsigned sched_ctx_id, int min_prio)
• int starpu_sched_ctx_set_max_priority (unsigned sched_ctx_id, int max_prio)
• int starpu_sched_ctx_min_priority_is_set (unsigned sched_ctx_id)
• int starpu_sched_ctx_max_priority_is_set (unsigned sched_ctx_id)

59.38 starpu_sched_ctx_hypervisor.h File Reference

Data Structures

• struct starpu_sched_ctx_performance_counters

Generated by Doxygen

59.39 starpu_scheduler.h File Reference 767

Functions

Scheduling Context Link with Hypervisor

• void starpu_sched_ctx_set_perf_counters (unsigned sched_ctx_id, void ∗perf_counters)
• void starpu_sched_ctx_call_pushed_task_cb (int workerid, unsigned sched_ctx_id)
• void starpu_sched_ctx_notify_hypervisor_exists (void)
• unsigned starpu_sched_ctx_check_if_hypervisor_exists (void)
• void starpu_sched_ctx_update_start_resizing_sample (unsigned sched_ctx_id, double start_sample)

59.38.1 Function Documentation

59.38.1.1 starpu_sched_ctx_set_perf_counters()

void starpu_sched_ctx_set_perf_counters (

unsigned sched_ctx_id,

void ∗ perf_counters)

Indicate to starpu the pointer to the performance counter

59.38.1.2 starpu_sched_ctx_call_pushed_task_cb()

void starpu_sched_ctx_call_pushed_task_cb (

int workerid,

unsigned sched_ctx_id)

Callback that lets the scheduling policy tell the hypervisor that a task was pushed on a worker

59.38.1.3 starpu_sched_ctx_notify_hypervisor_exists()

void starpu_sched_ctx_notify_hypervisor_exists (

void)

Allow the hypervisor to let starpu know it's initialised

59.38.1.4 starpu_sched_ctx_check_if_hypervisor_exists()

unsigned starpu_sched_ctx_check_if_hypervisor_exists (

void)

Ask starpu if it is informed if the hypervisor is initialised

59.39 starpu_scheduler.h File Reference

#include <starpu.h>

Data Structures

• struct starpu_sched_policy

Typedefs

• typedef void(∗ starpu_notify_ready_soon_func) (void ∗data, struct starpu_task ∗task, double delay)

Functions

• struct starpu_sched_policy ∗∗ starpu_sched_get_predefined_policies (void)
• struct starpu_sched_policy ∗ starpu_get_sched_lib_policy (const char ∗name)
• struct starpu_sched_policy ∗∗ starpu_get_sched_lib_policies (void)
• struct starpu_sched_policy ∗ starpu_sched_get_sched_policy_in_ctx (unsigned sched_ctx_id)

Generated by Doxygen

768 File Documentation

• struct starpu_sched_policy ∗ starpu_sched_get_sched_policy (void)
• void starpu_worker_get_sched_condition (int workerid, starpu_pthread_mutex_t ∗∗sched_mutex, starpu_←↩

pthread_cond_t ∗∗sched_cond)
• unsigned long starpu_task_get_job_id (struct starpu_task ∗task)
• int starpu_sched_get_min_priority (void)
• int starpu_sched_get_max_priority (void)
• int starpu_sched_set_min_priority (int min_prio)
• int starpu_sched_set_max_priority (int max_prio)
• int starpu_worker_can_execute_task (unsigned workerid, struct starpu_task ∗task, unsigned nimpl)
• int starpu_worker_can_execute_task_impl (unsigned workerid, struct starpu_task ∗task, unsigned ∗impl_←↩

mask)
• int starpu_worker_can_execute_task_first_impl (unsigned workerid, struct starpu_task ∗task, unsigned
∗nimpl)

• int starpu_push_local_task (int workerid, struct starpu_task ∗task, int back)
• int starpu_push_task_end (struct starpu_task ∗task)
• int starpu_get_prefetch_flag (void)
• int starpu_prefetch_task_input_on_node_prio (struct starpu_task ∗task, unsigned node, int prio)
• int starpu_prefetch_task_input_on_node (struct starpu_task ∗task, unsigned node)
• int starpu_idle_prefetch_task_input_on_node_prio (struct starpu_task ∗task, unsigned node, int prio)
• int starpu_idle_prefetch_task_input_on_node (struct starpu_task ∗task, unsigned node)
• int starpu_prefetch_task_input_for_prio (struct starpu_task ∗task, unsigned worker, int prio)
• int starpu_prefetch_task_input_for (struct starpu_task ∗task, unsigned worker)
• int starpu_idle_prefetch_task_input_for_prio (struct starpu_task ∗task, unsigned worker, int prio)
• int starpu_idle_prefetch_task_input_for (struct starpu_task ∗task, unsigned worker)
• uint32_t starpu_task_footprint (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct

starpu_perfmodel_arch ∗arch, unsigned nimpl)
• uint32_t starpu_task_data_footprint (struct starpu_task ∗task)
• double starpu_task_expected_length (struct starpu_task ∗task, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl)
• double starpu_task_worker_expected_length (struct starpu_task ∗task, unsigned workerid, unsigned

sched_ctx_id, unsigned nimpl)
• double starpu_task_expected_length_average (struct starpu_task ∗task, unsigned sched_ctx_id)
• double starpu_worker_get_relative_speedup (struct starpu_perfmodel_arch ∗perf_arch)
• double starpu_task_expected_data_transfer_time (unsigned memory_node, struct starpu_task ∗task)
• double starpu_task_expected_data_transfer_time_for (struct starpu_task ∗task, unsigned worker)
• double starpu_data_expected_transfer_time (starpu_data_handle_t handle, unsigned memory_node, enum

starpu_data_access_mode mode)
• double starpu_task_expected_energy (struct starpu_task ∗task, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl)
• double starpu_task_worker_expected_energy (struct starpu_task ∗task, unsigned workerid, unsigned

sched_ctx_id, unsigned nimpl)
• double starpu_task_expected_energy_average (struct starpu_task ∗task, unsigned sched_ctx_id)
• double starpu_task_expected_conversion_time (struct starpu_task ∗task, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• void starpu_task_notify_ready_soon_register (starpu_notify_ready_soon_func f, void ∗data)
• void starpu_sched_ctx_worker_shares_tasks_lists (int workerid, int sched_ctx_id)
• void starpu_sched_task_break (struct starpu_task ∗task)

Worker operations

• int starpu_wake_worker_relax (int workerid)
• int starpu_wake_worker_no_relax (int workerid)
• int starpu_wake_worker_locked (int workerid)
• int starpu_wake_worker_relax_light (int workerid)

Generated by Doxygen

59.40 starpu_simgrid_wrap.h File Reference 769

59.40 starpu_simgrid_wrap.h File Reference

#include <starpu_config.h>

Macros

• #define main

59.41 starpu_sink.h File Reference

Functions

• void starpu_sink_common_worker (int argc, char ∗∗argv)

59.42 starpu_stdlib.h File Reference

#include <starpu.h>

Macros

• #define STARPU_MALLOC_PINNED
• #define STARPU_MALLOC_COUNT
• #define STARPU_MALLOC_NORECLAIM
• #define STARPU_MEMORY_WAIT
• #define STARPU_MEMORY_OVERFLOW
• #define STARPU_MALLOC_SIMULATION_FOLDED
• #define STARPU_MALLOC_SIMULATION_UNIQUE
• #define starpu_data_malloc_pinned_if_possible
• #define starpu_data_free_pinned_if_possible

Typedefs

• typedef int(∗ starpu_malloc_hook) (unsigned dst_node, void ∗∗A, size_t dim, int flags)
• typedef int(∗ starpu_free_hook) (unsigned dst_node, void ∗A, size_t dim, int flags)

Functions

• void starpu_malloc_set_align (size_t align)
• int starpu_malloc (void ∗∗A, size_t dim)
• int starpu_free (void ∗A)
• int starpu_malloc_flags (void ∗∗A, size_t dim, int flags)
• int starpu_free_flags (void ∗A, size_t dim, int flags)
• int starpu_free_noflag (void ∗A, size_t dim)
• void starpu_malloc_set_hooks (starpu_malloc_hook malloc_hook, starpu_free_hook free_hook)
• int starpu_memory_pin (void ∗addr, size_t size)
• int starpu_memory_unpin (void ∗addr, size_t size)
• starpu_ssize_t starpu_memory_get_total (unsigned node)
• starpu_ssize_t starpu_memory_get_available (unsigned node)
• size_t starpu_memory_get_used (unsigned node)
• starpu_ssize_t starpu_memory_get_total_all_nodes (void)
• starpu_ssize_t starpu_memory_get_available_all_nodes (void)
• size_t starpu_memory_get_used_all_nodes (void)
• int starpu_memory_allocate (unsigned node, size_t size, int flags)

Generated by Doxygen

770 File Documentation

• void starpu_memory_deallocate (unsigned node, size_t size)
• void starpu_memory_wait_available (unsigned node, size_t size)
• void starpu_sleep (float nb_sec)
• void starpu_usleep (float nb_micro_sec)
• void starpu_energy_use (float joules)
• double starpu_energy_used (void)

59.43 starpu_task.h File Reference

#include <starpu.h>
#include <errno.h>
#include <assert.h>
#include <cuda.h>

Data Structures

• struct starpu_codelet
• struct starpu_data_descr
• struct starpu_task

Macros

• #define STARPU_NOWHERE
• #define STARPU_WORKER_TO_MASK(worker_archtype)
• #define STARPU_CPU
• #define STARPU_CUDA
• #define STARPU_HIP
• #define STARPU_OPENCL
• #define STARPU_MAX_FPGA
• #define STARPU_MPI_MS
• #define STARPU_TCPIP_MS
• #define STARPU_CODELET_SIMGRID_EXECUTE
• #define STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT
• #define STARPU_CODELET_NOPLANS
• #define STARPU_CUDA_ASYNC
• #define STARPU_HIP_ASYNC
• #define STARPU_OPENCL_ASYNC
• #define STARPU_MAIN_RAM
• #define STARPU_TASK_INIT
• #define STARPU_TASK_INVALID
• #define STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_HIP_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
• #define STARPU_VARIABLE_NBUFFERS
• #define STARPU_SPECIFIC_NODE_LOCAL
• #define STARPU_SPECIFIC_NODE_CPU
• #define STARPU_SPECIFIC_NODE_SLOW
• #define STARPU_SPECIFIC_NODE_FAST
• #define STARPU_SPECIFIC_NODE_LOCAL_OR_CPU
• #define STARPU_SPECIFIC_NODE_NONE
• #define STARPU_TASK_TYPE_NORMAL
• #define STARPU_TASK_TYPE_INTERNAL
• #define STARPU_TASK_TYPE_DATA_ACQUIRE

Generated by Doxygen

59.43 starpu_task.h File Reference 771

• #define STARPU_TASK_INITIALIZER
• #define STARPU_TASK_GET_NBUFFERS(task)
• #define STARPU_TASK_GET_HANDLE(task, i)
• #define STARPU_TASK_GET_HANDLES(task)
• #define STARPU_TASK_SET_HANDLE(task, handle, i)
• #define STARPU_CODELET_GET_MODE(codelet, i)
• #define STARPU_CODELET_SET_MODE(codelet, mode, i)
• #define STARPU_TASK_GET_MODE(task, i)
• #define STARPU_TASK_SET_MODE(task, mode, i)
• #define STARPU_CODELET_GET_NODE(codelet, i)
• #define STARPU_CODELET_SET_NODE(codelet, __node, i)

Typedefs

• typedef void(∗ starpu_cpu_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_cuda_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_hip_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_opencl_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_max_fpga_func_t) (void ∗∗, void ∗)
• typedef int(∗ starpu_bubble_func_t) (struct starpu_task ∗t, void ∗arg)
• typedef void(∗ starpu_bubble_gen_dag_func_t) (struct starpu_task ∗t, void ∗arg)
• typedef struct _starpu_trs_epoch ∗ starpu_trs_epoch_t

Enumerations

• enum starpu_codelet_type { STARPU_SEQ , STARPU_SPMD , STARPU_FORKJOIN }
• enum starpu_task_status {

STARPU_TASK_INIT , STARPU_TASK_INIT , STARPU_TASK_BLOCKED , STARPU_TASK_READY ,
STARPU_TASK_RUNNING , STARPU_TASK_FINISHED , STARPU_TASK_BLOCKED_ON_TAG ,
STARPU_TASK_BLOCKED_ON_TASK ,
STARPU_TASK_BLOCKED_ON_DATA , STARPU_TASK_STOPPED }

Functions

• void starpu_task_init (struct starpu_task ∗task)
• void starpu_task_clean (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_create (void) STARPU_ATTRIBUTE_MALLOC
• struct starpu_task ∗ starpu_task_create_sync (starpu_data_handle_t handle, enum starpu_data_access_mode

mode) STARPU_ATTRIBUTE_MALLOC
• void starpu_task_destroy (struct starpu_task ∗task)
• void starpu_task_set_destroy (struct starpu_task ∗task)
• int starpu_task_submit (struct starpu_task ∗task)
• int starpu_task_submit_nodeps (struct starpu_task ∗task)
• int starpu_task_submit_to_ctx (struct starpu_task ∗task, unsigned sched_ctx_id)
• int starpu_task_finished (struct starpu_task ∗task)
• int starpu_task_wait (struct starpu_task ∗task)
• int starpu_task_wait_array (struct starpu_task ∗∗tasks, unsigned nb_tasks)
• int starpu_task_wait_for_all (void)
• int starpu_task_wait_for_n_submitted (unsigned n)
• int starpu_task_wait_for_all_in_ctx (unsigned sched_ctx_id)
• int starpu_task_wait_for_n_submitted_in_ctx (unsigned sched_ctx_id, unsigned n)
• int starpu_task_wait_for_no_ready (void)
• int starpu_task_nready (void)
• int starpu_task_nsubmitted (void)
• void starpu_iteration_push (unsigned long iteration)
• void starpu_iteration_pop (void)

Generated by Doxygen

772 File Documentation

• void starpu_do_schedule (void)
• void starpu_codelet_init (struct starpu_codelet ∗cl)
• void starpu_codelet_display_stats (struct starpu_codelet ∗cl)
• struct starpu_task ∗ starpu_task_get_current (void)
• int starpu_task_get_current_data_node (unsigned i)
• const char ∗ starpu_task_get_model_name (struct starpu_task ∗task)
• const char ∗ starpu_task_get_name (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_dup (struct starpu_task ∗task)
• void starpu_task_set_implementation (struct starpu_task ∗task, unsigned impl)
• unsigned starpu_task_get_implementation (struct starpu_task ∗task)
• void starpu_create_sync_task (starpu_tag_t sync_tag, unsigned ndeps, starpu_tag_t ∗deps, void(∗callback)(void
∗), void ∗callback_arg)

• void starpu_create_callback_task (void(∗callback)(void ∗), void ∗callback_arg)
• void starpu_task_ft_prologue (void ∗check_ft)
• struct starpu_task ∗ starpu_task_ft_create_retry (const struct starpu_task ∗meta_task, const struct

starpu_task ∗template_task, void(∗check_ft)(void ∗))
• void starpu_task_ft_failed (struct starpu_task ∗task)
• void starpu_task_ft_success (struct starpu_task ∗meta_task)
• void starpu_task_watchdog_set_hook (void(∗hook)(void ∗), void ∗hook_arg)
• char ∗ starpu_task_status_get_as_string (enum starpu_task_status status)
• void starpu_set_limit_min_submitted_tasks (int limit_min)
• void starpu_set_limit_max_submitted_tasks (int limit_min)
• struct starpu_transaction ∗ starpu_transaction_open (int(∗do_start_func)(void ∗buffer, void ∗arg), void ∗do←↩

_start_arg)
• void starpu_transaction_next_epoch (struct starpu_transaction ∗p_trs, void ∗do_start_arg)
• void starpu_transaction_close (struct starpu_transaction ∗p_trs)

Variables

• struct starpu_codelet starpu_codelet_nop

59.43.1 Macro Definition Documentation

59.43.1.1 STARPU_TASK_INVALID

#define STARPU_TASK_INVALID

old name for STARPU_TASK_INIT

59.44 starpu_task_bundle.h File Reference

Typedefs

• typedef struct _starpu_task_bundle ∗ starpu_task_bundle_t

Functions

• void starpu_task_bundle_create (starpu_task_bundle_t ∗bundle)
• int starpu_task_bundle_insert (starpu_task_bundle_t bundle, struct starpu_task ∗task)
• int starpu_task_bundle_remove (starpu_task_bundle_t bundle, struct starpu_task ∗task)
• void starpu_task_bundle_close (starpu_task_bundle_t bundle)
• double starpu_task_bundle_expected_length (starpu_task_bundle_t bundle, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t bundle, unsigned
memory_node)

• double starpu_task_bundle_expected_energy (starpu_task_bundle_t bundle, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

Generated by Doxygen

59.45 starpu_task_dep.h File Reference 773

59.45 starpu_task_dep.h File Reference

#include <starpu.h>

Typedefs

• typedef uint64_t starpu_tag_t

Functions

• void starpu_task_declare_deps_array (struct starpu_task ∗task, unsigned ndeps, struct starpu_task ∗task←↩

_array[])
• void starpu_task_declare_deps (struct starpu_task ∗task, unsigned ndeps,...)
• void starpu_task_declare_end_deps_array (struct starpu_task ∗task, unsigned ndeps, struct starpu_task
∗task_array[])

• void starpu_task_declare_end_deps (struct starpu_task ∗task, unsigned ndeps,...)
• int starpu_task_get_task_succs (struct starpu_task ∗task, unsigned ndeps, struct starpu_task ∗task_array[])
• int starpu_task_get_task_scheduled_succs (struct starpu_task ∗task, unsigned ndeps, struct starpu_task
∗task_array[])

• void starpu_task_end_dep_add (struct starpu_task ∗t, int nb_deps)
• void starpu_task_end_dep_release (struct starpu_task ∗t)
• void starpu_tag_declare_deps (starpu_tag_t id, unsigned ndeps,...)
• void starpu_tag_declare_deps_array (starpu_tag_t id, unsigned ndeps, starpu_tag_t ∗array)
• int starpu_tag_wait (starpu_tag_t id)
• int starpu_tag_wait_array (unsigned ntags, starpu_tag_t ∗id)
• void starpu_tag_restart (starpu_tag_t id)
• void starpu_tag_remove (starpu_tag_t id)
• void starpu_tag_notify_from_apps (starpu_tag_t id)
• void starpu_tag_notify_restart_from_apps (starpu_tag_t id)
• struct starpu_task ∗ starpu_tag_get_task (starpu_tag_t id)

59.46 starpu_task_list.h File Reference

#include <starpu_task.h>
#include <starpu_util.h>

Data Structures

• struct starpu_task_list

Functions

• void starpu_task_list_init (struct starpu_task_list ∗list)
• void starpu_task_list_push_front (struct starpu_task_list ∗list, struct starpu_task ∗task)
• void starpu_task_list_push_back (struct starpu_task_list ∗list, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_list_front (const struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_back (const struct starpu_task_list ∗list)
• int starpu_task_list_empty (const struct starpu_task_list ∗list)
• void starpu_task_list_erase (struct starpu_task_list ∗list, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_list_pop_front (struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_pop_back (struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_begin (const struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_end (const struct starpu_task_list ∗list STARPU_ATTRIBUTE_UNUSED)
• struct starpu_task ∗ starpu_task_list_next (const struct starpu_task ∗task)
• int starpu_task_list_ismember (const struct starpu_task_list ∗list, const struct starpu_task ∗look)
• void starpu_task_list_move (struct starpu_task_list ∗ldst, struct starpu_task_list ∗lsrc)

Generated by Doxygen

774 File Documentation

59.47 starpu_task_util.h File Reference

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <starpu.h>

Data Structures

• struct starpu_codelet_pack_arg_data

Macros

• #define STARPU_MODE_SHIFT
• #define STARPU_VALUE
• #define STARPU_CALLBACK
• #define STARPU_CALLBACK_WITH_ARG
• #define STARPU_CALLBACK_ARG
• #define STARPU_PRIORITY
• #define STARPU_EXECUTE_ON_NODE
• #define STARPU_EXECUTE_ON_DATA
• #define STARPU_DATA_ARRAY
• #define STARPU_DATA_MODE_ARRAY
• #define STARPU_TAG
• #define STARPU_HYPERVISOR_TAG
• #define STARPU_FLOPS
• #define STARPU_SCHED_CTX
• #define STARPU_PROLOGUE_CALLBACK
• #define STARPU_PROLOGUE_CALLBACK_ARG
• #define STARPU_PROLOGUE_CALLBACK_POP
• #define STARPU_PROLOGUE_CALLBACK_POP_ARG
• #define STARPU_EXECUTE_ON_WORKER
• #define STARPU_EXECUTE_WHERE
• #define STARPU_TAG_ONLY
• #define STARPU_POSSIBLY_PARALLEL
• #define STARPU_WORKER_ORDER
• #define STARPU_NODE_SELECTION_POLICY
• #define STARPU_NAME
• #define STARPU_CL_ARGS
• #define STARPU_CL_ARGS_NFREE
• #define STARPU_TASK_DEPS_ARRAY
• #define STARPU_TASK_COLOR
• #define STARPU_HANDLES_SEQUENTIAL_CONSISTENCY
• #define STARPU_TASK_SYNCHRONOUS
• #define STARPU_TASK_END_DEPS_ARRAY
• #define STARPU_TASK_END_DEP
• #define STARPU_TASK_WORKERIDS
• #define STARPU_SEQUENTIAL_CONSISTENCY
• #define STARPU_TASK_PROFILING_INFO
• #define STARPU_TASK_NO_SUBMITORDER
• #define STARPU_CALLBACK_ARG_NFREE
• #define STARPU_CALLBACK_WITH_ARG_NFREE
• #define STARPU_PROLOGUE_CALLBACK_ARG_NFREE
• #define STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE

Generated by Doxygen

59.48 starpu_thread.h File Reference 775

• #define STARPU_TASK_SCHED_DATA
• #define STARPU_TRANSACTION
• #define STARPU_TASK_FILE
• #define STARPU_TASK_LINE
• #define STARPU_EPILOGUE_CALLBACK
• #define STARPU_EPILOGUE_CALLBACK_ARG
• #define STARPU_BUBBLE_FUNC
• #define STARPU_BUBBLE_FUNC_ARG
• #define STARPU_BUBBLE_GEN_DAG_FUNC
• #define STARPU_BUBBLE_GEN_DAG_FUNC_ARG
• #define STARPU_BUBBLE_PARENT
• #define STARPU_SHIFTED_MODE_MAX

Functions

• int starpu_task_set (struct starpu_task ∗task, struct starpu_codelet ∗cl,...)
• struct starpu_task ∗ starpu_task_build (struct starpu_codelet ∗cl,...)
• int starpu_task_insert (struct starpu_codelet ∗cl,...)
• int starpu_insert_task (struct starpu_codelet ∗cl,...)
• void starpu_task_insert_data_make_room (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int current_buffer, int room)

• void starpu_task_insert_data_process_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int ∗current_buffer, int arg_type, starpu_data_handle_t handle)

• void starpu_task_insert_data_process_array_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int ∗current_buffer, int nb_handles, starpu_data_handle_t ∗handles)

• void starpu_task_insert_data_process_mode_array_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task,
int ∗allocated_buffers, int ∗current_buffer, int nb_descrs, struct starpu_data_descr ∗descrs)

• void starpu_codelet_pack_args (void ∗∗arg_buffer, size_t ∗arg_buffer_size,...)
• void starpu_codelet_pack_arg_init (struct starpu_codelet_pack_arg_data ∗state)
• void starpu_codelet_pack_arg (struct starpu_codelet_pack_arg_data ∗state, const void ∗ptr, size_t ptr_size)
• void starpu_codelet_pack_arg_fini (struct starpu_codelet_pack_arg_data ∗state, void ∗∗cl_arg, size_t ∗cl←↩

_arg_size)
• void starpu_codelet_unpack_args (void ∗cl_arg,...)
• void starpu_codelet_unpack_arg_init (struct starpu_codelet_pack_arg_data ∗state, void ∗cl_arg, size_t cl←↩

_arg_size)
• void starpu_codelet_unpack_arg (struct starpu_codelet_pack_arg_data ∗state, void ∗ptr, size_t size)
• void starpu_codelet_dup_arg (struct starpu_codelet_pack_arg_data ∗state, void ∗∗ptr, size_t ∗size)
• void starpu_codelet_pick_arg (struct starpu_codelet_pack_arg_data ∗state, void ∗∗ptr, size_t ∗size)
• void starpu_codelet_unpack_arg_fini (struct starpu_codelet_pack_arg_data ∗state)
• void starpu_codelet_unpack_discard_arg (struct starpu_codelet_pack_arg_data ∗state)
• void starpu_codelet_unpack_args_and_copyleft (void ∗cl_arg, void ∗buffer, size_t buffer_size,...)

59.48 starpu_thread.h File Reference

#include <starpu_config.h>
#include <starpu_util.h>
#include <pthread.h>
#include <xbt/synchro_core.h>
#include <stdint.h>

Generated by Doxygen

776 File Documentation

Data Structures

• struct starpu_pthread_attr_t
• struct starpu_pthread_barrier_t
• struct starpu_pthread_spinlock_t
• struct starpu_pthread_wait_t
• struct starpu_pthread_queue_t

Macros

• #define starpu_pthread_setname(name)
• #define STARPU_PTHREAD_MUTEX_INITIALIZER
• #define STARPU_PTHREAD_COND_INITIALIZER
• #define STARPU_PTHREAD_RWLOCK_INITIALIZER
• #define STARPU_PTHREAD_BARRIER_SERIAL_THREAD

Typedefs

• typedef msg_process_t starpu_pthread_t
• typedef msg_host_t starpu_sg_host_t
• typedef xbt_mutex_t starpu_pthread_mutex_t
• typedef int starpu_pthread_mutexattr_t
• typedef int starpu_pthread_key_t
• typedef xbt_cond_t starpu_pthread_cond_t
• typedef int starpu_pthread_condattr_t
• typedef xbt_mutex_t starpu_pthread_rwlock_t
• typedef int starpu_pthread_rwlockattr_t
• typedef int starpu_pthread_barrierattr_t
• typedef msg_sem_t starpu_sem_t

Functions

• int starpu_pthread_equal (starpu_pthread_t t1, starpu_pthread_t t2)
• starpu_pthread_t starpu_pthread_self (void)
• int starpu_pthread_create_on (const char ∗name, starpu_pthread_t ∗thread, const starpu_pthread_attr_t
∗attr, void ∗(∗start_routine)(void ∗), void ∗arg, starpu_sg_host_t host)

• int starpu_pthread_create (starpu_pthread_t ∗thread, const starpu_pthread_attr_t ∗attr, void ∗(∗start_←↩

routine)(void ∗), void ∗arg)
• starpu_pthread_t _starpu_simgrid_actor_create (const char ∗name, xbt_main_func_t code, starpu_sg_←↩

host_t host, int argc, char ∗argv[])
• int starpu_pthread_join (starpu_pthread_t thread, void ∗∗retval)
• int starpu_pthread_detach (starpu_pthread_t thread)
• int starpu_pthread_exit (void ∗retval) STARPU_ATTRIBUTE_NORETURN
• int starpu_pthread_attr_init (starpu_pthread_attr_t ∗attr)
• int starpu_pthread_attr_destroy (starpu_pthread_attr_t ∗attr)
• int starpu_pthread_attr_setdetachstate (starpu_pthread_attr_t ∗attr, int detachstate)
• int starpu_pthread_attr_setstacksize (starpu_pthread_attr_t ∗attr, size_t stacksize)
• int starpu_pthread_mutex_init (starpu_pthread_mutex_t ∗mutex, const starpu_pthread_mutexattr_←↩

t ∗mutexattr)
• int starpu_pthread_mutex_destroy (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_lock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_unlock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_trylock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutexattr_gettype (const starpu_pthread_mutexattr_t ∗attr, int ∗type)
• int starpu_pthread_mutexattr_settype (starpu_pthread_mutexattr_t ∗attr, int type)
• int starpu_pthread_mutexattr_destroy (starpu_pthread_mutexattr_t ∗attr)

Generated by Doxygen

59.48 starpu_thread.h File Reference 777

• int starpu_pthread_mutexattr_init (starpu_pthread_mutexattr_t ∗attr)
• int starpu_pthread_mutex_lock_sched (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_unlock_sched (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_trylock_sched (starpu_pthread_mutex_t ∗mutex)
• void starpu_pthread_mutex_check_sched (starpu_pthread_mutex_t ∗mutex, char ∗file, int line)
• int starpu_pthread_key_create (starpu_pthread_key_t ∗key, void(∗destr_function)(void ∗))
• int starpu_pthread_key_delete (starpu_pthread_key_t key)
• int starpu_pthread_setspecific (starpu_pthread_key_t key, const void ∗pointer)
• void ∗ starpu_pthread_getspecific (starpu_pthread_key_t key)
• int starpu_pthread_cond_init (starpu_pthread_cond_t ∗cond, starpu_pthread_condattr_t ∗cond_attr)
• int starpu_pthread_cond_signal (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_cond_broadcast (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_cond_wait (starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_cond_timedwait (starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex, const

struct timespec ∗abstime)
• int starpu_pthread_cond_destroy (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_rwlock_init (starpu_pthread_rwlock_t ∗rwlock, const starpu_pthread_rwlockattr_t ∗attr)
• int starpu_pthread_rwlock_destroy (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_rdlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_tryrdlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_wrlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_trywrlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_unlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_barrier_init (starpu_pthread_barrier_t ∗barrier, const starpu_pthread_barrierattr_t ∗attr,

unsigned count)
• int starpu_pthread_barrier_destroy (starpu_pthread_barrier_t ∗barrier)
• int starpu_pthread_barrier_wait (starpu_pthread_barrier_t ∗barrier)
• int starpu_pthread_spin_init (starpu_pthread_spinlock_t ∗lock, int pshared)
• int starpu_pthread_spin_destroy (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_lock (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_trylock (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_unlock (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_queue_init (starpu_pthread_queue_t ∗q)
• int starpu_pthread_queue_signal (starpu_pthread_queue_t ∗q)
• int starpu_pthread_queue_broadcast (starpu_pthread_queue_t ∗q)
• int starpu_pthread_queue_destroy (starpu_pthread_queue_t ∗q)
• int starpu_pthread_wait_init (starpu_pthread_wait_t ∗w)
• int starpu_pthread_queue_register (starpu_pthread_wait_t ∗w, starpu_pthread_queue_t ∗q)
• int starpu_pthread_queue_unregister (starpu_pthread_wait_t ∗w, starpu_pthread_queue_t ∗q)
• int starpu_pthread_wait_reset (starpu_pthread_wait_t ∗w)
• int starpu_pthread_wait_wait (starpu_pthread_wait_t ∗w)
• int starpu_pthread_wait_timedwait (starpu_pthread_wait_t ∗w, const struct timespec ∗abstime)
• int starpu_pthread_wait_destroy (starpu_pthread_wait_t ∗w)
• int starpu_sem_destroy (starpu_sem_t ∗sem)
• int starpu_sem_getvalue (starpu_sem_t ∗sem, int ∗retval)
• int starpu_sem_init (starpu_sem_t ∗sem, int pshared, unsigned value)
• int starpu_sem_post (starpu_sem_t ∗sem)
• int starpu_sem_trywait (starpu_sem_t ∗sem)
• int starpu_sem_wait (starpu_sem_t ∗sem)

59.48.1 Data Structure Documentation

59.48.1.1 struct starpu_pthread_attr_t

Generated by Doxygen

778 File Documentation

Data Fields

size_t stacksize

59.48.1.2 struct starpu_pthread_barrier_t

Data Fields

starpu_pthread_mutex_t mutex

starpu_pthread_cond_t cond

starpu_pthread_cond_t cond_destroy

unsigned count

unsigned done

unsigned busy

59.48.1.3 struct starpu_pthread_spinlock_t

Data Fields

int taken

59.48.1.4 struct starpu_pthread_wait_t

Data Fields

starpu_pthread_mutex_t mutex

starpu_pthread_cond_t cond

unsigned block

59.48.1.5 struct starpu_pthread_queue_t

Data Fields

starpu_pthread_mutex_t mutex

starpu_pthread_wait_t ∗∗ queue

unsigned allocqueue

unsigned nqueue

59.49 starpu_thread_util.h File Reference

#include <starpu_util.h>
#include <starpu_thread.h>
#include <errno.h>

Macros

• #define STARPU_PTHREAD_CREATE_ON(name, thread, attr, routine, arg, where)
• #define STARPU_PTHREAD_CREATE(thread, attr, routine, arg)
• #define STARPU_PTHREAD_JOIN(thread, retval)
• #define _STARPU_PTHREAD_MUTEX_INIT(mutex, attr)
• #define STARPU_PTHREAD_MUTEX_INIT(mutex, attr)

Generated by Doxygen

59.50 starpu_tree.h File Reference 779

• #define STARPU_PTHREAD_MUTEX_INIT0(mutex, attr)
• #define STARPU_PTHREAD_MUTEX_DESTROY(mutex)
• #define _STARPU_CHECK_NOT_SCHED_MUTEX(mutex, file, line)
• #define STARPU_PTHREAD_MUTEX_LOCK(mutex)
• #define STARPU_PTHREAD_MUTEX_LOCK_SCHED(mutex)
• #define STARPU_PTHREAD_MUTEX_TRYLOCK(mutex)
• #define STARPU_PTHREAD_MUTEX_TRYLOCK_SCHED(mutex)
• #define STARPU_PTHREAD_MUTEX_UNLOCK(mutex)
• #define STARPU_PTHREAD_MUTEX_UNLOCK_SCHED(mutex)
• #define STARPU_PTHREAD_KEY_CREATE(key, destr)
• #define STARPU_PTHREAD_KEY_DELETE(key)
• #define STARPU_PTHREAD_SETSPECIFIC(key, ptr)
• #define STARPU_PTHREAD_GETSPECIFIC(key)
• #define _STARPU_PTHREAD_RWLOCK_INIT(rwlock, attr)
• #define STARPU_PTHREAD_RWLOCK_INIT(rwlock, attr)
• #define STARPU_PTHREAD_RWLOCK_INIT0(rwlock, attr)
• #define STARPU_PTHREAD_RWLOCK_RDLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_TRYRDLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_WRLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_TRYWRLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_UNLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_DESTROY(rwlock)
• #define _STARPU_PTHREAD_COND_INIT(cond, attr)
• #define STARPU_PTHREAD_COND_INIT(cond, attr)
• #define STARPU_PTHREAD_COND_INIT0(cond, attr)
• #define STARPU_PTHREAD_COND_DESTROY(cond)
• #define STARPU_PTHREAD_COND_SIGNAL(cond)
• #define STARPU_PTHREAD_COND_BROADCAST(cond)
• #define STARPU_PTHREAD_COND_WAIT(cond, mutex)
• #define STARPU_PTHREAD_COND_TIMEDWAIT(cond, mutex, abstime)
• #define STARPU_PTHREAD_BARRIER_INIT(barrier, attr, count)
• #define STARPU_PTHREAD_BARRIER_DESTROY(barrier)
• #define STARPU_PTHREAD_BARRIER_WAIT(barrier)

Functions

• static STARPU_INLINE int _starpu_pthread_mutex_trylock (starpu_pthread_mutex_t ∗mutex, char ∗file,
int line)

• static STARPU_INLINE int _starpu_pthread_mutex_trylock_sched (starpu_pthread_mutex_t ∗mutex, char
∗file, int line)

• static STARPU_INLINE int _starpu_pthread_rwlock_tryrdlock (starpu_pthread_rwlock_t ∗rwlock, char
∗file, int line)

• static STARPU_INLINE int _starpu_pthread_rwlock_trywrlock (starpu_pthread_rwlock_t ∗rwlock, char
∗file, int line)

• static STARPU_INLINE int _starpu_pthread_cond_timedwait (starpu_pthread_cond_t ∗cond, starpu_←↩

pthread_mutex_t ∗mutex, const struct timespec ∗abstime, char ∗file, int line)

59.50 starpu_tree.h File Reference

Data Structures

• struct starpu_tree

Generated by Doxygen

780 File Documentation

Functions

• void starpu_tree_reset_visited (struct starpu_tree ∗tree, char ∗visited)
• void starpu_tree_prepare_children (unsigned arity, struct starpu_tree ∗father)
• void starpu_tree_insert (struct starpu_tree ∗tree, int id, int level, int is_pu, int arity, struct starpu_tree ∗father)
• struct starpu_tree ∗ starpu_tree_get (struct starpu_tree ∗tree, int id)
• struct starpu_tree ∗ starpu_tree_get_neighbour (struct starpu_tree ∗tree, struct starpu_tree ∗node, char
∗visited, char ∗present)

• void starpu_tree_free (struct starpu_tree ∗tree)

59.51 starpu_util.h File Reference

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <starpu_config.h>
#include <sys/time.h>

Macros

• #define STARPU_GNUC_PREREQ(maj, min)
• #define STARPU_UNLIKELY(expr)
• #define STARPU_LIKELY(expr)
• #define STARPU_ATTRIBUTE_UNUSED
• #define STARPU_ATTRIBUTE_NORETURN
• #define STARPU_ATTRIBUTE_VISIBILITY_DEFAULT
• #define STARPU_VISIBILITY_PUSH_HIDDEN
• #define STARPU_VISIBILITY_POP
• #define STARPU_ATTRIBUTE_MALLOC
• #define STARPU_ATTRIBUTE_WARN_UNUSED_RESULT
• #define STARPU_ATTRIBUTE_PURE
• #define STARPU_ATTRIBUTE_ALIGNED(size)
• #define STARPU_ATTRIBUTE_FORMAT(type, string, first)
• #define STARPU_INLINE
• #define STARPU_ATTRIBUTE_CALLOC_SIZE(num, size)
• #define STARPU_ATTRIBUTE_ALLOC_SIZE(size)
• #define endif
• #define endif
• #define STARPU_BACKTRACE_LENGTH
• #define STARPU_DUMP_BACKTRACE()
• #define STARPU_SIMGRID_ASSERT(x)
• #define STARPU_ASSERT(x)
• #define STARPU_ASSERT_ACCESSIBLE(ptr)
• #define STARPU_STATIC_ASSERT(x)
• #define STARPU_ASSERT_MSG(x, msg, ...)
• #define _starpu_abort()
• #define STARPU_ABORT()
• #define STARPU_ABORT_MSG(msg, ...)
• #define STARPU_CHECK_RETURN_VALUE(err, message, ...)
• #define STARPU_CHECK_RETURN_VALUE_IS(err, value, message, ...)
• #define STARPU_ATOMIC_SOMETHING(name, expr)
• #define STARPU_ATOMIC_SOMETHINGL(name, expr)

Generated by Doxygen

59.52 starpu_worker.h File Reference 781

• #define STARPU_ATOMIC_SOMETHING64(name, expr)
• #define STARPU_BOOL_COMPARE_AND_SWAP_PTR(ptr, old, value)
• #define STARPU_VAL_COMPARE_AND_SWAP_PTR(ptr, old, value)
• #define STARPU_RMB()
• #define STARPU_WMB()
• #define STARPU_CACHELINE_SIZE

59.52 starpu_worker.h File Reference

#include <stdlib.h>
#include <starpu_config.h>
#include <starpu_thread.h>
#include <starpu_task.h>
#include <hwloc.h>

Data Structures

• struct starpu_sched_ctx_iterator
• struct starpu_worker_collection

Macros

• #define STARPU_UNKNOWN_WORKER
• #define starpu_worker_get_id_check()

Enumerations

• enum starpu_node_kind {
STARPU_UNUSED , STARPU_CPU_RAM , STARPU_CUDA_RAM , STARPU_OPENCL_RAM ,
STARPU_MAX_FPGA_RAM , STARPU_DISK_RAM , STARPU_MPI_MS_RAM , STARPU_TCPIP_MS_RAM
,
STARPU_HIP_RAM , STARPU_MAX_RAM , STARPU_NRAM }

• enum starpu_worker_archtype {
STARPU_CPU_WORKER , STARPU_CUDA_WORKER , STARPU_OPENCL_WORKER , STARPU_MAX_FPGA_WORKER
,
STARPU_MPI_MS_WORKER , STARPU_TCPIP_MS_WORKER , STARPU_HIP_WORKER , STARPU_NARCH
,
STARPU_ANY_WORKER }

• enum starpu_worker_collection_type { STARPU_WORKER_TREE , STARPU_WORKER_LIST }

Functions

• void starpu_worker_wait_for_initialisation (void)
• unsigned starpu_worker_archtype_is_valid (enum starpu_worker_archtype type)
• enum starpu_worker_archtype starpu_arch_mask_to_worker_archtype (unsigned mask)
• unsigned starpu_worker_get_count (void)
• unsigned starpu_cpu_worker_get_count (void)
• unsigned starpu_cuda_worker_get_count (void)
• unsigned starpu_hip_worker_get_count (void)
• unsigned starpu_opencl_worker_get_count (void)
• unsigned starpu_mpi_ms_worker_get_count (void)
• unsigned starpu_tcpip_ms_worker_get_count (void)
• int starpu_worker_get_id (void)
• unsigned _starpu_worker_get_id_check (const char ∗f, int l)
• int starpu_worker_get_bindid (int workerid)

Generated by Doxygen

782 File Documentation

• void starpu_sched_find_all_worker_combinations (void)
• enum starpu_worker_archtype starpu_worker_get_type (int id)
• int starpu_worker_get_count_by_type (enum starpu_worker_archtype type)
• unsigned starpu_worker_get_ids_by_type (enum starpu_worker_archtype type, int ∗workerids, unsigned

maxsize)
• int starpu_worker_get_by_type (enum starpu_worker_archtype type, int num)
• int starpu_worker_get_by_devid (enum starpu_worker_archtype type, int devid)
• unsigned starpu_worker_type_can_execute_task (enum starpu_worker_archtype worker_type, const struct

starpu_task ∗task)
• void starpu_worker_get_name (int id, char ∗dst, size_t maxlen)
• void starpu_worker_display_all (FILE ∗output)
• void starpu_worker_display_names (FILE ∗output, enum starpu_worker_archtype type)
• void starpu_worker_display_count (FILE ∗output, enum starpu_worker_archtype type)
• int starpu_worker_get_devid (int id)
• int starpu_worker_get_devnum (int id)
• int starpu_worker_get_subworkerid (int id)
• struct starpu_tree ∗ starpu_workers_get_tree (void)
• unsigned starpu_worker_get_sched_ctx_list (int worker, unsigned ∗∗sched_ctx)
• void starpu_worker_get_current_task_exp_end (unsigned workerid, struct timespec ∗date)
• unsigned starpu_worker_is_blocked_in_parallel (int workerid)
• unsigned starpu_worker_is_slave_somewhere (int workerid)
• const char ∗ starpu_worker_get_type_as_string (enum starpu_worker_archtype type)
• enum starpu_worker_archtype starpu_worker_get_type_from_string (const char ∗type)
• const char ∗ starpu_worker_get_type_as_env_var (enum starpu_worker_archtype type)
• int starpu_bindid_get_workerids (int bindid, int ∗∗workerids)
• int starpu_worker_get_devids (enum starpu_worker_archtype type, int ∗devids, int num)
• int starpu_worker_get_stream_workerids (unsigned devid, int ∗workerids, enum starpu_worker_archtype

type)
• hwloc_cpuset_t starpu_worker_get_hwloc_cpuset (int workerid)
• hwloc_obj_t starpu_worker_get_hwloc_obj (int workerid)
• int starpu_memory_node_get_devid (unsigned node)
• unsigned starpu_worker_get_local_memory_node (void)
• unsigned starpu_worker_get_memory_node (unsigned workerid)
• unsigned starpu_memory_nodes_get_count (void)
• unsigned starpu_memory_nodes_get_count_by_kind (enum starpu_node_kind kind)
• unsigned starpu_memory_node_get_ids_by_type (enum starpu_node_kind kind, unsigned ∗memory_←↩

nodes_ids, unsigned maxsize)
• int starpu_memory_node_get_name (unsigned node, char ∗name, size_t size)
• unsigned starpu_memory_nodes_get_numa_count (void)
• int starpu_memory_nodes_numa_id_to_devid (int osid)
• int starpu_memory_nodes_numa_devid_to_id (unsigned id)
• enum starpu_node_kind starpu_node_get_kind (unsigned node)
• enum starpu_worker_archtype starpu_memory_node_get_worker_archtype (enum starpu_node_kind

node_kind)
• enum starpu_node_kind starpu_worker_get_memory_node_kind (enum starpu_worker_archtype type)
• unsigned starpu_combined_worker_get_count (void)
• unsigned starpu_worker_is_combined_worker (int id)
• int starpu_combined_worker_get_id (void)
• int starpu_combined_worker_get_size (void)
• int starpu_combined_worker_get_rank (void)
• int starpu_combined_worker_assign_workerid (int nworkers, int workerid_array[])
• int starpu_combined_worker_get_description (int workerid, int ∗worker_size, int ∗∗combined_workerid)
• int starpu_combined_worker_can_execute_task (unsigned workerid, struct starpu_task ∗task, unsigned

nimpl)
• void starpu_parallel_task_barrier_init (struct starpu_task ∗task, int workerid)

Generated by Doxygen

59.53 starpufft.h File Reference 783

• void starpu_parallel_task_barrier_init_n (struct starpu_task ∗task, int worker_size)

Scheduling operations

• int starpu_worker_sched_op_pending (void)
• void starpu_worker_relax_on (void)
• void starpu_worker_relax_off (void)
• int starpu_worker_get_relax_state (void)
• void starpu_worker_lock (int workerid)
• int starpu_worker_trylock (int workerid)
• void starpu_worker_unlock (int workerid)
• void starpu_worker_lock_self (void)
• void starpu_worker_unlock_self (void)
• void starpu_worker_set_going_to_sleep_callback (void(∗callback)(unsigned workerid))
• void starpu_worker_set_waking_up_callback (void(∗callback)(unsigned workerid))

Variables

• struct starpu_worker_collection starpu_worker_list
• struct starpu_worker_collection starpu_worker_tree

59.53 starpufft.h File Reference

Typedefs

• typedef double _Complex starpufft_complex
• typedef struct starpufft_plan ∗ starpufft_plan
• typedef float _Complex starpufftf_complex
• typedef struct starpufftf_plan ∗ starpufftf_plan
• typedef long double _Complex starpufftl_complex
• typedef struct starpufftl_plan ∗ starpufftl_plan

Functions

• starpufft_plan starpufft_plan_dft_1d (int n, int sign, unsigned flags)
• starpufft_plan starpufft_plan_dft_2d (int n, int m, int sign, unsigned flags)
• starpufft_plan starpufft_plan_dft_3d (int n, int m, int p, int sign, unsigned flags)
• starpufft_plan starpufft_plan_dft_r2c_1d (int n, unsigned flags)
• starpufft_plan starpufft_plan_dft_c2r_1d (int n, unsigned flags)
• void ∗ starpufft_malloc (size_t n)
• void starpufft_free (void ∗p, size_t dim)
• int starpufft_execute (starpufft_plan p, void ∗in, void ∗out)
• struct starpu_task ∗ starpufft_start (starpufft_plan p, void ∗in, void ∗out)
• int starpufft_execute_handle (starpufft_plan p, starpu_data_handle_t in, starpu_data_handle_t out)
• struct starpu_task ∗ starpufft_start_handle (starpufft_plan p, starpu_data_handle_t in, starpu_data_handle_t

out)
• void starpufft_cleanup (starpufft_plan p)
• void starpufft_destroy_plan (starpufft_plan p)
• void starpufft_startstats (void)
• void starpufft_stopstats (void)
• void starpufft_showstats (FILE ∗out)
• starpufftf_plan starpufftf_plan_dft_1d (int n, int sign, unsigned flags)
• starpufftf_plan starpufftf_plan_dft_2d (int n, int m, int sign, unsigned flags)
• starpufftf_plan starpufftf_plan_dft_3d (int n, int m, int p, int sign, unsigned flags)
• starpufftf_plan starpufftf_plan_dft_r2c_1d (int n, unsigned flags)
• starpufftf_plan starpufftf_plan_dft_c2r_1d (int n, unsigned flags)
• void ∗ starpufftf_malloc (size_t n)

Generated by Doxygen

784 File Documentation

• void starpufftf_free (void ∗p, size_t dim)
• int starpufftf_execute (starpufftf_plan p, void ∗in, void ∗out)
• struct starpu_task ∗ starpufftf_start (starpufftf_plan p, void ∗in, void ∗out)
• int starpufftf_execute_handle (starpufftf_plan p, starpu_data_handle_t in, starpu_data_handle_t out)
• struct starpu_task ∗ starpufftf_start_handle (starpufftf_plan p, starpu_data_handle_t in, starpu_data_handle_t

out)
• void starpufftf_cleanup (starpufftf_plan p)
• void starpufftf_destroy_plan (starpufftf_plan p)
• void starpufftf_startstats (void)
• void starpufftf_stopstats (void)
• void starpufftf_showstats (FILE ∗out)
• starpufftl_plan starpufftl_plan_dft_1d (int n, int sign, unsigned flags)
• starpufftl_plan starpufftl_plan_dft_2d (int n, int m, int sign, unsigned flags)
• starpufftl_plan starpufftl_plan_dft_3d (int n, int m, int p, int sign, unsigned flags)
• starpufftl_plan starpufftl_plan_dft_r2c_1d (int n, unsigned flags)
• starpufftl_plan starpufftl_plan_dft_c2r_1d (int n, unsigned flags)
• void ∗ starpufftl_malloc (size_t n)
• void starpufftl_free (void ∗p, size_t dim)
• int starpufftl_execute (starpufftl_plan p, void ∗in, void ∗out)
• struct starpu_task ∗ starpufftl_start (starpufftl_plan p, void ∗in, void ∗out)
• int starpufftl_execute_handle (starpufftl_plan p, starpu_data_handle_t in, starpu_data_handle_t out)
• struct starpu_task ∗ starpufftl_start_handle (starpufftl_plan p, starpu_data_handle_t in, starpu_data_handle_t

out)
• void starpufftl_cleanup (starpufftl_plan p)
• void starpufftl_destroy_plan (starpufftl_plan p)
• void starpufftl_startstats (void)
• void starpufftl_stopstats (void)
• void starpufftl_showstats (FILE ∗out)

Variables

• int starpufft_last_plan_number

59.54 sc_hypervisor.h File Reference

#include <starpu.h>
#include <starpu_sched_ctx_hypervisor.h>
#include <sc_hypervisor_config.h>
#include <sc_hypervisor_monitoring.h>
#include <math.h>

Data Structures

• struct sc_hypervisor_policy

Functions

• void ∗ sc_hypervisor_init (struct sc_hypervisor_policy ∗policy)
• void sc_hypervisor_shutdown (void)
• void sc_hypervisor_register_ctx (unsigned sched_ctx, double total_flops)
• void sc_hypervisor_unregister_ctx (unsigned sched_ctx)
• void sc_hypervisor_post_resize_request (unsigned sched_ctx, int task_tag)
• void sc_hypervisor_resize_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void sc_hypervisor_stop_resize (unsigned sched_ctx)

Generated by Doxygen

59.55 sc_hypervisor_config.h File Reference 785

• void sc_hypervisor_start_resize (unsigned sched_ctx)
• const char ∗ sc_hypervisor_get_policy (void)
• void sc_hypervisor_add_workers_to_sched_ctx (int ∗workers_to_add, unsigned nworkers_to_add, unsigned

sched_ctx)
• void sc_hypervisor_remove_workers_from_sched_ctx (int ∗workers_to_remove, unsigned nworkers_to_←↩

remove, unsigned sched_ctx, unsigned now)
• void sc_hypervisor_move_workers (unsigned sender_sched_ctx, unsigned receiver_sched_ctx, int
∗workers_to_move, unsigned nworkers_to_move, unsigned now)

• void sc_hypervisor_size_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• unsigned sc_hypervisor_get_size_req (unsigned ∗∗sched_ctxs, int ∗nsched_ctxs, int ∗∗workers, int
∗nworkers)

• void sc_hypervisor_save_size_req (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void sc_hypervisor_free_size_req (void)
• unsigned sc_hypervisor_can_resize (unsigned sched_ctx)
• void sc_hypervisor_set_type_of_task (struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t footprint,

size_t data_size)
• void sc_hypervisor_update_diff_total_flops (unsigned sched_ctx, double diff_total_flops)
• void sc_hypervisor_update_diff_elapsed_flops (unsigned sched_ctx, double diff_task_flops)
• void sc_hypervisor_update_resize_interval (unsigned ∗sched_ctxs, int nsched_ctxs, int max_nworkers)
• void sc_hypervisor_get_ctxs_on_level (unsigned ∗∗sched_ctxs, int ∗nsched_ctxs, unsigned hierarchy_level,

unsigned father_sched_ctx_id)
• unsigned sc_hypervisor_get_nhierarchy_levels (void)
• void sc_hypervisor_get_leaves (unsigned ∗sched_ctxs, int nsched_ctxs, unsigned ∗leaves, int ∗nleaves)
• double sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx (unsigned sched_ctx)
• void sc_hypervisor_print_overhead (void)
• void sc_hypervisor_init_worker (int workerid, unsigned sched_ctx)

Variables

• starpu_pthread_mutex_t act_hypervisor_mutex

59.55 sc_hypervisor_config.h File Reference

#include <sc_hypervisor.h>

Data Structures

• struct sc_hypervisor_policy_config

• #define SC_HYPERVISOR_MAX_IDLE
• #define SC_HYPERVISOR_MIN_WORKING
• #define SC_HYPERVISOR_PRIORITY
• #define SC_HYPERVISOR_MIN_WORKERS
• #define SC_HYPERVISOR_MAX_WORKERS
• #define SC_HYPERVISOR_GRANULARITY
• #define SC_HYPERVISOR_FIXED_WORKERS
• #define SC_HYPERVISOR_MIN_TASKS
• #define SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE
• #define SC_HYPERVISOR_TIME_TO_APPLY
• #define SC_HYPERVISOR_NULL
• #define SC_HYPERVISOR_ISPEED_W_SAMPLE
• #define SC_HYPERVISOR_ISPEED_CTX_SAMPLE
• #define SC_HYPERVISOR_TIME_SAMPLE
• #define MAX_IDLE_TIME

Generated by Doxygen

786 File Documentation

• #define MIN_WORKING_TIME
• void sc_hypervisor_set_config (unsigned sched_ctx, void ∗config)
• struct sc_hypervisor_policy_config ∗ sc_hypervisor_get_config (unsigned sched_ctx)
• void sc_hypervisor_ctl (unsigned sched_ctx,...)

59.55.1 Data Structure Documentation

59.55.1.1 struct sc_hypervisor_policy_config

Methods that implement a hypervisor resizing policy.

Data Fields

int min_nworkers Indicate the minimum number of workers needed
by the context

int max_nworkers Indicate the maximum number of workers
needed by the context

int granularity Indicate the workers granularity of the context

int priority[STARPU_NMAXWORKERS] Indicate the priority of each worker to stay in the
context the smaller the priority the faster it will be
moved to another context

double max_idle[STARPU_NMAXWORKERS] Indicate the maximum idle time accepted before
a resize is triggered above this limit the priority of
the worker is reduced

double min_working[STARPU_NMAXWORKERS] Indicate that underneath this limit the priority of
the worker is reduced

int fixed_workers[STARPU_NMAXWORKERS] Indicate which workers can be moved and which
ones are fixed

double new_workers_max_idle Indicate the maximum idle time accepted before
a resize is triggered for the workers that just
arrived in the new context

double ispeed_w_sample[STARPU_NMAXWORKERS] Indicate the sample used to compute the instant
speed per worker

double ispeed_ctx_sample Indicate the sample used to compute the instant
speed per ctxs

double time_sample Indicate the sample used to compute the instant
speed per ctx (in seconds)

59.56 sc_hypervisor_lp.h File Reference

#include <sc_hypervisor.h>
#include <starpu_config.h>
#include <glpk.h>

Functions

• double sc_hypervisor_lp_get_nworkers_per_ctx (int nsched_ctxs, int ntypes_of_workers, double res[nsched←↩

_ctxs][ntypes_of_workers], int total_nw[ntypes_of_workers], struct types_of_workers ∗tw, unsigned ∗in_←↩

sched_ctxs)
• double sc_hypervisor_lp_get_tmax (int nw, int ∗workers)
• void sc_hypervisor_lp_round_double_to_int (int ns, int nw, double res[ns][nw], int res_rounded[ns][nw])
• void sc_hypervisor_lp_redistribute_resources_in_ctxs (int ns, int nw, int res_rounded[ns][nw], double

res[ns][nw], unsigned ∗sched_ctxs, struct types_of_workers ∗tw)

Generated by Doxygen

59.57 sc_hypervisor_monitoring.h File Reference 787

• void sc_hypervisor_lp_distribute_resources_in_ctxs (unsigned ∗sched_ctxs, int ns, int nw, int res_←↩

rounded[ns][nw], double res[ns][nw], int ∗workers, int nworkers, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs (unsigned ∗sched_ctxs, int ns, int nw, dou-

ble res[ns][nw], int ∗workers, int nworkers, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_place_resources_in_ctx (int ns, int nw, double w_in_s[ns][nw], unsigned ∗sched_ctxs,

int ∗workers, unsigned do_size, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_share_remaining_resources (int ns, unsigned ∗sched_ctxs, int nworkers, int ∗workers)
• double sc_hypervisor_lp_find_tmax (double t1, double t2)
• unsigned sc_hypervisor_lp_execute_dichotomy (int ns, int nw, double w_in_s[ns][nw], unsigned solve_lp_←↩

integer, void ∗specific_data, double tmin, double tmax, double smallest_tmax, double(∗lp_estimated_distrib←↩

_func)(int lns, int lnw, double ldraft_w_in_s[ns][nw], unsigned lis_integer, double ltmax, void ∗lspecifc_data))
• double sc_hypervisor_lp_simulate_distrib_flops (int nsched_ctxs, int ntypes_of_workers, double speed[nsched←↩

_ctxs][ntypes_of_workers], double flops[nsched_ctxs], double res[nsched_ctxs][ntypes_of_workers], int
total_nw[ntypes_of_workers], unsigned sched_ctxs[nsched_ctxs], double vmax)

• double sc_hypervisor_lp_simulate_distrib_tasks (int ns, int nw, int nt, double w_in_s[ns][nw], double
tasks[nw][nt], double times[nw][nt], unsigned is_integer, double tmax, unsigned ∗in_sched_ctxs, struct
sc_hypervisor_policy_task_pool ∗tmp_task_pools)

• double sc_hypervisor_lp_simulate_distrib_flops_on_sample (int ns, int nw, double final_w_in_s[ns][nw], un-
signed is_integer, double tmax, double ∗∗speed, double flops[ns], double ∗∗final_flops_on_w)

59.57 sc_hypervisor_monitoring.h File Reference

#include <sc_hypervisor.h>

Data Structures

• struct sc_hypervisor_resize_ack
• struct sc_hypervisor_wrapper

Functions

• struct sc_hypervisor_wrapper ∗ sc_hypervisor_get_wrapper (unsigned sched_ctx)
• unsigned ∗ sc_hypervisor_get_sched_ctxs (void)
• int sc_hypervisor_get_nsched_ctxs (void)
• int sc_hypervisor_get_nworkers_ctx (unsigned sched_ctx, enum starpu_worker_archtype arch)
• double sc_hypervisor_get_elapsed_flops_per_sched_ctx (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisor_get_total_elapsed_flops_per_sched_ctx (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisorsc_hypervisor_get_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w,

enum starpu_worker_archtype arch)
• double sc_hypervisor_get_speed (struct sc_hypervisor_wrapper ∗sc_w, enum starpu_worker_archtype arch)

59.57.1 Data Structure Documentation

59.57.1.1 struct sc_hypervisor_wrapper

Wrapper of the contexts available in StarPU which contains all information about a context obtained by incrementing
the performance counters. it is attached to a sched_ctx storing monitoring information

Data Fields

unsigned sched_ctx the monitored context

struct
sc_hypervisor_policy_config ∗

config The corresponding resize
configuration

Generated by Doxygen

788 File Documentation

Data Fields

double start_time_w[STARPU_NMAXWORKERS]the start time of the resizing
sample of the workers of this
context

double current_idle_time[STARPU_NMAXWORKERS]The idle time counter of each
worker of the context

double idle_time[STARPU_NMAXWORKERS]The time the workers were idle
from the last resize

double idle_start_time[STARPU_NMAXWORKERS]The moment when the workers
started being idle

double exec_time[STARPU_NMAXWORKERS]Time during which the worker
executed tasks

double exec_start_time[STARPU_NMAXWORKERS]Time when the worker started
executing a task

int worker_to_be_removed[STARPU_NMAXWORKERS]List of workers that will leave the
context (lazy resizing process)

int pushed_tasks[STARPU_NMAXWORKERS]Number of tasks pushed on each
worker in this context

int poped_tasks[STARPU_NMAXWORKERS]Number of tasks poped from each
worker in this context

double total_flops The total number of flops to
execute by the context

double total_elapsed_flops[STARPU_NMAXWORKERS]The number of flops executed by
each workers of the context

double elapsed_flops[STARPU_NMAXWORKERS]number of flops executed since
last resizing

size_t elapsed_data[STARPU_NMAXWORKERS]Quantity of data (in bytes) used to
execute tasks on each worker in
this context

int elapsed_tasks[STARPU_NMAXWORKERS]Number of tasks executed on each
worker in this context

double ref_speed[2] the average speed of the type of
workers when they belonged to
this context 0 - cuda 1 - cpu

double submitted_flops Number of flops submitted to this
context

double remaining_flops Number of flops that still have to
be executed by the workers in this
context

double start_time Start time of the resizing sample of
this context

double real_start_time First time a task was pushed to
this context

double hyp_react_start_time Start time for sample in which the
hypervisor is not allowed to react
bc too expensive

struct sc_hypervisor_resize_ack resize_ack Structure confirming the last resize
finished and a new one can be
done. Workers do not leave the
current context until the receiver
context does not ack the receive of
these workers

starpu_pthread_mutex_t mutex Mutex needed to synchronize the
acknowledgment of the workers
into the receiver context

Generated by Doxygen

59.58 sc_hypervisor_policy.h File Reference 789

Data Fields

unsigned total_flops_available Boolean indicating if the hypervisor
can use the flops corresponding to
the entire execution of the context

unsigned to_be_sized boolean indicating that a context is
being sized

unsigned compute_idle[STARPU_NMAXWORKERS]Boolean indicating if we add the
idle of this worker to the idle of the
context

unsigned compute_partial_idle[STARPU_NMAXWORKERS]Boolean indicating if we add the
entiere idle of this worker to the
idle of the context or just half

unsigned consider_max consider the max in the lp

59.58 sc_hypervisor_policy.h File Reference

#include <sc_hypervisor.h>

Data Structures

• struct types_of_workers
• struct sc_hypervisor_policy_task_pool

Macros

• #define HYPERVISOR_REDIM_SAMPLE
• #define HYPERVISOR_START_REDIM_SAMPLE
• #define SC_NOTHING
• #define SC_IDLE
• #define SC_SPEED

Functions

• void sc_hypervisor_policy_add_task_to_pool (struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t foot-
print, struct sc_hypervisor_policy_task_pool ∗∗task_pools, size_t data_size)

• void sc_hypervisor_policy_remove_task_from_pool (struct starpu_task ∗task, uint32_t footprint, struct
sc_hypervisor_policy_task_pool ∗∗task_pools)

• struct sc_hypervisor_policy_task_pool ∗ sc_hypervisor_policy_clone_task_pool (struct sc_hypervisor_policy_task_pool
∗tp)

• void sc_hypervisor_get_tasks_times (int nw, int nt, double times[nw][nt], int ∗workers, unsigned size_ctxs,
struct sc_hypervisor_policy_task_pool ∗task_pools)

• unsigned sc_hypervisor_find_lowest_prio_sched_ctx (unsigned req_sched_ctx, int nworkers_to_move)
• int ∗ sc_hypervisor_get_idlest_workers (unsigned sched_ctx, int ∗nworkers, enum starpu_worker_archtype

arch)
• int ∗ sc_hypervisor_get_idlest_workers_in_list (int ∗start, int ∗workers, int nall_workers, int ∗nworkers, enum

starpu_worker_archtype arch)
• int sc_hypervisor_get_movable_nworkers (struct sc_hypervisor_policy_config ∗config, unsigned sched_ctx,

enum starpu_worker_archtype arch)
• int sc_hypervisor_compute_nworkers_to_move (unsigned req_sched_ctx)
• unsigned sc_hypervisor_policy_resize (unsigned sender_sched_ctx, unsigned receiver_sched_ctx, unsigned

force_resize, unsigned now)
• unsigned sc_hypervisor_policy_resize_to_unknown_receiver (unsigned sender_sched_ctx, unsigned now)

Generated by Doxygen

790 File Documentation

• double sc_hypervisor_get_ctx_speed (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisor_get_slowest_ctx_exec_time (void)
• double sc_hypervisor_get_fastest_ctx_exec_time (void)
• double sc_hypervisor_get_speed_per_worker (struct sc_hypervisor_wrapper ∗sc_w, unsigned worker)
• double sc_hypervisor_get_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w, enum starpu_worker_archtype

arch)
• double sc_hypervisor_get_ref_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w, enum

starpu_worker_archtype arch)
• double sc_hypervisor_get_avg_speed (enum starpu_worker_archtype arch)
• void sc_hypervisor_check_if_consider_max (struct types_of_workers ∗tw)
• void sc_hypervisor_group_workers_by_type (struct types_of_workers ∗tw, int ∗total_nw)
• enum starpu_worker_archtype sc_hypervisor_get_arch_for_index (unsigned w, struct types_of_workers ∗tw)
• unsigned sc_hypervisor_get_index_for_arch (enum starpu_worker_archtype arch, struct types_of_workers
∗tw)

• unsigned sc_hypervisor_criteria_fulfilled (unsigned sched_ctx, int worker)
• unsigned sc_hypervisor_check_idle (unsigned sched_ctx, int worker)
• unsigned sc_hypervisor_check_speed_gap_btw_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers,

int nworkers)
• unsigned sc_hypervisor_check_speed_gap_btw_ctxs_on_level (int level, int ∗workers_in, int nworkers_in,

unsigned father_sched_ctx_id, unsigned ∗∗sched_ctxs, int ∗nsched_ctxs)
• unsigned sc_hypervisor_get_resize_criteria (void)
• struct types_of_workers ∗ sc_hypervisor_get_types_of_workers (int ∗workers, unsigned nworkers)

59.59 starpurm.h File Reference

#include <hwloc.h>
#include <starpurm_config.h>

Typedefs

• typedef int starpurm_drs_ret_t
• typedef void ∗ starpurm_drs_desc_t
• typedef void ∗ starpurm_drs_cbs_t
• typedef void(∗ starpurm_drs_cb_t) (void ∗)
• typedef void ∗ starpurm_block_cond_t
• typedef int(∗ starpurm_polling_t) (void ∗)

Enumerations

• enum e_starpurm_drs_ret { starpurm_DRS_SUCCESS , starpurm_DRS_DISABLD , starpurm_DRS_PERM
, starpurm_DRS_EINVAL }

Functions

Initialisation

• void starpurm_initialize_with_cpuset (hwloc_cpuset_t initially_owned_cpuset)
• void starpurm_initialize (void)
• void starpurm_shutdown (void)

Spawn

• void starpurm_spawn_kernel_on_cpus (void ∗data, void(∗f)(void ∗), void ∗args, hwloc_cpuset_t cpuset)
• void starpurm_spawn_kernel_on_cpus_callback (void ∗data, void(∗f)(void ∗), void ∗args, hwloc_cpuset_t

cpuset, void(∗cb_f)(void ∗), void ∗cb_args)

Generated by Doxygen

59.59 starpurm.h File Reference 791

• void starpurm_spawn_kernel_callback (void ∗data, void(∗f)(void ∗), void ∗args, void(∗cb_f)(void ∗), void
∗cb_args)

DynamicResourceSharing

• starpurm_drs_ret_t starpurm_set_drs_enable (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_set_drs_disable (starpurm_drs_desc_t ∗spd)
• int starpurm_drs_enabled_p (void)
• starpurm_drs_ret_t starpurm_set_max_parallelism (starpurm_drs_desc_t ∗spd, int max)
• starpurm_drs_ret_t starpurm_assign_cpu_to_starpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_assign_cpus_to_starpu (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_assign_cpu_mask_to_starpu (starpurm_drs_desc_t ∗spd, const hwloc_←↩

cpuset_t mask)
• starpurm_drs_ret_t starpurm_assign_all_cpus_to_starpu (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_withdraw_cpu_from_starpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_withdraw_cpus_from_starpu (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_withdraw_cpu_mask_from_starpu (starpurm_drs_desc_t ∗spd, const

hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_withdraw_all_cpus_from_starpu (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_lend (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_lend_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_lend_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_lend_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_reclaim (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_reclaim_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_reclaim_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_reclaim_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_acquire (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_acquire_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_acquire_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_acquire_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_return_all (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_return_cpu (starpurm_drs_desc_t ∗spd, int cpuid)

Devices

• int starpurm_get_device_type_id (const char ∗type_str)
• const char ∗ starpurm_get_device_type_name (int type_id)
• int starpurm_get_nb_devices_by_type (int type_id)
• int starpurm_get_device_id (int type_id, int device_rank)
• starpurm_drs_ret_t starpurm_assign_device_to_starpu (starpurm_drs_desc_t ∗spd, int type_id, int unit←↩

_rank)
• starpurm_drs_ret_t starpurm_assign_devices_to_starpu (starpurm_drs_desc_t ∗spd, int type_id, int nde-

vices)
• starpurm_drs_ret_t starpurm_assign_device_mask_to_starpu (starpurm_drs_desc_t ∗spd, const hwloc←↩

_cpuset_t mask)
• starpurm_drs_ret_t starpurm_assign_all_devices_to_starpu (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_withdraw_device_from_starpu (starpurm_drs_desc_t ∗spd, int type_id, int

unit_rank)
• starpurm_drs_ret_t starpurm_withdraw_devices_from_starpu (starpurm_drs_desc_t ∗spd, int type_id, int

ndevices)
• starpurm_drs_ret_t starpurm_withdraw_device_mask_from_starpu (starpurm_drs_desc_t ∗spd, const

hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_withdraw_all_devices_from_starpu (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_lend_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_lend_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_lend_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_lend_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_reclaim_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_reclaim_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)

Generated by Doxygen

792 File Documentation

• starpurm_drs_ret_t starpurm_reclaim_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_reclaim_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_acquire_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_acquire_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_acquire_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_acquire_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_return_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_return_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)

CpusetsQueries

• hwloc_cpuset_t starpurm_get_device_worker_cpuset (int type_id, int unit_rank)
• hwloc_cpuset_t starpurm_get_global_cpuset (void)
• hwloc_cpuset_t starpurm_get_selected_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_cpu_workers_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_device_workers_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_device_workers_cpuset_by_type (int typeid)

Generated by Doxygen

Chapter 60

Deprecated List

Global STARPU_CLUSTER_AWAKE_WORKERS

Use STARPU_PARALLEL_WORKER_AWAKE_WORKERS

Global STARPU_CLUSTER_CREATE_FUNC

Use STARPU_PARALLEL_WORKER_CREATE_FUNC

Global STARPU_CLUSTER_CREATE_FUNC_ARG

Use STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG

Global STARPU_CLUSTER_KEEP_HOMOGENEOUS

Use STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS

Global starpu_cluster_machine (hwloc_obj_type_t cluster_level,...)

Use starpu_parallel_worker_init()

Global STARPU_CLUSTER_MAX_NB

Use STARPU_PARALLEL_WORKER_MAX_NB

Global STARPU_CLUSTER_MIN_NB

Use STARPU_PARALLEL_WORKER_MIN_NB

Global STARPU_CLUSTER_NB

Use STARPU_PARALLEL_WORKER_NB

Global STARPU_CLUSTER_NCORES

Use STARPU_PARALLEL_WORKER_NCORES

Global STARPU_CLUSTER_NEW

Use STARPU_PARALLEL_WORKER_NEW

Global STARPU_CLUSTER_PARTITION_ONE

Use STARPU_PARALLEL_WORKER_PARTITION_ONE

Global STARPU_CLUSTER_POLICY_NAME

Use STARPU_PARALLEL_WORKER_POLICY_NAME

Global STARPU_CLUSTER_POLICY_STRUCT

Use STARPU_PARALLEL_WORKER_POLICY_STRUCT

Global STARPU_CLUSTER_PREFERE_MIN

Use STARPU_PARALLEL_WORKER_PREFERE_MIN

Global starpu_cluster_print (struct starpu_cluster_machine ∗clusters)

Use starpu_parallel_worker_print()

Global STARPU_CLUSTER_TYPE

Use STARPU_PARALLEL_WORKER_TYPE

Global starpu_cluster_types

Use starpu_parallel_worker_types

Generated by Doxygen

794 Deprecated List

Global starpu_codelet::cpu_func

Optional field which has been made deprecated. One should use instead the field starpu_codelet::cpu_funcs.

Global starpu_codelet::cuda_func

Optional field which has been made deprecated. One should use instead the starpu_codelet::cuda_funcs field.

Global starpu_codelet::opencl_func

Optional field which has been made deprecated. One should use instead the starpu_codelet::opencl_funcs
field.

Global starpu_data_free_pinned_if_possible

Equivalent to starpu_free(). This macro is provided to avoid breaking old codes.

Global starpu_data_interface_ops::handle_to_pointer)(starpu_data_handle_t handle, unsigned node)

Use starpu_data_interface_ops::to_pointer instead. Return the current pointer (if any) for the handle on the
given node.

Global starpu_data_malloc_pinned_if_possible

Equivalent to starpu_malloc(). This macro is provided to avoid breaking old codes.

Global starpu_free (void ∗A)

Free memory which has previously been allocated with starpu_malloc(). This function is deprecated, one should
use starpu_free_noflag(). The function does nothing if the pointer is NULL. See Data Management Allocation
for more details.

Global starpu_mpi_initialize (void)

This function has been made deprecated. One should use instead the function starpu_mpi_init(). This function
does not call MPI_Init(), it should be called beforehand.

Global starpu_mpi_initialize_extended (int ∗rank, int ∗world_size)

This function has been made deprecated. One should use instead the function starpu_mpi_init(). MPI will be
initialized by starpumpi by calling MPI_Init_Thread(argc, argv, MPI_THREAD_SERIALIZED,
...).

Global STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

Setting the field starpu_codelet::cpu_func with this macro indicates the codelet will have several implementa-
tions. The use of this macro is deprecated. One should always only define the field starpu_codelet::cpu_funcs.

Global STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

Setting the field starpu_codelet::cuda_func with this macro indicates the codelet will have several implementa-
tions. The use of this macro is deprecated. One should always only define the field starpu_codelet::cuda_funcs.

Global STARPU_MULTIPLE_HIP_IMPLEMENTATIONS

Setting the field starpu_codelet::hip_func with this macro indicates the codelet will have several implementa-
tions. The use of this macro is deprecated. One should always only define the field starpu_codelet::hip_funcs.

Global STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

Setting the field starpu_codelet::opencl_func with this macro indicates the codelet will have several
implementations. The use of this macro is deprecated. One should always only define the field
starpu_codelet::opencl_funcs.

Global starpu_uncluster_machine (struct starpu_cluster_machine ∗clusters)

Use starpu_parallel_worker_shutdown()

Generated by Doxygen

Index

__configure__--disable-asynchronous-copy, 19
__configure__--disable-asynchronous-cuda-copy, 19
__configure__--disable-asynchronous-fpga-copy, 19
__configure__--disable-asynchronous-hip-copy, 19
__configure__--disable-asynchronous-max-fpga-copy,

19
__configure__--disable-asynchronous-mpi-master-

slave-copy, 19
__configure__--disable-asynchronous-opencl-copy, 19
__configure__--disable-build-doc, 17
__configure__--disable-build-examples, 21
__configure__--disable-build-tests, 21
__configure__--disable-cpu, 18
__configure__--disable-cuda, 18
__configure__--disable-cuda-memcpy-peer, 18
__configure__--disable-fortran, 19
__configure__--disable-glpk, 21
__configure__--disable-icc, 17
__configure__--disable-mpi, 19
__configure__--disable-opencl, 18
__configure__--disable-socl, 20
__configure__--disable-starpufft, 20
__configure__--enable-allocation-cache, 20
__configure__--enable-blas-lib, 20
__configure__--enable-blocking-drivers, 18
__configure__--enable-bubble, 20
__configure__--enable-build-doc-pdf, 17
__configure__--enable-calibration-heuristic, 21
__configure__--enable-coverage, 17
__configure__--enable-data-locality-enforce, 18
__configure__--enable-debug, 17
__configure__--enable-eclipse-plugin, 20
__configure__--enable-fast, 17
__configure__--enable-fxt-lock, 20
__configure__--enable-fxt-max-files, 20
__configure__--enable-hdf5, 20
__configure__--enable-icc, 17
__configure__--enable-leveldb, 20
__configure__--enable-long-check, 17
__configure__--enable-max-sched-ctxs, 18
__configure__--enable-maxbuffers, 20
__configure__--enable-maxcpus, 18
__configure__--enable-maxcudadev, 18
__configure__--enable-maximplementations, 18
__configure__--enable-maxnodes, 19
__configure__--enable-maxnumanodes, 18
__configure__--enable-maxopencldev, 18
__configure__--enable-memory-stats, 21
__configure__--enable-mlr, 21

__configure__--enable-mlr-system-blas, 21
__configure__--enable-model-debug, 20
__configure__--enable-mpi, 19
__configure__--enable-mpi-ft, 19
__configure__--enable-mpi-ft-stats, 19
__configure__--enable-mpi-master-slave, 19
__configure__--enable-mpi-pedantic-isend, 19
__configure__--enable-mpi-verbose, 19
__configure__--enable-new-check, 17
__configure__--enable-nmad, 19
__configure__--enable-opencl-simulator, 18
__configure__--enable-opengl-render, 20
__configure__--enable-openmp, 20
__configure__--enable-openmp-llvm, 20
__configure__--enable-parallel-worker, 20
__configure__--enable-perf-debug, 20
__configure__--enable-python-multi-interpreter, 19
__configure__--enable-quick-check, 17
__configure__--enable-sc-hypervisor, 21
__configure__--enable-simgrid, 21
__configure__--enable-simgrid-mc, 21
__configure__--enable-spinlock-check, 17
__configure__--enable-starpufft-examples, 20
__configure__--enable-starpupy, 19
__configure__--enable-verbose, 17
__configure__--enable-worker-callbacks, 18
__configure__--with-atlas-dir, 21
__configure__--with-check-flags, 17
__configure__--with-cuda-dir, 18
__configure__--with-cuda-include-dir, 18
__configure__--with-cuda-lib-dir, 18
__configure__--with-fxt, 20
__configure__--with-goto-dir, 20
__configure__--with-hdf5-include-dir, 20
__configure__--with-hdf5-lib-dir, 20
__configure__--with-hwloc, 17
__configure__--with-hwloc-prefix, 17
__configure__--with-max-fpga, 19
__configure__--with-mkl-cflags, 21
__configure__--with-mkl-ldflags, 21
__configure__--with-mpicc, 19
__configure__--with-opencl-dir, 18
__configure__--with-opencl-include-dir, 18
__configure__--with-opencl-lib-dir, 18
__configure__--with-perf-model-dir, 20
__configure__--with-simgrid-dir, 21
__configure__--with-simgrid-include-dir, 21
__configure__--with-simgrid-lib-dir, 21
__configure__--with-smpirun, 21

Generated by Doxygen

796 INDEX

__configure__--without-hwloc, 17
__env__OCL_ICD_VENDORS, 30
__env__SC_HYPERVISOR_LAZY_RESIZE, 37
__env__SC_HYPERVISOR_MAX_SPEED_GAP, 37
__env__SC_HYPERVISOR_POLICY, 37
__env__SC_HYPERVISOR_SAMPLE_CRITERIA, 37
__env__SC_HYPERVISOR_START_RESIZE, 37
__env__SC_HYPERVISOR_STOP_PRINT, 37
__env__SC_HYPERVISOR_TRIGGER_RESIZE, 37
__env__SOCL_OCL_LIB_OPENCL, 30
__env__STARPUPY_MULTI_INTERPRETER, 31
__env__STARPUPY_OWN_GIL, 31
__env__STARPU_AUTOHETEROPRIO_FREEZE_GATHERING,

30
__env__STARPU_AUTOHETEROPRIO_ORDERING_INTERVAL,

30
__env__STARPU_AUTOHETEROPRIO_PRINT_AFTER_ORDERING,

29
__env__STARPU_AUTOHETEROPRIO_PRINT_DATA_ON_UPDATE,

29
__env__STARPU_AUTOHETEROPRIO_PRIORITY_ORDERING_POLICY,

29
__env__STARPU_BACKOFF_MAX, 24
__env__STARPU_BACKOFF_MIN, 24
__env__STARPU_BUS_CALIBRATE, 28
__env__STARPU_BUS_STATS, 35
__env__STARPU_BUS_STATS_FILE, 35
__env__STARPU_CALIBRATE, 28
__env__STARPU_CALIBRATE_MINIMUM, 28
__env__STARPU_CATCH_SIGNALS, 36
__env__STARPU_CODELET_PROFILING, 29
__env__STARPU_COMM_STATS, 30
__env__STARPU_CUDA_ONLY_FAST_ALLOC_OTHER_MEMNODES,

26
__env__STARPU_CUDA_PIPELINE, 25
__env__STARPU_CUDA_THREAD_PER_DEV, 25
__env__STARPU_CUDA_THREAD_PER_WORKER,

25
__env__STARPU_DATA_LOCALITY_ENFORCE, 25
__env__STARPU_DISABLE_ASYNCHRONOUS_COPY,

24
__env__STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY,

25
__env__STARPU_DISABLE_ASYNCHRONOUS_HIP_COPY,

27
__env__STARPU_DISABLE_ASYNCHRONOUS_MAX_FPGA_COPY,

26
__env__STARPU_DISABLE_ASYNCHRONOUS_MPI_MS_COPY,

27
__env__STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY,

26
__env__STARPU_DISABLE_ASYNCHRONOUS_TCPIP_MS_COPY,

27
__env__STARPU_DISABLE_KERNELS, 36
__env__STARPU_DISABLE_PINNING, 24
__env__STARPU_DISK_SWAP, 34
__env__STARPU_DISK_SWAP_BACKEND, 34
__env__STARPU_DISK_SWAP_SIZE, 34

__env__STARPU_DISPLAY_BINDINGS, 36
__env__STARPU_ENABLE_CUDA_GPU_GPU_DIRECT,

26
__env__STARPU_ENABLE_MAP, 25
__env__STARPU_ENABLE_STATS, 35
__env__STARPU_ENERGY_PROFILING, 29
__env__STARPU_EXPECTED_TRANSFER_TIME_WRITEBACK,

24
__env__STARPU_FXT_EVENTS, 33
__env__STARPU_FXT_PREFIX, 32
__env__STARPU_FXT_SUFFIX, 32
__env__STARPU_FXT_TRACE, 33
__env__STARPU_GENERATE_TRACE, 35
__env__STARPU_GENERATE_TRACE_OPTIONS, 35
__env__STARPU_GLOBAL_ARBITER, 36
__env__STARPU_HETEROPRIO_CODELET_GROUPING_STRATEGY,

29
__env__STARPU_HETEROPRIO_DATA_DIR, 29
__env__STARPU_HETEROPRIO_DATA_FILE, 29
__env__STARPU_HETEROPRIO_USE_AUTO_CALIBRATION,

29
__env__STARPU_HETEROPRIO_USE_LA, 29
__env__STARPU_HISTORY_MAX_ERROR, 36
__env__STARPU_HOME, 32
__env__STARPU_HOSTNAME, 32
__env__STARPU_HWLOC_INPUT, 36
__env__STARPU_IDLE_FILE, 36
__env__STARPU_IDLE_POWER, 29
__env__STARPU_LAHETEROPRIO_PRIO_STEP_arch,

29
__env__STARPU_LAHETEROPRIO_PUSH, 29
__env__STARPU_LAHETEROPRIO_S_arch, 29
__env__STARPU_LIMIT_BANDWIDTH, 34
__env__STARPU_LIMIT_CPU_MEM, 34
__env__STARPU_LIMIT_CPU_NUMA_MEM, 34
__env__STARPU_LIMIT_CPU_NUMA_devid_MEM, 34
__env__STARPU_LIMIT_CUDA_MEM, 33
__env__STARPU_LIMIT_CUDA_devid_MEM, 33
__env__STARPU_LIMIT_HIP_MEM, 34
__env__STARPU_LIMIT_HIP_devid_MEM, 34
__env__STARPU_LIMIT_MAX_SUBMITTED_TASKS,

35
__env__STARPU_LIMIT_MIN_SUBMITTED_TASKS,

35
__env__STARPU_LIMIT_OPENCL_MEM, 33
__env__STARPU_LIMIT_OPENCL_devid_MEM, 33
__env__STARPU_LOGFILENAME, 32
__env__STARPU_MAIN_THREAD_BIND, 24
__env__STARPU_MAIN_THREAD_COREID, 24
__env__STARPU_MAIN_THREAD_CPUID, 24
__env__STARPU_MALLOC_SIMULATION_FOLD, 31
__env__STARPU_MAX_MEMORY_USE, 35
__env__STARPU_MAX_PRIO, 28
__env__STARPU_MAX_WORKERSIZE, 24
__env__STARPU_MEMORY_STATS, 35
__env__STARPU_MINIMUM_AVAILABLE_MEM, 34
__env__STARPU_MINIMUM_CLEAN_BUFFERS, 34
__env__STARPU_MIN_PRIO, 28

Generated by Doxygen

INDEX 797

__env__STARPU_MIN_WORKERSIZE, 24
__env__STARPU_MPI_CACHE, 30
__env__STARPU_MPI_CACHE_STATS, 30
__env__STARPU_MPI_COMM, 30
__env__STARPU_MPI_COOP_SENDS, 30
__env__STARPU_MPI_DEBUG_LEVEL_MAX, 32
__env__STARPU_MPI_DEBUG_LEVEL_MIN, 32
__env__STARPU_MPI_DRIVER_CALL_FREQUENCY,

31
__env__STARPU_MPI_DRIVER_TASK_FREQUENCY,

31
__env__STARPU_MPI_EARLYDATA_ALLOCATE, 31
__env__STARPU_MPI_FAKE_RANK, 30
__env__STARPU_MPI_FAKE_SIZE, 30
__env__STARPU_MPI_GPUDIRECT, 28
__env__STARPU_MPI_HOSTNAMES, 32
__env__STARPU_MPI_MASTER_NODE, 27
__env__STARPU_MPI_MEM_THROTTLE, 31
__env__STARPU_MPI_MS_MULTIPLE_THREAD, 27
__env__STARPU_MPI_NDETACHED_SEND, 30
__env__STARPU_MPI_NOBIND, 28
__env__STARPU_MPI_NREADY_PROCESS, 30
__env__STARPU_MPI_PRIORITIES, 30
__env__STARPU_MPI_PSM2, 28
__env__STARPU_MPI_RECV_WAIT_FINALIZE, 30
__env__STARPU_MPI_REDUX_ARITY_THRESHOLD,

28
__env__STARPU_MPI_STATS, 30
__env__STARPU_MPI_THREAD_COREID, 27
__env__STARPU_MPI_THREAD_CPUID, 27
__env__STARPU_MPI_TRACE_SYNC_CLOCKS, 30
__env__STARPU_NCPU, 25
__env__STARPU_NCPUS, 25
__env__STARPU_NCUDA, 25
__env__STARPU_NHIP, 27
__env__STARPU_NMAX_FPGA, 26
__env__STARPU_NMPIMSTHREADS, 27
__env__STARPU_NMPI_MS, 27
__env__STARPU_NOPENCL, 26
__env__STARPU_NTCPIPMSTHREADS, 27
__env__STARPU_NTCPIP_MS, 27
__env__STARPU_NTHREADS_PER_CORE, 24
__env__STARPU_NWORKER_PER_CUDA, 25
__env__STARPU_OPENCL_ONLY_ON_CPUS, 26
__env__STARPU_OPENCL_ON_CPUS, 26
__env__STARPU_OPENCL_PIPELINE, 26
__env__STARPU_OPENCL_PROGRAM_DIR, 32
__env__STARPU_PATH, 32
__env__STARPU_PCI_FLAT, 31
__env__STARPU_PERF_MODEL_DIR, 32
__env__STARPU_PERF_MODEL_HOMOGENEOUS_CPU,

32
__env__STARPU_PERF_MODEL_HOMOGENEOUS_CUDA,

32
__env__STARPU_PERF_MODEL_HOMOGENEOUS_MPI_MS,

32
__env__STARPU_PERF_MODEL_HOMOGENEOUS_OPENCL,

32

__env__STARPU_PERF_MODEL_PATH, 32
__env__STARPU_PREFETCH, 28
__env__STARPU_PROFILING, 29
__env__STARPU_PROF_PAPI_EVENTS, 29
__env__STARPU_RAND_SEED, 36
__env__STARPU_RESERVE_NCPU, 25
__env__STARPU_SCHED, 28
__env__STARPU_SCHED_ALPHA, 28
__env__STARPU_SCHED_BETA, 28
__env__STARPU_SCHED_GAMMA, 28
__env__STARPU_SCHED_LIB, 28
__env__STARPU_SCHED_READY, 28
__env__STARPU_SCHED_SORTED_ABOVE, 29
__env__STARPU_SCHED_SORTED_BELOW, 29
__env__STARPU_SILENT, 32
__env__STARPU_SIMGRID, 31
__env__STARPU_SIMGRID_CUDA_MALLOC_COST,

31
__env__STARPU_SIMGRID_CUDA_QUEUE_COST,

31
__env__STARPU_SIMGRID_FETCHING_INPUT_COST,

31
__env__STARPU_SIMGRID_SCHED_COST, 31
__env__STARPU_SIMGRID_TASK_PUSH_COST, 31
__env__STARPU_SIMGRID_TASK_SUBMIT_COST,

31
__env__STARPU_SIMGRID_TRANSFER_COST, 31
__env__STARPU_SINGLE_COMBINED_WORKER, 24
__env__STARPU_SINK, 25
__env__STARPU_STATS, 35
__env__STARPU_SUBALLOCATOR, 34
__env__STARPU_SYNTHESIZE_ARITY_COMBINED_WORKER,

24
__env__STARPU_TARGET_AVAILABLE_MEM, 34
__env__STARPU_TARGET_CLEAN_BUFFERS, 34
__env__STARPU_TASK_BREAK_ON_EXEC, 36
__env__STARPU_TASK_BREAK_ON_POP, 36
__env__STARPU_TASK_BREAK_ON_PUSH, 35
__env__STARPU_TASK_BREAK_ON_SCHED, 36
__env__STARPU_TASK_PROGRESS, 35
__env__STARPU_TCPIP_MS_MASTER, 27
__env__STARPU_TCPIP_MS_MULTIPLE_THREAD,

27
__env__STARPU_TCPIP_MS_PORT, 27
__env__STARPU_TCPIP_MS_SLAVES, 27
__env__STARPU_TRACE_BUFFER_SIZE, 35
__env__STARPU_USE_NUMA, 36
__env__STARPU_WATCHDOG_CRASH, 35
__env__STARPU_WATCHDOG_DELAY, 35
__env__STARPU_WATCHDOG_TIMEOUT, 35
__env__STARPU_WORKERS_COREID, 24
__env__STARPU_WORKERS_CPUID, 23
__env__STARPU_WORKERS_CUDAID, 25
__env__STARPU_WORKERS_GETBIND, 23
__env__STARPU_WORKERS_HIPID, 27
__env__STARPU_WORKERS_MAX_FPGAID, 26
__env__STARPU_WORKERS_NOBIND, 23
__env__STARPU_WORKERS_OPENCLID, 26

Generated by Doxygen

798 INDEX

__env__STARPU_WORKER_STATS, 35
__env__STARPU_WORKER_STATS_FILE, 35
__env__STARPU_WORKER_TREE, 24

act_hypervisor_mutex
Scheduling Context Hypervisor - Regular usage,

673
add

starpu_worker_collection, 708
add_child

starpu_sched_component, 513
add_workers

starpu_sched_policy, 647
alloc

starpu_disk_ops, 585
alloc_compare

starpu_data_interface_ops, 378
alloc_footprint

starpu_data_interface_ops, 378
allocate_data_on_node

starpu_data_interface_ops, 376
any_to_any

starpu_data_copy_methods, 375
arch_cost_function

starpu_perfmodel, 606
async_full_read

starpu_disk_ops, 585
async_full_write

starpu_disk_ops, 585
async_read

starpu_disk_ops, 585
async_write

starpu_disk_ops, 585

bandwidth
starpu_disk_ops, 585

Bitmap, 328
starpu_bitmap_and_get, 329
starpu_bitmap_cardinal, 329
starpu_bitmap_create, 328
starpu_bitmap_destroy, 328
starpu_bitmap_first, 329
starpu_bitmap_get, 329
starpu_bitmap_has_next, 330
starpu_bitmap_init, 328
starpu_bitmap_last, 330
starpu_bitmap_next, 330
starpu_bitmap_or, 329
starpu_bitmap_set, 328
starpu_bitmap_unset, 329
starpu_bitmap_unset_all, 329
starpu_bitmap_unset_and, 329

bubble_func
starpu_codelet, 338
starpu_task, 348

bubble_func_arg
starpu_task, 348

bubble_gen_dag_func
starpu_codelet, 338

starpu_task, 348
bubble_gen_dag_func_arg

starpu_task, 348
bubble_parent

starpu_task, 348
bundle

starpu_task, 347
bus_calibrate

starpu_conf, 473

cache_data_on_node
starpu_data_interface_ops, 377

calibrate
starpu_conf, 473

callback_arg
starpu_task, 343

callback_arg_free
starpu_task, 344

callback_func
starpu_codelet, 339
starpu_task, 343

can_copy
starpu_data_copy_methods, 372

can_execute
starpu_codelet, 336

can_pull
starpu_sched_component, 513

can_push
starpu_sched_component, 513

catch_signals
starpu_conf, 475

checked
starpu_codelet, 339

children
starpu_sched_component, 512

cl
starpu_task, 341

cl_arg
starpu_task, 342

cl_arg_free
starpu_task, 344

cl_arg_size
starpu_task, 342

cl_ret
starpu_task, 342

cl_ret_free
starpu_task, 344

cl_ret_size
starpu_task, 343

close
starpu_disk_ops, 585

Codelet And Tasks, 333
starpu_codelet_display_stats, 358
STARPU_CODELET_GET_MODE, 352
STARPU_CODELET_GET_NODE, 353
starpu_codelet_init, 358
starpu_codelet_nop, 360
STARPU_CODELET_NOPLANS, 350
STARPU_CODELET_SET_MODE, 352

Generated by Doxygen

INDEX 799

STARPU_CODELET_SET_NODE, 353
STARPU_CODELET_SIMGRID_EXECUTE, 349
STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT,

349
starpu_codelet_type, 354
STARPU_CPU, 349
starpu_cpu_func_t, 353
starpu_create_callback_task, 359
starpu_create_sync_task, 359
STARPU_CUDA, 349
STARPU_CUDA_ASYNC, 350
starpu_cuda_func_t, 353
starpu_do_schedule, 357
STARPU_FORKJOIN, 354
STARPU_HIP, 349
STARPU_HIP_ASYNC, 350
starpu_hip_func_t, 353
starpu_iteration_pop, 357
starpu_iteration_push, 357
STARPU_MAIN_RAM, 350
STARPU_MAX_FPGA, 349
starpu_max_fpga_func_t, 354
STARPU_MPI_MS, 349
STARPU_MULTIPLE_CPU_IMPLEMENTATIONS,

350
STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS,

350
STARPU_MULTIPLE_HIP_IMPLEMENTATIONS,

350
STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS,

350
STARPU_NMAXBUFS, 348
STARPU_NOWHERE, 348
STARPU_OPENCL, 349
STARPU_OPENCL_ASYNC, 350
starpu_opencl_func_t, 353
STARPU_SEQ, 354
starpu_set_limit_max_submitted_tasks, 360
starpu_set_limit_min_submitted_tasks, 360
STARPU_SPECIFIC_NODE_CPU, 351
STARPU_SPECIFIC_NODE_FAST, 351
STARPU_SPECIFIC_NODE_LOCAL, 351
STARPU_SPECIFIC_NODE_LOCAL_OR_CPU,

351
STARPU_SPECIFIC_NODE_NONE, 351
STARPU_SPECIFIC_NODE_SLOW, 351
STARPU_SPMD, 354
STARPU_TASK_BLOCKED, 354
STARPU_TASK_BLOCKED_ON_DATA, 354
STARPU_TASK_BLOCKED_ON_TAG, 354
STARPU_TASK_BLOCKED_ON_TASK, 354
starpu_task_clean, 355
starpu_task_create, 355
starpu_task_create_sync, 355
starpu_task_destroy, 355
starpu_task_dup, 358
STARPU_TASK_FINISHED, 354
starpu_task_finished, 356

starpu_task_ft_create_retry, 359
starpu_task_ft_failed, 359
starpu_task_ft_prologue, 359
starpu_task_ft_success, 360
starpu_task_get_current, 358
starpu_task_get_current_data_node, 358
STARPU_TASK_GET_HANDLE, 352
STARPU_TASK_GET_HANDLES, 352
starpu_task_get_implementation, 359
STARPU_TASK_GET_MODE, 353
starpu_task_get_model_name, 358
starpu_task_get_name, 358
STARPU_TASK_GET_NBUFFERS, 352
STARPU_TASK_INIT, 354
starpu_task_init, 354
STARPU_TASK_INITIALIZER, 352
starpu_task_nready, 357
starpu_task_nsubmitted, 357
STARPU_TASK_READY, 354
STARPU_TASK_RUNNING, 354
starpu_task_set_destroy, 355
STARPU_TASK_SET_HANDLE, 352
starpu_task_set_implementation, 358
STARPU_TASK_SET_MODE, 353
starpu_task_status, 354
starpu_task_status_get_as_string, 360
STARPU_TASK_STOPPED, 354
starpu_task_submit, 355
starpu_task_submit_nodeps, 356
starpu_task_submit_to_ctx, 356
STARPU_TASK_TYPE_DATA_ACQUIRE, 351
STARPU_TASK_TYPE_INTERNAL, 351
STARPU_TASK_TYPE_NORMAL, 351
starpu_task_wait, 356
starpu_task_wait_array, 356
starpu_task_wait_for_all, 356
starpu_task_wait_for_all_in_ctx, 357
starpu_task_wait_for_n_submitted, 356
starpu_task_wait_for_n_submitted_in_ctx, 357
starpu_task_wait_for_no_ready, 357
starpu_task_watchdog_set_hook, 360
STARPU_TCPIP_MS, 349
STARPU_VARIABLE_NBUFFERS, 351
STARPU_WORKER_TO_MASK, 349

color
starpu_codelet, 339
starpu_task, 347

combinations
starpu_perfmodel, 607

compare
starpu_data_interface_ops, 378

copy
starpu_disk_ops, 586

copy_methods
starpu_data_interface_ops, 377

cost_function
starpu_perfmodel, 606
starpu_perfmodel_per_arch, 605

Generated by Doxygen

800 INDEX

cpu_func
starpu_codelet, 336

cpu_funcs
starpu_codelet, 337

cpu_funcs_name
starpu_codelet, 337

CUDA Extensions, 361
starpu_cublas_get_local_handle, 364
starpu_cublas_init, 364
STARPU_CUBLAS_REPORT_ERROR, 362
starpu_cublas_report_error, 362
starpu_cublas_set_stream, 364
starpu_cublas_shutdown, 364
starpu_cuda_copy2d_async_sync, 363
starpu_cuda_copy3d_async_sync, 363
starpu_cuda_copy_async_sync, 362
starpu_cuda_get_device_properties, 362
starpu_cuda_get_local_stream, 362
starpu_cuda_get_nvmldev, 364
STARPU_CUDA_REPORT_ERROR, 362
starpu_cuda_report_error, 362
starpu_cuda_set_device, 364
starpu_cusolver_init, 364
starpu_cusparse_get_local_handle, 365
starpu_cusparse_init, 364
starpu_cusparse_shutdown, 365
STARPU_HAVE_NVML_H, 361
STARPU_MAXCUDADEVS, 361
STARPU_USE_CUDA, 361

cuda_flags
starpu_codelet, 337

cuda_func
starpu_codelet, 336

cuda_funcs
starpu_codelet, 337

cuda_only_fast_alloc_other_memnodes
starpu_conf, 475

cuda_opengl_interoperability
starpu_conf, 474

cuda_to_cuda
starpu_data_copy_methods, 373

cuda_to_cuda_async
starpu_data_copy_methods, 374

cuda_to_ram
starpu_data_copy_methods, 373

cuda_to_ram_async
starpu_data_copy_methods, 374

custom
sc_hypervisor_policy, 661

data
starpu_sched_component, 512

Data Interfaces, 366
starpu_bcsr_data_register, 410
STARPU_BCSR_GET_C, 392
starpu_bcsr_get_c, 411
STARPU_BCSR_GET_COLIND, 392
STARPU_BCSR_GET_COLIND_DEV_HANDLE,

392

STARPU_BCSR_GET_ELEMSIZE, 393
starpu_bcsr_get_elemsize, 412
STARPU_BCSR_GET_FIRSTENTRY, 392
starpu_bcsr_get_firstentry, 411
starpu_bcsr_get_local_colind, 411
starpu_bcsr_get_local_nzval, 411
starpu_bcsr_get_local_rowptr, 411
STARPU_BCSR_GET_NNZ, 391
starpu_bcsr_get_nnz, 411
STARPU_BCSR_GET_NROW, 391
starpu_bcsr_get_nrow, 411
STARPU_BCSR_GET_NZVAL, 391
STARPU_BCSR_GET_NZVAL_DEV_HANDLE,

391
STARPU_BCSR_GET_OFFSET, 393
STARPU_BCSR_GET_R, 392
starpu_bcsr_get_r, 411
STARPU_BCSR_GET_RAM_COLIND, 392
STARPU_BCSR_GET_RAM_ROWPTR, 392
STARPU_BCSR_GET_ROWPTR, 392
STARPU_BCSR_GET_ROWPTR_DEV_HANDLE,

392
STARPU_BCSR_INTERFACE_ID, 394
starpu_block_data_register, 403
STARPU_BLOCK_GET_DEV_HANDLE, 386
STARPU_BLOCK_GET_ELEMSIZE, 386
starpu_block_get_elemsize, 404
STARPU_BLOCK_GET_LDY, 386
STARPU_BLOCK_GET_LDZ, 386
starpu_block_get_local_ldy, 403
starpu_block_get_local_ldz, 404
starpu_block_get_local_ptr, 404
STARPU_BLOCK_GET_NX, 386
starpu_block_get_nx, 403
STARPU_BLOCK_GET_NY, 386
starpu_block_get_ny, 403
STARPU_BLOCK_GET_NZ, 386
starpu_block_get_nz, 403
STARPU_BLOCK_GET_OFFSET, 386
STARPU_BLOCK_GET_PTR, 386
STARPU_BLOCK_INTERFACE_ID, 394
starpu_block_ptr_register, 403
starpu_coo_data_register, 402
STARPU_COO_GET_COLUMNS, 384
STARPU_COO_GET_COLUMNS_DEV_HANDLE,

385
STARPU_COO_GET_ELEMSIZE, 385
STARPU_COO_GET_NVALUES, 385
STARPU_COO_GET_NX, 385
STARPU_COO_GET_NY, 385
STARPU_COO_GET_OFFSET, 385
STARPU_COO_GET_ROWS, 385
STARPU_COO_GET_ROWS_DEV_HANDLE, 385
STARPU_COO_GET_VALUES, 385
STARPU_COO_GET_VALUES_DEV_HANDLE,

385
STARPU_COO_INTERFACE_ID, 394
starpu_csr_data_register, 409

Generated by Doxygen

INDEX 801

STARPU_CSR_GET_COLIND, 390
STARPU_CSR_GET_COLIND_DEV_HANDLE,

390
STARPU_CSR_GET_ELEMSIZE, 391
starpu_csr_get_elemsize, 410
STARPU_CSR_GET_FIRSTENTRY, 391
starpu_csr_get_firstentry, 409
starpu_csr_get_local_colind, 409
starpu_csr_get_local_nzval, 409
starpu_csr_get_local_rowptr, 410
STARPU_CSR_GET_NNZ, 390
starpu_csr_get_nnz, 409
STARPU_CSR_GET_NROW, 390
starpu_csr_get_nrow, 409
STARPU_CSR_GET_NZVAL, 390
STARPU_CSR_GET_NZVAL_DEV_HANDLE, 390
STARPU_CSR_GET_OFFSET, 391
STARPU_CSR_GET_RAM_COLIND, 390
STARPU_CSR_GET_RAM_ROWPTR, 391
STARPU_CSR_GET_ROWPTR, 391
STARPU_CSR_GET_ROWPTR_DEV_HANDLE,

391
STARPU_CSR_INTERFACE_ID, 394
starpu_data_get_alloc_size, 396
starpu_data_get_home_node, 396
starpu_data_get_interface_id, 395
starpu_data_get_interface_on_node, 395
starpu_data_get_local_ptr, 395
starpu_data_get_max_size, 396
starpu_data_get_size, 396
starpu_data_handle_to_pointer, 395
starpu_data_interface_get_next_id, 397
starpu_data_interface_id, 393
starpu_data_pack, 395
starpu_data_pack_node, 395
starpu_data_peek, 396
starpu_data_peek_node, 395
starpu_data_print, 397
starpu_data_ptr_register, 394
starpu_data_register, 394
starpu_data_register_ops, 394
starpu_data_register_same, 394
starpu_data_unpack, 396
starpu_data_unpack_node, 396
starpu_free_on_node, 400
starpu_free_on_node_flags, 400
starpu_hash_crc32c_be, 412
starpu_hash_crc32c_be_n, 412
starpu_hash_crc32c_be_ptr, 412
starpu_hash_crc32c_string, 412
starpu_interface_copy, 397
starpu_interface_copy2d, 397
starpu_interface_copy3d, 397
starpu_interface_copy4d, 398
starpu_interface_copynd, 399
starpu_interface_data_copy, 399
starpu_interface_end_driver_copy_async, 399
starpu_interface_map, 400

starpu_interface_start_driver_copy_async, 399
starpu_interface_unmap, 400
starpu_interface_update_map, 401
starpu_malloc_on_node, 400
starpu_malloc_on_node_flags, 399
starpu_malloc_on_node_set_default_flags, 400
starpu_matrix_data_register, 401
starpu_matrix_data_register_allocsize, 401
STARPU_MATRIX_GET_ALLOCSIZE, 384
starpu_matrix_get_allocsize, 402
STARPU_MATRIX_GET_DEV_HANDLE, 383
STARPU_MATRIX_GET_ELEMSIZE, 384
starpu_matrix_get_elemsize, 402
STARPU_MATRIX_GET_LD, 384
starpu_matrix_get_local_ld, 402
starpu_matrix_get_local_ptr, 402
STARPU_MATRIX_GET_NX, 384
starpu_matrix_get_nx, 402
STARPU_MATRIX_GET_NY, 384
starpu_matrix_get_ny, 402
STARPU_MATRIX_GET_OFFSET, 383
STARPU_MATRIX_GET_PTR, 383
STARPU_MATRIX_INTERFACE_ID, 394
starpu_matrix_ptr_register, 401
STARPU_MATRIX_SET_LD, 384
STARPU_MATRIX_SET_NX, 384
STARPU_MATRIX_SET_NY, 384
STARPU_MAX_INTERFACE_ID, 394
starpu_multiformat_data_register, 412
STARPU_MULTIFORMAT_GET_CPU_PTR, 393
STARPU_MULTIFORMAT_GET_CUDA_PTR, 393
STARPU_MULTIFORMAT_GET_HIP_PTR, 393
STARPU_MULTIFORMAT_GET_NX, 393
STARPU_MULTIFORMAT_GET_OPENCL_PTR,

393
STARPU_MULTIFORMAT_INTERFACE_ID, 394
starpu_ndim_data_register, 406
STARPU_NDIM_GET_DEV_HANDLE, 388
STARPU_NDIM_GET_ELEMSIZE, 388
starpu_ndim_get_elemsize, 407
STARPU_NDIM_GET_LDN, 388
starpu_ndim_get_local_ldi, 407
starpu_ndim_get_local_ldn, 406
starpu_ndim_get_local_ptr, 407
STARPU_NDIM_GET_NDIM, 388
starpu_ndim_get_ndim, 407
starpu_ndim_get_ni, 406
STARPU_NDIM_GET_NN, 388
starpu_ndim_get_nn, 406
STARPU_NDIM_GET_OFFSET, 388
STARPU_NDIM_GET_PTR, 388
STARPU_NDIM_INTERFACE_ID, 394
starpu_ndim_ptr_register, 406
starpu_tensor_data_register, 404
STARPU_TENSOR_GET_DEV_HANDLE, 387
STARPU_TENSOR_GET_ELEMSIZE, 388
starpu_tensor_get_elemsize, 405
STARPU_TENSOR_GET_LDT, 388

Generated by Doxygen

802 INDEX

STARPU_TENSOR_GET_LDY, 387
STARPU_TENSOR_GET_LDZ, 387
starpu_tensor_get_local_ldt, 405
starpu_tensor_get_local_ldy, 405
starpu_tensor_get_local_ldz, 405
starpu_tensor_get_local_ptr, 405
STARPU_TENSOR_GET_NT, 387
starpu_tensor_get_nt, 405
STARPU_TENSOR_GET_NX, 387
starpu_tensor_get_nx, 405
STARPU_TENSOR_GET_NY, 387
starpu_tensor_get_ny, 405
STARPU_TENSOR_GET_NZ, 387
starpu_tensor_get_nz, 405
STARPU_TENSOR_GET_OFFSET, 387
STARPU_TENSOR_GET_PTR, 387
STARPU_TENSOR_INTERFACE_ID, 394
starpu_tensor_ptr_register, 404
STARPU_UNKNOWN_INTERFACE_ID, 393
starpu_variable_data_register, 408
STARPU_VARIABLE_GET_DEV_HANDLE, 390
STARPU_VARIABLE_GET_ELEMSIZE, 390
starpu_variable_get_elemsize, 408
starpu_variable_get_local_ptr, 409
STARPU_VARIABLE_GET_OFFSET, 390
STARPU_VARIABLE_GET_PTR, 389
STARPU_VARIABLE_INTERFACE_ID, 394
starpu_variable_ptr_register, 408
starpu_vector_data_register, 407
starpu_vector_data_register_allocsize, 407
STARPU_VECTOR_GET_ALLOCSIZE, 389
starpu_vector_get_allocsize, 408
STARPU_VECTOR_GET_DEV_HANDLE, 389
STARPU_VECTOR_GET_ELEMSIZE, 389
starpu_vector_get_elemsize, 408
starpu_vector_get_local_ptr, 408
STARPU_VECTOR_GET_NX, 389
starpu_vector_get_nx, 408
STARPU_VECTOR_GET_OFFSET, 389
STARPU_VECTOR_GET_PTR, 389
STARPU_VECTOR_GET_SLICE_BASE, 389
STARPU_VECTOR_INTERFACE_ID, 394
starpu_vector_ptr_register, 407
STARPU_VECTOR_SET_NX, 389
starpu_void_data_register, 409
STARPU_VOID_INTERFACE_ID, 394

Data Management, 414
STARPU_ACCESS_MODE_MAX, 418
STARPU_ACQUIRE_NO_NODE, 416
STARPU_ACQUIRE_NO_NODE_LOCK_ALL, 416
starpu_arbiter_create, 422
starpu_arbiter_destroy, 423
starpu_arbiter_t, 416
STARPU_COMMUTE, 417
starpu_data_access_mode, 416
starpu_data_acquire, 420
STARPU_DATA_ACQUIRE_CB, 416
starpu_data_acquire_cb, 420

starpu_data_acquire_cb_sequential_consistency,
421

starpu_data_acquire_on_node, 420
starpu_data_acquire_on_node_cb, 420
starpu_data_acquire_on_node_cb_sequential_consistency,

421
starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids,

421
starpu_data_acquire_on_node_try, 422
starpu_data_acquire_try, 421
starpu_data_advise_as_important, 420
starpu_data_assign_arbiter, 423
starpu_data_can_evict, 427
starpu_data_deinitialize, 419
starpu_data_deinitialize_submit, 419
starpu_data_evict_from_node, 424
starpu_data_fetch_on_node, 423
starpu_data_get_coordinates_array, 418
starpu_data_get_default_sequential_consistency_flag,

425
starpu_data_get_ooc_flag, 425
starpu_data_get_sched_data, 427
starpu_data_get_sequential_consistency_flag, 425
starpu_data_get_user_data, 426
starpu_data_handle_t, 416
starpu_data_idle_prefetch_on_node, 423
starpu_data_idle_prefetch_on_node_prio, 424
starpu_data_invalidate, 419
starpu_data_invalidate_submit, 419
starpu_data_is_on_node, 424
starpu_data_prefetch_on_node, 423
starpu_data_prefetch_on_node_prio, 423
starpu_data_query_status, 425
starpu_data_query_status2, 425
starpu_data_release, 422
starpu_data_release_on_node, 422
starpu_data_release_to, 422
starpu_data_release_to_on_node, 422
starpu_data_request_allocation, 423
starpu_data_set_coordinates, 418
starpu_data_set_coordinates_array, 418
starpu_data_set_default_sequential_consistency_flag,

425
starpu_data_set_name, 418
starpu_data_set_ooc_flag, 425
starpu_data_set_reduction_methods, 426
starpu_data_set_reduction_methods_with_args,

426
starpu_data_set_sched_data, 427
starpu_data_set_sequential_consistency_flag, 424
starpu_data_set_user_data, 426
starpu_data_set_wt_mask, 424
starpu_data_test_if_allocated_on_node, 426
starpu_data_test_if_mapped_on_node, 426
starpu_data_unregister, 419
starpu_data_unregister_no_coherency, 419
starpu_data_unregister_submit, 419
starpu_data_wont_use, 424

Generated by Doxygen

INDEX 803

STARPU_FETCH, 418
STARPU_IDLEFETCH, 418
starpu_is_prefetch, 418
STARPU_LOCALITY, 417
starpu_memchunk_tidy, 426
STARPU_MPI_REDUX, 417
STARPU_NOFOOTPRINT, 418
STARPU_NONE, 417
STARPU_NOPLAN, 417
STARPU_PREFETCH, 418
STARPU_R, 417
STARPU_REDUX, 417
STARPU_RW, 417
STARPU_SCRATCH, 417
STARPU_SSEND, 417
STARPU_TASK_PREFETCH, 418
STARPU_UNMAP, 417
STARPU_W, 417

Data Partition, 428
starpu_bcsr_filter_canonical_block, 437
starpu_bcsr_filter_canonical_block_child_ops, 437
starpu_bcsr_filter_canonical_block_get_nchildren,

437
starpu_bcsr_filter_vertical_block, 437
starpu_block_filter_block, 441
starpu_block_filter_block_shadow, 441
starpu_block_filter_depth_block, 442
starpu_block_filter_depth_block_shadow, 442
starpu_block_filter_pick_matrix_child_ops, 443
starpu_block_filter_pick_matrix_y, 443
starpu_block_filter_pick_matrix_z, 442
starpu_block_filter_pick_variable, 443
starpu_block_filter_pick_variable_child_ops, 443
starpu_block_filter_vertical_block, 441
starpu_block_filter_vertical_block_shadow, 442
starpu_csr_filter_vertical_block, 438
starpu_data_get_child, 433
starpu_data_get_nb_children, 433
starpu_data_get_sub_data, 433
starpu_data_map_filters, 434
starpu_data_map_filters_array, 434
starpu_data_map_filters_parray, 434
starpu_data_partition, 433
starpu_data_partition_clean, 436
starpu_data_partition_clean_node, 436
starpu_data_partition_plan, 434
starpu_data_partition_readonly_downgrade_submit,

435
starpu_data_partition_readonly_submit, 435
starpu_data_partition_readonly_submit_sequential_consistency,

435
starpu_data_partition_readwrite_upgrade_submit,

435
starpu_data_partition_submit, 435
starpu_data_partition_submit_sequential_consistency,

437
starpu_data_unpartition, 433
starpu_data_unpartition_readonly_submit, 436

starpu_data_unpartition_submit, 436
starpu_data_unpartition_submit_sequential_consistency,

437
starpu_data_unpartition_submit_sequential_consistency_cb,

436
starpu_data_vget_sub_data, 434
starpu_data_vmap_filters, 434
starpu_filter_nparts_compute_chunk_size_and_offset,

451
starpu_matrix_filter_block, 438
starpu_matrix_filter_block_shadow, 438
starpu_matrix_filter_pick_variable, 439
starpu_matrix_filter_pick_variable_child_ops, 439
starpu_matrix_filter_pick_vector_child_ops, 439
starpu_matrix_filter_pick_vector_y, 439
starpu_matrix_filter_vertical_block, 438
starpu_matrix_filter_vertical_block_shadow, 438
starpu_ndim_filter_1d_pick_variable, 449
starpu_ndim_filter_2d_pick_vector, 449
starpu_ndim_filter_3d_pick_matrix, 448
starpu_ndim_filter_4d_pick_block, 448
starpu_ndim_filter_5d_pick_tensor, 448
starpu_ndim_filter_block, 446
starpu_ndim_filter_block_shadow, 446
starpu_ndim_filter_pick_block_child_ops, 450
starpu_ndim_filter_pick_matrix_child_ops, 450
starpu_ndim_filter_pick_ndim, 448
starpu_ndim_filter_pick_tensor_child_ops, 449
starpu_ndim_filter_pick_variable, 449
starpu_ndim_filter_pick_variable_child_ops, 450
starpu_ndim_filter_pick_vector_child_ops, 450
starpu_ndim_filter_to_block, 447
starpu_ndim_filter_to_block_child_ops, 450
starpu_ndim_filter_to_matrix, 447
starpu_ndim_filter_to_matrix_child_ops, 450
starpu_ndim_filter_to_tensor, 447
starpu_ndim_filter_to_tensor_child_ops, 450
starpu_ndim_filter_to_variable, 448
starpu_ndim_filter_to_variable_child_ops, 451
starpu_ndim_filter_to_vector, 447
starpu_ndim_filter_to_vector_child_ops, 450
starpu_tensor_filter_block, 443
starpu_tensor_filter_block_shadow, 443
starpu_tensor_filter_depth_block, 444
starpu_tensor_filter_depth_block_shadow, 444
starpu_tensor_filter_pick_block_child_ops, 446
starpu_tensor_filter_pick_block_t, 445
starpu_tensor_filter_pick_block_y, 445
starpu_tensor_filter_pick_block_z, 445
starpu_tensor_filter_pick_variable, 446
starpu_tensor_filter_pick_variable_child_ops, 446
starpu_tensor_filter_time_block, 445
starpu_tensor_filter_time_block_shadow, 445
starpu_tensor_filter_vertical_block, 444
starpu_tensor_filter_vertical_block_shadow, 444
starpu_vector_filter_block, 439
starpu_vector_filter_block_shadow, 440
starpu_vector_filter_divide_in_2, 440

Generated by Doxygen

804 INDEX

starpu_vector_filter_list, 440
starpu_vector_filter_list_long, 440
starpu_vector_filter_pick_variable, 441
starpu_vector_filter_pick_variable_child_ops, 441

data_locality_enforce
starpu_conf, 473

deinit
starpu_worker_collection, 708

deinit_data
starpu_sched_component, 513

deinit_sched
starpu_sched_policy, 646

describe
starpu_data_interface_ops, 379

destroy
starpu_task, 345

detach
starpu_task, 345

disable_asynchronous_copy
starpu_conf, 473

disable_asynchronous_cuda_copy
starpu_conf, 473

disable_asynchronous_hip_copy
starpu_conf, 473

disable_asynchronous_max_fpga_copy
starpu_conf, 474

disable_asynchronous_mpi_ms_copy
starpu_conf, 474

disable_asynchronous_opencl_copy
starpu_conf, 474

disable_asynchronous_tcpip_ms_copy
starpu_conf, 474

display
starpu_data_interface_ops, 378

do_execute
MPI Support, 549

do_schedule
starpu_sched_component, 513
starpu_sched_policy, 647

dontcache
starpu_data_interface_ops, 379

driver_spinning_backoff_max
starpu_conf, 475

driver_spinning_backoff_min
starpu_conf, 475

dyn_handles
starpu_task, 341

dyn_interfaces
starpu_task, 341

dyn_modes
starpu_codelet, 338
starpu_task, 341

dyn_nodes
starpu_codelet, 338

e_starpurm_drs_ret
Interoperability Support, 493

enable_map
starpu_conf, 474

end_ctx
sc_hypervisor_policy, 662

energy_model
starpu_codelet, 338

epilogue_callback_arg
starpu_task, 343

epilogue_callback_arg_free
starpu_task, 344

epilogue_callback_func
starpu_task, 343

estimated_end
starpu_sched_component, 513

estimated_load
starpu_sched_component, 513

execute_on_a_specific_worker
starpu_task, 345

Expert Mode, 452
starpu_progression_hook_deregister, 452
starpu_progression_hook_register, 452
starpu_wake_all_blocked_workers, 452

Explicit Dependencies, 453
starpu_tag_declare_deps, 455
starpu_tag_declare_deps_array, 455
starpu_tag_get_task, 456
starpu_tag_notify_from_apps, 456
starpu_tag_notify_restart_from_apps, 456
starpu_tag_remove, 456
starpu_tag_restart, 456
starpu_tag_t, 453
starpu_tag_wait, 455
starpu_tag_wait_array, 455
starpu_task_declare_deps, 454
starpu_task_declare_deps_array, 453
starpu_task_declare_end_deps, 454
starpu_task_declare_end_deps_array, 454
starpu_task_end_dep_add, 455
starpu_task_end_dep_release, 455
starpu_task_get_task_scheduled_succs, 454
starpu_task_get_task_succs, 454

failed
starpu_task, 346

FFT Support, 457
starpufft_cleanup, 458
starpufft_destroy_plan, 458
starpufft_execute, 458
starpufft_execute_handle, 458
starpufft_malloc, 457
starpufft_plan_dft_1d, 457
starpufft_plan_dft_2d, 457
starpufft_start, 457
starpufft_start_handle, 457

file
starpu_task, 341

filter_arg
starpu_data_filter, 432

filter_arg_ptr
starpu_data_filter, 433

filter_func

Generated by Doxygen

INDEX 805

starpu_data_filter, 432
flags

starpu_codelet, 339
flops

starpu_task, 347
footprint

starpu_data_interface_ops, 378
starpu_perfmodel, 606

Fortran Support, 459
free

starpu_disk_ops, 585
free_data_on_node

starpu_data_interface_ops, 377
free_meta

starpu_data_interface_ops, 379
free_request

starpu_disk_ops, 586
full_read

starpu_disk_ops, 585
full_write

starpu_disk_ops, 585
FxT Support, 460

starpu_fxt_autostart_profiling, 462
starpu_fxt_is_enabled, 462
starpu_fxt_start_profiling, 462
starpu_fxt_stop_profiling, 462
starpu_fxt_trace_user_event, 462
starpu_fxt_trace_user_event_string, 462

get_alloc_size
starpu_data_interface_ops, 378

get_child_ops
starpu_data_filter, 432

get_max_size
starpu_data_interface_ops, 378

get_nchildren
starpu_data_filter, 432

get_next
starpu_worker_collection, 708

get_size
starpu_data_interface_ops, 378

global_sched_ctx_max_priority
starpu_conf, 475

global_sched_ctx_min_priority
starpu_conf, 475

handle_idle_cycle
sc_hypervisor_policy, 661

handle_idle_end
sc_hypervisor_policy, 662

handle_poped_task
sc_hypervisor_policy, 661

handle_post_exec_hook
sc_hypervisor_policy, 662

handle_pushed_task
sc_hypervisor_policy, 661

handle_submitted_job
sc_hypervisor_policy, 662

handle_to_pointer

starpu_data_interface_ops, 378
handles

starpu_task, 342
handles_sequential_consistency

starpu_task, 342
has_next

starpu_worker_collection, 707
HAVE_MPI_COMM_F2C

starpu_config.h, 727
Heteroprio Scheduler, 463

starpu_autoheteroprio_priority_ordering_policy,
463

starpu_heteroprio_map_wgroup_memory_nodes,
464

starpu_heteroprio_print_wgroups, 464
starpu_heteroprio_set_arch_slow_factor, 464
starpu_heteroprio_set_faster_arch, 464
starpu_heteroprio_set_mapping, 464
starpu_heteroprio_set_nb_prios, 464
starpu_heteroprio_set_use_locality, 464

Hierarchical Dags, 331
STARPU_BUBBLE_FUNC, 331
STARPU_BUBBLE_FUNC_ARG, 331
starpu_bubble_func_t, 331
STARPU_BUBBLE_GEN_DAG_FUNC, 331
STARPU_BUBBLE_GEN_DAG_FUNC_ARG, 331
starpu_bubble_gen_dag_func_t, 332
STARPU_BUBBLE_PARENT, 331

HIP Extensions, 466
starpu_hip_copy2d_async_sync, 467
starpu_hip_copy3d_async_sync, 468
starpu_hip_copy_async_sync, 467
starpu_hip_get_device_properties, 467
starpu_hip_get_local_stream, 467
STARPU_HIP_REPORT_ERROR, 466
starpu_hip_report_error, 467
starpu_hip_set_device, 468
STARPU_HIPBLAS_REPORT_ERROR, 466
starpu_hipblas_report_error, 467
STARPU_MAXHIPDEVS, 466
STARPU_USE_HIP, 466
STARPU_USE_HIPBLAS, 466

hip_flags
starpu_codelet, 337

hip_funcs
starpu_codelet, 337

hip_to_hip
starpu_data_copy_methods, 373

hip_to_hip_async
starpu_data_copy_methods, 374

hip_to_ram
starpu_data_copy_methods, 373

hip_to_ram_async
starpu_data_copy_methods, 374

history
starpu_perfmodel_per_arch, 605

hwloc_cache_composed_sched_component
starpu_sched_component_specs, 516

Generated by Doxygen

806 INDEX

hwloc_component_composed_sched_component
starpu_sched_component_specs, 515

hwloc_machine_composed_sched_component
starpu_sched_component_specs, 515

hwloc_socket_composed_sched_component
starpu_sched_component_specs, 515

hypervisor_tag
starpu_task, 347

init
starpu_data_interface_ops, 377
starpu_worker_collection, 708

init_iterator
starpu_worker_collection, 708

init_sched
starpu_sched_policy, 646

init_worker
sc_hypervisor_policy, 662

Initialization and Termination, 469
starpu_asynchronous_copy_disabled, 478
starpu_asynchronous_copy_disabled_for, 479
starpu_asynchronous_cuda_copy_disabled, 478
starpu_asynchronous_hip_copy_disabled, 478
starpu_asynchronous_max_fpga_copy_disabled,

478
starpu_asynchronous_mpi_ms_copy_disabled,

478
starpu_asynchronous_opencl_copy_disabled, 478
starpu_asynchronous_tcpip_ms_copy_disabled,

479
starpu_bind_thread_on, 477
starpu_bind_thread_on_cpu, 477
starpu_bind_thread_on_main, 477
starpu_bind_thread_on_worker, 477
starpu_conf_init, 475
starpu_conf_noworker, 475
starpu_cpu_os_index, 478
starpu_display_stats, 479
starpu_get_next_bindid, 477
starpu_init, 476
starpu_initialize, 476
starpu_is_initialized, 476
starpu_is_paused, 477
starpu_map_enabled, 479
starpu_pause, 476
starpu_resume, 476
starpu_shutdown, 476
STARPU_THREAD_ACTIVE, 475
starpu_topology_print, 478
starpu_wait_initialized, 476

interface_size
starpu_data_interface_ops, 379

interfaceid
starpu_data_interface_ops, 379

interfaces
starpu_task, 342

Interoperability Support, 491
e_starpurm_drs_ret, 493
starpurm_acquire, 496

starpurm_acquire_all_devices, 500
starpurm_acquire_cpu, 496
starpurm_acquire_cpu_mask, 496
starpurm_acquire_cpus, 496
starpurm_acquire_device, 499
starpurm_acquire_device_mask, 500
starpurm_acquire_devices, 499
starpurm_assign_all_cpus_to_starpu, 494
starpurm_assign_all_devices_to_starpu, 498
starpurm_assign_cpu_mask_to_starpu, 494
starpurm_assign_cpu_to_starpu, 494
starpurm_assign_cpus_to_starpu, 494
starpurm_assign_device_mask_to_starpu, 497
starpurm_assign_device_to_starpu, 497
starpurm_assign_devices_to_starpu, 497
starpurm_DRS_DISABLD, 493
starpurm_DRS_EINVAL, 493
starpurm_drs_enabled_p, 494
starpurm_DRS_PERM, 493
starpurm_DRS_SUCCESS, 493
starpurm_get_all_cpu_workers_cpuset, 500
starpurm_get_all_device_workers_cpuset, 501
starpurm_get_all_device_workers_cpuset_by_type,

501
starpurm_get_device_id, 497
starpurm_get_device_type_id, 497
starpurm_get_device_type_name, 497
starpurm_get_device_worker_cpuset, 500
starpurm_get_global_cpuset, 500
starpurm_get_nb_devices_by_type, 497
starpurm_get_selected_cpuset, 500
starpurm_initialize, 493
starpurm_initialize_with_cpuset, 493
starpurm_lend, 495
starpurm_lend_all_devices, 499
starpurm_lend_cpu, 495
starpurm_lend_cpu_mask, 495
starpurm_lend_cpus, 495
starpurm_lend_device, 498
starpurm_lend_device_mask, 499
starpurm_lend_devices, 498
starpurm_reclaim, 496
starpurm_reclaim_all_devices, 499
starpurm_reclaim_cpu, 496
starpurm_reclaim_cpu_mask, 496
starpurm_reclaim_cpus, 496
starpurm_reclaim_device, 499
starpurm_reclaim_device_mask, 499
starpurm_reclaim_devices, 499
starpurm_return_all, 496
starpurm_return_all_devices, 500
starpurm_return_cpu, 497
starpurm_return_device, 500
starpurm_set_drs_disable, 494
starpurm_set_drs_enable, 494
starpurm_set_max_parallelism, 494
starpurm_shutdown, 493
starpurm_spawn_kernel_on_cpus, 493

Generated by Doxygen

INDEX 807

starpurm_spawn_kernel_on_cpus_callback, 493
starpurm_withdraw_all_cpus_from_starpu, 495
starpurm_withdraw_all_devices_from_starpu, 498
starpurm_withdraw_cpu_from_starpu, 495
starpurm_withdraw_cpu_mask_from_starpu, 495
starpurm_withdraw_cpus_from_starpu, 495
starpurm_withdraw_device_from_starpu, 498
starpurm_withdraw_device_mask_from_starpu,

498
starpurm_withdraw_devices_from_starpu, 498

is_loaded
starpu_perfmodel, 607

line
starpu_task, 341

list
starpu_perfmodel_per_arch, 605

magic
starpu_conf, 471
starpu_task, 347

map_data
starpu_data_interface_ops, 377

max_fpga_funcs
starpu_codelet, 337

max_fpga_load
starpu_conf, 473

max_fpga_to_ram
starpu_data_copy_methods, 373

max_fpga_to_ram_async
starpu_data_copy_methods, 375

max_parallelism
starpu_codelet, 336

Maxeler FPGA Extensions, 502
starpu_max_fpga_get_local_engine, 502
STARPU_MAXMAXFPGADEVS, 502
STARPU_USE_MAX_FPGA, 502

mf_skip
starpu_task, 346

Miscellaneous Helpers, 503
starpu_data_cpy, 506
starpu_data_cpy_priority, 506
starpu_data_dup_ro, 506
starpu_display_bindings, 506
starpu_execute_on_each_worker, 505
starpu_execute_on_each_worker_ex, 505
starpu_execute_on_specific_workers, 505
starpu_get_env_number, 505
starpu_get_env_size_default, 505
starpu_get_env_string_var_default, 504
starpu_get_hwloc_topology, 507
starpu_get_memory_location_bitmap, 507
starpu_get_pu_os_index, 506
starpu_getenv, 504
starpu_getenv_float_default, 504
starpu_getenv_number, 504
starpu_getenv_number_default, 504
starpu_getenv_size_default, 504
starpu_getenv_string_var_default, 504

STARPU_MAX, 503
STARPU_MIN, 503
STARPU_POISON_PTR, 504
starpu_timing_now, 506

mix_heterogeneous_workers
starpu_sched_component_specs, 516

model
starpu_codelet, 338

modes
starpu_codelet, 338
starpu_task, 342

Modularized Scheduler Interface, 508
starpu_sched_component_best_implementation_create,

523
starpu_sched_component_can_execute_task, 520
starpu_sched_component_can_pull, 522
starpu_sched_component_can_pull_all, 522
starpu_sched_component_can_push, 522
starpu_sched_component_composed_component_create,

524
starpu_sched_component_composed_recipe_add,

524
starpu_sched_component_composed_recipe_create,

524
starpu_sched_component_composed_recipe_create_singleton,

524
starpu_sched_component_composed_recipe_destroy,

524
starpu_sched_component_connect, 520
starpu_sched_component_create, 520
starpu_sched_component_destroy, 520
starpu_sched_component_destroy_rec, 520
starpu_sched_component_estimated_end_average,

522
starpu_sched_component_estimated_end_min,

522
starpu_sched_component_estimated_end_min_add,

522
starpu_sched_component_estimated_load, 522
starpu_sched_component_execute_preds, 520
starpu_sched_component_fifo_create, 522
STARPU_SCHED_COMPONENT_HOMOGENEOUS,

518
starpu_sched_component_initialize_simple_scheduler,

524
starpu_sched_component_initialize_simple_schedulers,

525
starpu_sched_component_is_combined_worker,

521
starpu_sched_component_is_fifo, 523
STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS,

516
starpu_sched_component_is_random, 523
starpu_sched_component_is_simple_worker, 521
STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE,

516
starpu_sched_component_is_work_stealing, 523
starpu_sched_component_is_worker, 521

Generated by Doxygen

808 INDEX

starpu_sched_component_make_scheduler, 524
starpu_sched_component_mct_create, 523
starpu_sched_component_parallel_worker_create,

521
starpu_sched_component_parents_pull_task, 521
starpu_sched_component_properties, 518
starpu_sched_component_pull_task, 519
starpu_sched_component_push_task, 519
starpu_sched_component_random_create, 523
STARPU_SCHED_COMPONENT_SINGLE_MEMORY_NODE,

518
starpu_sched_component_transfer_length, 520
starpu_sched_component_work_stealing_create,

523
starpu_sched_component_worker_get, 521
starpu_sched_component_worker_get_workerid,

521
starpu_sched_component_worker_post_exec_hook,

521
starpu_sched_component_worker_pre_exec_hook,

521
STARPU_SCHED_SIMPLE_COMBINED_WORKERS,

517
STARPU_SCHED_SIMPLE_DECIDE_ALWAYS,

516
STARPU_SCHED_SIMPLE_DECIDE_ARCHS,

516
STARPU_SCHED_SIMPLE_DECIDE_MEMNODES,

516
STARPU_SCHED_SIMPLE_DECIDE_WORKERS,

516
STARPU_SCHED_SIMPLE_FIFO_ABOVE, 517
STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO,

517
STARPU_SCHED_SIMPLE_FIFOS_BELOW, 517
STARPU_SCHED_SIMPLE_FIFOS_BELOW_EXP,

518
STARPU_SCHED_SIMPLE_FIFOS_BELOW_NOLIMIT,

517
STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO,

517
STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY,

517
STARPU_SCHED_SIMPLE_IMPL, 517
STARPU_SCHED_SIMPLE_PERFMODEL, 517
STARPU_SCHED_SIMPLE_PRE_DECISION, 518
STARPU_SCHED_SIMPLE_WS_BELOW, 517
starpu_sched_tree_add_workers, 519
starpu_sched_tree_create, 518
starpu_sched_tree_deinitialize, 518
starpu_sched_tree_destroy, 518
starpu_sched_tree_do_schedule, 519
starpu_sched_tree_get, 518
starpu_sched_tree_pop_task, 519
starpu_sched_tree_push_task, 519
starpu_sched_tree_remove_workers, 519
starpu_sched_tree_update_workers, 519
starpu_sched_tree_update_workers_in_ctx, 519

starpu_sched_tree_work_stealing_push_task, 523
MPI Fault Tolerance Support, 526

starpu_mpi_checkpoint_init, 526
starpu_mpi_checkpoint_shutdown, 526
starpu_mpi_checkpoint_template_add_entry, 527
starpu_mpi_checkpoint_template_create, 526
starpu_mpi_checkpoint_template_freeze, 527
starpu_mpi_checkpoint_template_register, 526
starpu_mpi_checkpoint_template_submit, 527

MPI Support, 528
do_execute, 549
priority, 550
starpu_data_get_rank, 533
starpu_data_get_tag, 533
starpu_data_set_rank, 533
starpu_data_set_tag, 532
STARPU_EXECUTE_ON_DATA, 532
STARPU_EXECUTE_ON_NODE, 532
STARPU_FXT_MAX_FILES, 532
starpu_mpi_barrier, 539
starpu_mpi_cache_flush, 542
starpu_mpi_cache_flush_all_data, 542
starpu_mpi_cache_is_enabled, 542
starpu_mpi_cache_set, 542
starpu_mpi_cached_receive, 542
starpu_mpi_cached_receive_clear, 542
starpu_mpi_cached_receive_set, 542
starpu_mpi_cached_send, 542
starpu_mpi_cached_send_clear, 543
starpu_mpi_cached_send_set, 543
starpu_mpi_comm_get_attr, 535
starpu_mpi_comm_rank, 535
starpu_mpi_comm_register, 534
starpu_mpi_comm_size, 535
starpu_mpi_comm_stats_disable, 548
starpu_mpi_comm_stats_enable, 548
starpu_mpi_comm_stats_retrieve, 548
starpu_mpi_coop_sends_data_handle_nb_sends,

548
starpu_mpi_coop_sends_get_use, 548
starpu_mpi_coop_sends_set_use, 548
starpu_mpi_data_cpy, 549
starpu_mpi_data_cpy_priority, 549
starpu_mpi_data_get_rank, 543
starpu_mpi_data_get_redux_map, 543
starpu_mpi_data_get_tag, 543
starpu_mpi_data_migrate, 546
starpu_mpi_data_register, 532
starpu_mpi_data_register_comm, 543
starpu_mpi_data_set_rank, 532
starpu_mpi_data_set_rank_comm, 543
starpu_mpi_data_set_tag, 543
starpu_mpi_datatype_node_register, 541
starpu_mpi_datatype_register, 541
starpu_mpi_datatype_unregister, 541
starpu_mpi_gather_detached, 548
starpu_mpi_get_communication_tag, 535

Generated by Doxygen

INDEX 809

starpu_mpi_get_data_on_all_nodes_detached,
546

starpu_mpi_get_data_on_node, 545
starpu_mpi_get_data_on_node_detached, 545
starpu_mpi_get_thread_cpuid, 535
starpu_mpi_init, 534
starpu_mpi_init_comm, 534
starpu_mpi_init_conf, 533
starpu_mpi_initialize, 534
starpu_mpi_initialize_extended, 534
starpu_mpi_insert_task, 544
starpu_mpi_interface_datatype_node_register,

541
starpu_mpi_interface_datatype_register, 541
starpu_mpi_interface_datatype_unregister, 541
starpu_mpi_irecv, 536
starpu_mpi_irecv_array_detached_unlock_tag,

540
starpu_mpi_irecv_detached, 537
starpu_mpi_irecv_detached_prio, 538
starpu_mpi_irecv_detached_sequential_consistency,

538
starpu_mpi_irecv_detached_unlock_tag, 540
starpu_mpi_isend, 536
starpu_mpi_isend_array_detached_unlock_tag,

540
starpu_mpi_isend_array_detached_unlock_tag_prio,

540
starpu_mpi_isend_detached, 537
starpu_mpi_isend_detached_prio, 537
starpu_mpi_isend_detached_unlock_tag, 539
starpu_mpi_isend_detached_unlock_tag_prio, 540
starpu_mpi_isend_prio, 536
starpu_mpi_issend, 538
starpu_mpi_issend_detached, 538
starpu_mpi_issend_detached_prio, 539
starpu_mpi_issend_prio, 538
STARPU_MPI_NODE_SELECTION_CURRENT_POLICY,

533
starpu_mpi_node_selection_get_current_policy,

546
STARPU_MPI_NODE_SELECTION_MOST_R_DATA,

533
starpu_mpi_node_selection_register_policy, 546
starpu_mpi_node_selection_set_current_policy,

547
starpu_mpi_node_selection_unregister_policy,

546
STARPU_MPI_PER_NODE, 532
starpu_mpi_recv, 536
starpu_mpi_recv_prio, 537
starpu_mpi_redux_data, 547
starpu_mpi_redux_data_prio, 547
starpu_mpi_redux_data_prio_tree, 547
starpu_mpi_redux_data_tree, 547
starpu_mpi_req, 533
starpu_mpi_scatter_detached, 547
starpu_mpi_send, 536

starpu_mpi_send_prio, 536
starpu_mpi_set_communication_tag, 535
starpu_mpi_shutdown, 534
starpu_mpi_shutdown_comm, 534
starpu_mpi_tag_t, 533
STARPU_MPI_TAG_UB, 532
starpu_mpi_tags_allocate, 549
starpu_mpi_tags_free, 549
starpu_mpi_task_build, 544
starpu_mpi_task_build_v, 544
starpu_mpi_task_exchange_data_after_execution,

545
starpu_mpi_task_exchange_data_before_execution,

545
starpu_mpi_task_insert, 544
starpu_mpi_task_post_build, 545
starpu_mpi_task_post_build_v, 545
starpu_mpi_test, 539
starpu_mpi_wait, 539
starpu_mpi_wait_for_all, 539
starpu_mpi_world_rank, 535
starpu_mpi_world_size, 535
STARPU_NODE_SELECTION_POLICY, 532
STARPU_USE_MPI, 532
STARPU_USE_MPI_MASTER_SLAVE, 531
xrank, 550

n_cuda_opengl_interoperability
starpu_conf, 474

n_not_launched_drivers
starpu_conf, 474

name
sc_hypervisor_policy, 661
starpu_codelet, 339
starpu_data_interface_ops, 379
starpu_task, 341

nb_termination_call_required
starpu_task, 348

nbuffers
starpu_codelet, 338
starpu_task, 341

nchildren
starpu_data_filter, 432
starpu_sched_component, 512

ncombinations
starpu_perfmodel, 607

ncpus
starpu_conf, 471

ncuda
starpu_conf, 471

next
starpu_task, 348

nhip
starpu_conf, 471

nmax_fpga
starpu_conf, 471

nmpi_ms
starpu_conf, 471

no_submitorder

Generated by Doxygen

810 INDEX

starpu_task, 345
nodes

starpu_codelet, 338
nopencl

starpu_conf, 471
not_launched_drivers

starpu_conf, 474
notify_change_workers

starpu_sched_component, 514
nparameters

starpu_perfmodel, 607
nparents

starpu_sched_component, 512
ntcpip_ms

starpu_conf, 472
nworkers

starpu_worker_collection, 707

obj
starpu_sched_component, 514

omp_task
starpu_task, 348

open
starpu_disk_ops, 585

OpenCL Extensions, 551
STARPU_MAXOPENCLDEVS, 552
starpu_opencl_allocate_memory, 556
starpu_opencl_collect_stats, 555
starpu_opencl_compile_opencl_from_file, 554
starpu_opencl_compile_opencl_from_string, 554
starpu_opencl_copy_async_sync, 557
starpu_opencl_copy_opencl_to_opencl, 557
starpu_opencl_copy_opencl_to_ram, 556
starpu_opencl_copy_ram_to_opencl, 556
STARPU_OPENCL_DATADIR, 552
STARPU_OPENCL_DISPLAY_ERROR, 552
starpu_opencl_display_error, 555
starpu_opencl_error_string, 555
starpu_opencl_get_context, 553
starpu_opencl_get_current_context, 553
starpu_opencl_get_current_queue, 553
starpu_opencl_get_device, 553
starpu_opencl_get_queue, 553
starpu_opencl_load_binary_opencl, 554
starpu_opencl_load_kernel, 555
starpu_opencl_load_opencl_from_file, 555
starpu_opencl_load_opencl_from_string, 555
starpu_opencl_load_program_source, 554
starpu_opencl_load_program_source_malloc, 554
starpu_opencl_release_kernel, 555
STARPU_OPENCL_REPORT_ERROR, 552
starpu_opencl_report_error, 556
STARPU_OPENCL_REPORT_ERROR_WITH_MSG,

553
starpu_opencl_set_kernel_args, 553
starpu_opencl_unload_opencl, 555
STARPU_USE_OPENCL, 552

opencl_flags
starpu_codelet, 337

opencl_func
starpu_codelet, 336

opencl_funcs
starpu_codelet, 337

opencl_to_opencl
starpu_data_copy_methods, 373

opencl_to_opencl_async
starpu_data_copy_methods, 375

opencl_to_ram
starpu_data_copy_methods, 373

opencl_to_ram_async
starpu_data_copy_methods, 375

OpenMP Runtime Support, 558
starpu_omp_atomic_fallback_inline_begin, 581
starpu_omp_atomic_fallback_inline_end, 581
starpu_omp_barrier, 564
starpu_omp_critical, 564
starpu_omp_critical_inline_begin, 564
starpu_omp_critical_inline_end, 565
starpu_omp_data_lookup, 583
starpu_omp_destroy_lock, 579
starpu_omp_destroy_nest_lock, 580
starpu_omp_for, 566
starpu_omp_for_alt, 567
starpu_omp_for_inline_first, 566
starpu_omp_for_inline_first_alt, 568
starpu_omp_for_inline_next, 567
starpu_omp_for_inline_next_alt, 568
starpu_omp_get_active_level, 575
starpu_omp_get_ancestor_thread_num, 575
starpu_omp_get_cancellation, 573
starpu_omp_get_default_arbiter, 582
starpu_omp_get_default_device, 577
starpu_omp_get_dynamic, 572
starpu_omp_get_initial_device, 578
starpu_omp_get_level, 574
starpu_omp_get_max_active_levels, 574
starpu_omp_get_max_task_priority, 578
starpu_omp_get_max_threads, 571
starpu_omp_get_nested, 573
starpu_omp_get_num_devices, 577
starpu_omp_get_num_places, 576
starpu_omp_get_num_procs, 571
starpu_omp_get_num_teams, 577
starpu_omp_get_num_threads, 571
starpu_omp_get_partition_num_places, 576
starpu_omp_get_partition_place_nums, 577
starpu_omp_get_place_num, 576
starpu_omp_get_place_num_procs, 576
starpu_omp_get_place_proc_ids, 576
starpu_omp_get_proc_bind, 576
starpu_omp_get_schedule, 573
starpu_omp_get_team_num, 578
starpu_omp_get_team_size, 575
starpu_omp_get_thread_limit, 574
starpu_omp_get_thread_num, 571
starpu_omp_get_wtick, 582
starpu_omp_get_wtime, 582

Generated by Doxygen

INDEX 811

starpu_omp_handle_register, 582
starpu_omp_handle_unregister, 583
starpu_omp_in_final, 575
starpu_omp_in_parallel, 572
starpu_omp_init, 563
starpu_omp_init_lock, 578
starpu_omp_init_nest_lock, 580
starpu_omp_is_initial_device, 578
starpu_omp_master, 564
starpu_omp_master_inline, 564
starpu_omp_ordered, 568
starpu_omp_ordered_inline_begin, 568
starpu_omp_ordered_inline_end, 569
starpu_omp_parallel_region, 564
starpu_omp_proc_bind_close, 563
starpu_omp_proc_bind_false, 563
starpu_omp_proc_bind_master, 563
starpu_omp_proc_bind_spread, 563
starpu_omp_proc_bind_true, 563
starpu_omp_proc_bind_undefined, 563
starpu_omp_proc_bind_value, 563
starpu_omp_sched_auto, 563
starpu_omp_sched_dynamic, 563
starpu_omp_sched_guided, 563
starpu_omp_sched_runtime, 563
starpu_omp_sched_static, 563
starpu_omp_sched_undefined, 563
starpu_omp_sched_value, 562
starpu_omp_sections, 569
starpu_omp_sections_combined, 569
starpu_omp_set_default_device, 577
starpu_omp_set_dynamic, 572
starpu_omp_set_lock, 579
starpu_omp_set_max_active_levels, 574
starpu_omp_set_nest_lock, 580
starpu_omp_set_nested, 572
starpu_omp_set_num_threads, 570
starpu_omp_set_schedule, 573
starpu_omp_shutdown, 563
starpu_omp_single, 565
starpu_omp_single_copyprivate, 565
starpu_omp_single_copyprivate_inline_begin, 565
starpu_omp_single_copyprivate_inline_end, 566
starpu_omp_single_inline, 565
starpu_omp_task_region, 569
starpu_omp_taskgroup, 570
starpu_omp_taskgroup_inline_begin, 570
starpu_omp_taskgroup_inline_end, 570
starpu_omp_taskwait, 569
starpu_omp_test_lock, 579
starpu_omp_test_nest_lock, 581
starpu_omp_unset_lock, 579
starpu_omp_unset_nest_lock, 581
starpu_omp_vector_annotate, 582
STARPU_OPENMP, 562

Out Of Core, 584
starpu_disk_close, 586
starpu_disk_hdf5_ops, 587

starpu_disk_leveldb_ops, 587
starpu_disk_open, 586
starpu_disk_register, 586
STARPU_DISK_SIZE_MIN, 586
starpu_disk_stdio_ops, 587
starpu_disk_swap_node, 587
starpu_disk_unistd_o_direct_ops, 587
starpu_disk_unistd_ops, 587

pack_data
starpu_data_interface_ops, 379

pack_meta
starpu_data_interface_ops, 379

Parallel Tasks, 588
starpu_combined_worker_assign_workerid, 588
starpu_combined_worker_can_execute_task, 589
starpu_combined_worker_get_count, 588
starpu_combined_worker_get_description, 589
starpu_combined_worker_get_id, 588
starpu_combined_worker_get_rank, 588
starpu_combined_worker_get_size, 588
starpu_parallel_task_barrier_init, 589
starpu_parallel_task_barrier_init_n, 589
starpu_worker_is_combined_worker, 588

Parallel Workers, 590
STARPU_CLUSTER_AWAKE_WORKERS, 593
STARPU_CLUSTER_CREATE_FUNC, 592
STARPU_CLUSTER_CREATE_FUNC_ARG, 593
STARPU_CLUSTER_GNU_OPENMP_MKL, 594
STARPU_CLUSTER_INTEL_OPENMP_MKL, 594
STARPU_CLUSTER_KEEP_HOMOGENEOUS,

592
starpu_cluster_machine, 594
STARPU_CLUSTER_MAX_NB, 592
STARPU_CLUSTER_MIN_NB, 592
STARPU_CLUSTER_NB, 592
STARPU_CLUSTER_NCORES, 593
STARPU_CLUSTER_NEW, 593
STARPU_CLUSTER_OPENMP, 594
STARPU_CLUSTER_PARTITION_ONE, 593
STARPU_CLUSTER_POLICY_NAME, 592
STARPU_CLUSTER_POLICY_STRUCT, 592
STARPU_CLUSTER_PREFERE_MIN, 592
starpu_cluster_print, 595
STARPU_CLUSTER_TYPE, 593
starpu_cluster_types, 594
STARPU_PARALLEL_WORKER_AWAKE_WORKERS,

591
STARPU_PARALLEL_WORKER_CREATE_FUNC,

591
STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG,

591
STARPU_PARALLEL_WORKER_GNU_OPENMP_MKL,

594
starpu_parallel_worker_init, 594
STARPU_PARALLEL_WORKER_INTEL_OPENMP_MKL,

594
STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS,

591

Generated by Doxygen

812 INDEX

STARPU_PARALLEL_WORKER_MAX_NB, 591
STARPU_PARALLEL_WORKER_MIN_NB, 590
STARPU_PARALLEL_WORKER_NB, 591
STARPU_PARALLEL_WORKER_NCORES, 592
STARPU_PARALLEL_WORKER_NEW, 591
STARPU_PARALLEL_WORKER_OPENMP, 594
starpu_parallel_worker_openmp_prologue, 594
STARPU_PARALLEL_WORKER_PARTITION_ONE,

591
STARPU_PARALLEL_WORKER_POLICY_NAME,

591
STARPU_PARALLEL_WORKER_POLICY_STRUCT,

591
STARPU_PARALLEL_WORKER_PREFERE_MIN,

591
starpu_parallel_worker_print, 594
starpu_parallel_worker_shutdown, 594
STARPU_PARALLEL_WORKER_TYPE, 591
starpu_parallel_worker_types, 593
starpu_uncluster_machine, 595

parameters_names
starpu_perfmodel, 607

parents
starpu_sched_component, 512

path
starpu_perfmodel, 607

peek_data
starpu_data_interface_ops, 379

per_worker_stats
starpu_codelet, 339

Performance Model, 602
starpu_bus_print_affinity, 611
starpu_bus_print_bandwidth, 611
starpu_bus_print_filenames, 611
STARPU_COMMON, 607
starpu_energy_start, 608
starpu_energy_stop, 608
STARPU_HISTORY_BASED, 607
STARPU_MULTIPLE_REGRESSION_BASED,

607
STARPU_NL_REGRESSION_BASED, 607
STARPU_PER_ARCH, 607
STARPU_PER_WORKER, 607
starpu_perfmodel_debugfilepath, 609
starpu_perfmodel_deinit, 608
starpu_perfmodel_directory, 611
starpu_perfmodel_dump_xml, 609
starpu_perfmodel_free_sampling, 609
starpu_perfmodel_get_arch_name, 610
starpu_perfmodel_get_model_path, 609
starpu_perfmodel_history_based_expected_perf,

610
starpu_perfmodel_init, 607
starpu_perfmodel_initialize, 610
starpu_perfmodel_list, 610
starpu_perfmodel_load_file, 608
starpu_perfmodel_load_symbol, 608
starpu_perfmodel_nop, 611

starpu_perfmodel_type, 607
starpu_perfmodel_unload_model, 609
starpu_perfmodel_update_history, 610
starpu_perfmodel_update_history_n, 610
STARPU_REGRESSION_BASED, 607
starpu_save_history_based_model, 609
starpu_transfer_bandwidth, 611
starpu_transfer_latency, 611
starpu_transfer_predict, 611
starpu_worker_get_perf_archtype, 609

Performance Monitoring Counters, 596
starpu_perf_counter_collection_start, 597
starpu_perf_counter_collection_stop, 597
starpu_perf_counter_get_help_string, 598
starpu_perf_counter_get_type_id, 598
starpu_perf_counter_id_to_name, 598
starpu_perf_counter_list_all_avail, 599
starpu_perf_counter_list_avail, 599
starpu_perf_counter_listener_exit, 599
starpu_perf_counter_listener_init, 599
starpu_perf_counter_name_to_id, 598
starpu_perf_counter_nb, 598
starpu_perf_counter_nth_to_id, 598
starpu_perf_counter_sample_get_double_value,

601
starpu_perf_counter_sample_get_float_value, 601
starpu_perf_counter_sample_get_int32_value,

600
starpu_perf_counter_sample_get_int64_value,

600
starpu_perf_counter_scope, 597
starpu_perf_counter_scope_global, 597
starpu_perf_counter_scope_id_to_name, 598
starpu_perf_counter_scope_name_to_id, 598
starpu_perf_counter_scope_per_codelet, 597
starpu_perf_counter_scope_per_worker, 597
starpu_perf_counter_scope_undefined, 597
starpu_perf_counter_set_all_per_worker_listeners,

600
starpu_perf_counter_set_alloc, 599
starpu_perf_counter_set_disable_id, 599
starpu_perf_counter_set_enable_id, 599
starpu_perf_counter_set_free, 599
starpu_perf_counter_set_global_listener, 599
starpu_perf_counter_set_per_codelet_listener,

600
starpu_perf_counter_set_per_worker_listener, 600
starpu_perf_counter_type, 597
starpu_perf_counter_type_double, 597
starpu_perf_counter_type_float, 597
starpu_perf_counter_type_id_to_name, 598
starpu_perf_counter_type_int32, 597
starpu_perf_counter_type_int64, 597
starpu_perf_counter_type_name_to_id, 598
starpu_perf_counter_type_undefined, 597
starpu_perf_counter_unset_all_per_worker_listeners,

600
starpu_perf_counter_unset_global_listener, 600

Generated by Doxygen

INDEX 813

starpu_perf_counter_unset_per_codelet_listener,
600

starpu_perf_counter_unset_per_worker_listener,
600

Performance Steering Knobs, 613
starpu_perf_knob_get_global_double_value, 616
starpu_perf_knob_get_global_float_value, 616
starpu_perf_knob_get_global_int32_value, 616
starpu_perf_knob_get_global_int64_value, 616
starpu_perf_knob_get_help_string, 615
starpu_perf_knob_get_per_scheduler_double_value,

618
starpu_perf_knob_get_per_scheduler_float_value,

618
starpu_perf_knob_get_per_scheduler_int32_value,

618
starpu_perf_knob_get_per_scheduler_int64_value,

618
starpu_perf_knob_get_per_worker_double_value,

617
starpu_perf_knob_get_per_worker_float_value,

617
starpu_perf_knob_get_per_worker_int32_value,

617
starpu_perf_knob_get_per_worker_int64_value,

617
starpu_perf_knob_get_type_id, 615
starpu_perf_knob_id_to_name, 615
starpu_perf_knob_list_all_avail, 616
starpu_perf_knob_list_avail, 615
starpu_perf_knob_name_to_id, 615
starpu_perf_knob_nb, 615
starpu_perf_knob_nth_to_id, 615
starpu_perf_knob_scope, 614
starpu_perf_knob_scope_global, 614
starpu_perf_knob_scope_id_to_name, 615
starpu_perf_knob_scope_name_to_id, 614
starpu_perf_knob_scope_per_scheduler, 614
starpu_perf_knob_scope_per_worker, 614
starpu_perf_knob_scope_undefined, 614
starpu_perf_knob_set_global_double_value, 616
starpu_perf_knob_set_global_float_value, 616
starpu_perf_knob_set_global_int32_value, 616
starpu_perf_knob_set_global_int64_value, 616
starpu_perf_knob_set_per_scheduler_double_value,

618
starpu_perf_knob_set_per_scheduler_float_value,

618
starpu_perf_knob_set_per_scheduler_int32_value,

618
starpu_perf_knob_set_per_scheduler_int64_value,

618
starpu_perf_knob_set_per_worker_double_value,

617
starpu_perf_knob_set_per_worker_float_value,

617
starpu_perf_knob_set_per_worker_int32_value,

617

starpu_perf_knob_set_per_worker_int64_value,
617

starpu_perf_knob_type, 614
starpu_perf_knob_type_double, 614
starpu_perf_knob_type_float, 614
starpu_perf_knob_type_id_to_name, 615
starpu_perf_knob_type_int32, 614
starpu_perf_knob_type_int64, 614
starpu_perf_knob_type_name_to_id, 615
starpu_perf_knob_type_undefined, 614

plug
starpu_disk_ops, 584

policy_description
starpu_sched_policy, 647

policy_name
starpu_sched_policy, 647

pop_task
starpu_sched_policy, 646

possibly_parallel
starpu_task, 347

post_exec_hook
starpu_sched_policy, 647

pre_exec_hook
starpu_sched_policy, 646

precedence_over_environment_variables
starpu_conf, 471

predicted
starpu_task, 347

predicted_transfer
starpu_task, 347

prefetched
starpu_task, 346

prefetches
starpu_sched_policy, 647

prev
starpu_task, 348

priority
MPI Support, 550
starpu_task, 346

Profiling, 620
starpu_bus_get_count, 623
starpu_bus_get_direct, 624
starpu_bus_get_dst, 623
starpu_bus_get_id, 623
starpu_bus_get_ngpus, 624
starpu_bus_get_profiling_info, 624
starpu_bus_get_src, 623
starpu_bus_set_direct, 623
starpu_bus_set_ngpus, 624
starpu_data_display_memory_stats, 624
starpu_profiling_bus_helper_display_summary,

624
STARPU_PROFILING_DISABLE, 622
STARPU_PROFILING_ENABLE, 622
starpu_profiling_init, 622
starpu_profiling_set_id, 622
starpu_profiling_status_get, 623
starpu_profiling_status_set, 623

Generated by Doxygen

814 INDEX

starpu_profiling_worker_get_info, 623
starpu_profiling_worker_helper_display_summary,

624
starpu_timing_timespec_delay_us, 624
starpu_timing_timespec_to_us, 624

Profiling Tool, 626
starpu_prof_tool_command, 627
starpu_prof_tool_driver_type, 627
starpu_prof_tool_entry_func, 627
starpu_prof_tool_entry_register_func, 627
starpu_prof_tool_event, 627

profiling_info
starpu_task, 347

prologue_callback_arg
starpu_task, 343

prologue_callback_arg_free
starpu_task, 344

prologue_callback_func
starpu_task, 343

prologue_callback_pop_arg
starpu_task, 344

prologue_callback_pop_arg_free
starpu_task, 344

prologue_callback_pop_func
starpu_task, 343

pull_task
starpu_sched_component, 513

push_task
starpu_sched_component, 513
starpu_sched_policy, 646

push_task_notify
starpu_sched_policy, 646

ram_to_cuda
starpu_data_copy_methods, 373

ram_to_cuda_async
starpu_data_copy_methods, 374

ram_to_hip
starpu_data_copy_methods, 373

ram_to_hip_async
starpu_data_copy_methods, 374

ram_to_max_fpga
starpu_data_copy_methods, 373

ram_to_max_fpga_async
starpu_data_copy_methods, 375

ram_to_opencl
starpu_data_copy_methods, 373

ram_to_opencl_async
starpu_data_copy_methods, 374

ram_to_ram
starpu_data_copy_methods, 372

Random Functions, 628
read

starpu_disk_ops, 585
regenerate

starpu_task, 345
register_data_handle

starpu_data_interface_ops, 376
regression

starpu_perfmodel_per_arch, 605
remove

starpu_worker_collection, 708
remove_child

starpu_sched_component, 513
remove_workers

starpu_sched_policy, 647
reserve_ncpus

starpu_conf, 471
resize_ctxs

sc_hypervisor_policy, 661
reuse_data_on_node

starpu_data_interface_ops, 377
Running Drivers, 629

starpu_driver_deinit, 630
starpu_driver_init, 630
starpu_driver_run, 629
starpu_driver_run_once, 630
starpu_drivers_preinit, 629
starpu_drivers_request_termination, 630

sc_hypervisor.h, 784
sc_hypervisor_add_workers_to_sched_ctx

Scheduling Context Hypervisor - Regular usage,
671

sc_hypervisor_can_resize
Scheduling Context Hypervisor - Regular usage,

672
sc_hypervisor_check_idle

Scheduling Context Hypervisor - Building a new re-
sizing policy, 666

sc_hypervisor_check_if_consider_max
Scheduling Context Hypervisor - Building a new re-

sizing policy, 666
sc_hypervisor_check_speed_gap_btw_ctxs

Scheduling Context Hypervisor - Building a new re-
sizing policy, 667

sc_hypervisor_check_speed_gap_btw_ctxs_on_level
Scheduling Context Hypervisor - Building a new re-

sizing policy, 667
sc_hypervisor_compute_nworkers_to_move

Scheduling Context Hypervisor - Building a new re-
sizing policy, 665

sc_hypervisor_config.h, 785
sc_hypervisor_criteria_fulfilled

Scheduling Context Hypervisor - Building a new re-
sizing policy, 666

sc_hypervisor_ctl
Scheduling Context Hypervisor - Building a new re-

sizing policy, 668
sc_hypervisor_find_lowest_prio_sched_ctx

Scheduling Context Hypervisor - Building a new re-
sizing policy, 664

SC_HYPERVISOR_FIXED_WORKERS
Scheduling Context Hypervisor - Building a new re-

sizing policy, 663
sc_hypervisor_free_size_req

Scheduling Context Hypervisor - Regular usage,
671

Generated by Doxygen

INDEX 815

sc_hypervisor_get_arch_for_index
Scheduling Context Hypervisor - Building a new re-

sizing policy, 666
sc_hypervisor_get_avg_speed

Scheduling Context Hypervisor - Building a new re-
sizing policy, 666

sc_hypervisor_get_config
Scheduling Context Hypervisor - Building a new re-

sizing policy, 668
sc_hypervisor_get_ctx_speed

Scheduling Context Hypervisor - Building a new re-
sizing policy, 665

sc_hypervisor_get_ctxs_on_level
Scheduling Context Hypervisor - Regular usage,

672
sc_hypervisor_get_elapsed_flops_per_sched_ctx

Scheduling Context Hypervisor - Building a new re-
sizing policy, 667

sc_hypervisor_get_fastest_ctx_exec_time
Scheduling Context Hypervisor - Building a new re-

sizing policy, 665
sc_hypervisor_get_idlest_workers

Scheduling Context Hypervisor - Building a new re-
sizing policy, 664

sc_hypervisor_get_idlest_workers_in_list
Scheduling Context Hypervisor - Building a new re-

sizing policy, 664
sc_hypervisor_get_index_for_arch

Scheduling Context Hypervisor - Building a new re-
sizing policy, 666

sc_hypervisor_get_leaves
Scheduling Context Hypervisor - Regular usage,

672
sc_hypervisor_get_movable_nworkers

Scheduling Context Hypervisor - Building a new re-
sizing policy, 665

sc_hypervisor_get_nhierarchy_levels
Scheduling Context Hypervisor - Regular usage,

672
sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx

Scheduling Context Hypervisor - Regular usage,
673

sc_hypervisor_get_nsched_ctxs
Scheduling Context Hypervisor - Building a new re-

sizing policy, 667
sc_hypervisor_get_nworkers_ctx

Scheduling Context Hypervisor - Building a new re-
sizing policy, 668

sc_hypervisor_get_policy
Scheduling Context Hypervisor - Regular usage,

670
sc_hypervisor_get_ref_speed_per_worker_type

Scheduling Context Hypervisor - Building a new re-
sizing policy, 666

sc_hypervisor_get_resize_criteria
Scheduling Context Hypervisor - Building a new re-

sizing policy, 667
sc_hypervisor_get_sched_ctxs

Scheduling Context Hypervisor - Building a new re-
sizing policy, 667

sc_hypervisor_get_size_req
Scheduling Context Hypervisor - Regular usage,

671
sc_hypervisor_get_slowest_ctx_exec_time

Scheduling Context Hypervisor - Building a new re-
sizing policy, 665

sc_hypervisor_get_speed
Scheduling Context Hypervisor - Building a new re-

sizing policy, 668
sc_hypervisor_get_speed_per_worker

Scheduling Context Hypervisor - Building a new re-
sizing policy, 665

sc_hypervisor_get_speed_per_worker_type
Scheduling Context Hypervisor - Building a new re-

sizing policy, 666
sc_hypervisor_get_tasks_times

Scheduling Context Hypervisor - Building a new re-
sizing policy, 664

sc_hypervisor_get_total_elapsed_flops_per_sched_ctx
Scheduling Context Hypervisor - Building a new re-

sizing policy, 668
sc_hypervisor_get_types_of_workers

Scheduling Context Hypervisor - Building a new re-
sizing policy, 667

sc_hypervisor_get_wrapper
Scheduling Context Hypervisor - Building a new re-

sizing policy, 667
SC_HYPERVISOR_GRANULARITY

Scheduling Context Hypervisor - Building a new re-
sizing policy, 663

sc_hypervisor_group_workers_by_type
Scheduling Context Hypervisor - Building a new re-

sizing policy, 666
sc_hypervisor_init

Scheduling Context Hypervisor - Regular usage,
670

SC_HYPERVISOR_ISPEED_CTX_SAMPLE
Scheduling Context Hypervisor - Building a new re-

sizing policy, 663
SC_HYPERVISOR_ISPEED_W_SAMPLE

Scheduling Context Hypervisor - Building a new re-
sizing policy, 663

sc_hypervisor_lp.h, 786
sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs

Scheduling Context Hypervisor - Linear Program-
ming, 656

sc_hypervisor_lp_distribute_resources_in_ctxs
Scheduling Context Hypervisor - Linear Program-

ming, 656
sc_hypervisor_lp_execute_dichotomy

Scheduling Context Hypervisor - Linear Program-
ming, 657

sc_hypervisor_lp_find_tmax
Scheduling Context Hypervisor - Linear Program-

ming, 657
sc_hypervisor_lp_get_nworkers_per_ctx

Generated by Doxygen

816 INDEX

Scheduling Context Hypervisor - Linear Program-
ming, 655

sc_hypervisor_lp_get_tmax
Scheduling Context Hypervisor - Linear Program-

ming, 655
sc_hypervisor_lp_place_resources_in_ctx

Scheduling Context Hypervisor - Linear Program-
ming, 656

sc_hypervisor_lp_redistribute_resources_in_ctxs
Scheduling Context Hypervisor - Linear Program-

ming, 656
sc_hypervisor_lp_round_double_to_int

Scheduling Context Hypervisor - Linear Program-
ming, 655

sc_hypervisor_lp_share_remaining_resources
Scheduling Context Hypervisor - Linear Program-

ming, 656
sc_hypervisor_lp_simulate_distrib_flops

Scheduling Context Hypervisor - Linear Program-
ming, 657

sc_hypervisor_lp_simulate_distrib_flops_on_sample
Scheduling Context Hypervisor - Linear Program-

ming, 657
sc_hypervisor_lp_simulate_distrib_tasks

Scheduling Context Hypervisor - Linear Program-
ming, 657

SC_HYPERVISOR_MAX_IDLE
Scheduling Context Hypervisor - Building a new re-

sizing policy, 662
SC_HYPERVISOR_MAX_WORKERS

Scheduling Context Hypervisor - Building a new re-
sizing policy, 663

SC_HYPERVISOR_MIN_TASKS
Scheduling Context Hypervisor - Building a new re-

sizing policy, 663
SC_HYPERVISOR_MIN_WORKERS

Scheduling Context Hypervisor - Building a new re-
sizing policy, 662

sc_hypervisor_monitoring.h, 787
sc_hypervisor_move_workers

Scheduling Context Hypervisor - Regular usage,
671

SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE
Scheduling Context Hypervisor - Building a new re-

sizing policy, 663
SC_HYPERVISOR_NULL

Scheduling Context Hypervisor - Building a new re-
sizing policy, 663

sc_hypervisor_policy, 661
custom, 661
end_ctx, 662
handle_idle_cycle, 661
handle_idle_end, 662
handle_poped_task, 661
handle_post_exec_hook, 662
handle_pushed_task, 661
handle_submitted_job, 662
init_worker, 662

name, 661
resize_ctxs, 661
size_ctxs, 661
start_ctx, 662

sc_hypervisor_policy.h, 789
sc_hypervisor_policy_add_task_to_pool

Scheduling Context Hypervisor - Building a new re-
sizing policy, 664

sc_hypervisor_policy_clone_task_pool
Scheduling Context Hypervisor - Building a new re-

sizing policy, 664
sc_hypervisor_policy_config, 786
sc_hypervisor_policy_remove_task_from_pool

Scheduling Context Hypervisor - Building a new re-
sizing policy, 664

sc_hypervisor_policy_resize
Scheduling Context Hypervisor - Building a new re-

sizing policy, 665
sc_hypervisor_policy_resize_to_unknown_receiver

Scheduling Context Hypervisor - Building a new re-
sizing policy, 665

sc_hypervisor_policy_task_pool, 660
sc_hypervisor_post_resize_request

Scheduling Context Hypervisor - Regular usage,
670

SC_HYPERVISOR_PRIORITY
Scheduling Context Hypervisor - Building a new re-

sizing policy, 662
sc_hypervisor_register_ctx

Scheduling Context Hypervisor - Regular usage,
670

sc_hypervisor_remove_workers_from_sched_ctx
Scheduling Context Hypervisor - Regular usage,

671
sc_hypervisor_resize_ack, 662
sc_hypervisor_resize_ctxs

Scheduling Context Hypervisor - Regular usage,
670

sc_hypervisor_save_size_req
Scheduling Context Hypervisor - Regular usage,

671
sc_hypervisor_set_config

Scheduling Context Hypervisor - Building a new re-
sizing policy, 668

sc_hypervisor_set_type_of_task
Scheduling Context Hypervisor - Regular usage,

672
sc_hypervisor_shutdown

Scheduling Context Hypervisor - Regular usage,
670

sc_hypervisor_size_ctxs
Scheduling Context Hypervisor - Regular usage,

671
sc_hypervisor_start_resize

Scheduling Context Hypervisor - Regular usage,
670

sc_hypervisor_stop_resize
Scheduling Context Hypervisor - Regular usage,

Generated by Doxygen

INDEX 817

670
SC_HYPERVISOR_TIME_TO_APPLY

Scheduling Context Hypervisor - Building a new re-
sizing policy, 663

sc_hypervisor_unregister_ctx
Scheduling Context Hypervisor - Regular usage,

670
sc_hypervisor_update_diff_elapsed_flops

Scheduling Context Hypervisor - Regular usage,
672

sc_hypervisor_update_diff_total_flops
Scheduling Context Hypervisor - Regular usage,

672
sc_hypervisor_update_resize_interval

Scheduling Context Hypervisor - Regular usage,
672

sc_hypervisor_wrapper, 787
sc_hypervisorsc_hypervisor_get_speed_per_worker_type

Scheduling Context Hypervisor - Building a new re-
sizing policy, 668

sched_ctx
starpu_task, 347

sched_data
starpu_task, 348

sched_policy
starpu_conf, 471

sched_policy_callback
starpu_conf, 471

sched_policy_name
starpu_conf, 471

scheduled
starpu_task, 346

Scheduler Toolbox, 631
starpu_st_fifo_exp_end_get, 633
starpu_st_fifo_exp_end_set, 633
starpu_st_fifo_exp_len_get, 633
starpu_st_fifo_exp_len_inc, 633
starpu_st_fifo_exp_len_per_priority_get, 633
starpu_st_fifo_exp_len_set, 633
starpu_st_fifo_exp_start_get, 633
starpu_st_fifo_exp_start_set, 633
starpu_st_fifo_nprocessed_get, 632
starpu_st_fifo_nprocessed_inc, 633
starpu_st_fifo_ntasks_get, 632
starpu_st_fifo_ntasks_inc, 632
starpu_st_fifo_ntasks_per_priority_get, 632
starpu_st_fifo_pipeline_len_get, 634
starpu_st_fifo_pipeline_len_inc, 634
starpu_st_fifo_pipeline_len_set, 634
starpu_st_fifo_taskq_create, 632
starpu_st_fifo_taskq_pop_first_ready_task, 634
starpu_st_fifo_taskq_pop_local_task, 634
starpu_st_fifo_taskq_t, 632
starpu_st_prio_deque_deque_task_for_worker,

635
starpu_st_prio_deque_init, 634
starpu_st_prio_deque_is_empty, 634
starpu_st_prio_deque_pop_task_for_worker, 634

starpu_st_prio_deque_push_front_task, 634
starpu_st_prio_deque_t, 632

Scheduling Context Hypervisor - Building a new resizing
policy, 659

sc_hypervisor_check_idle, 666
sc_hypervisor_check_if_consider_max, 666
sc_hypervisor_check_speed_gap_btw_ctxs, 667
sc_hypervisor_check_speed_gap_btw_ctxs_on_level,

667
sc_hypervisor_compute_nworkers_to_move, 665
sc_hypervisor_criteria_fulfilled, 666
sc_hypervisor_ctl, 668
sc_hypervisor_find_lowest_prio_sched_ctx, 664
SC_HYPERVISOR_FIXED_WORKERS, 663
sc_hypervisor_get_arch_for_index, 666
sc_hypervisor_get_avg_speed, 666
sc_hypervisor_get_config, 668
sc_hypervisor_get_ctx_speed, 665
sc_hypervisor_get_elapsed_flops_per_sched_ctx,

667
sc_hypervisor_get_fastest_ctx_exec_time, 665
sc_hypervisor_get_idlest_workers, 664
sc_hypervisor_get_idlest_workers_in_list, 664
sc_hypervisor_get_index_for_arch, 666
sc_hypervisor_get_movable_nworkers, 665
sc_hypervisor_get_nsched_ctxs, 667
sc_hypervisor_get_nworkers_ctx, 668
sc_hypervisor_get_ref_speed_per_worker_type,

666
sc_hypervisor_get_resize_criteria, 667
sc_hypervisor_get_sched_ctxs, 667
sc_hypervisor_get_slowest_ctx_exec_time, 665
sc_hypervisor_get_speed, 668
sc_hypervisor_get_speed_per_worker, 665
sc_hypervisor_get_speed_per_worker_type, 666
sc_hypervisor_get_tasks_times, 664
sc_hypervisor_get_total_elapsed_flops_per_sched_ctx,

668
sc_hypervisor_get_types_of_workers, 667
sc_hypervisor_get_wrapper, 667
SC_HYPERVISOR_GRANULARITY, 663
sc_hypervisor_group_workers_by_type, 666
SC_HYPERVISOR_ISPEED_CTX_SAMPLE, 663
SC_HYPERVISOR_ISPEED_W_SAMPLE, 663
SC_HYPERVISOR_MAX_IDLE, 662
SC_HYPERVISOR_MAX_WORKERS, 663
SC_HYPERVISOR_MIN_TASKS, 663
SC_HYPERVISOR_MIN_WORKERS, 662
SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE,

663
SC_HYPERVISOR_NULL, 663
sc_hypervisor_policy_add_task_to_pool, 664
sc_hypervisor_policy_clone_task_pool, 664
sc_hypervisor_policy_remove_task_from_pool,

664
sc_hypervisor_policy_resize, 665
sc_hypervisor_policy_resize_to_unknown_receiver,

665

Generated by Doxygen

818 INDEX

SC_HYPERVISOR_PRIORITY, 662
sc_hypervisor_set_config, 668
SC_HYPERVISOR_TIME_TO_APPLY, 663
sc_hypervisorsc_hypervisor_get_speed_per_worker_type,

668
Scheduling Context Hypervisor - Linear Programming,

655
sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs,

656
sc_hypervisor_lp_distribute_resources_in_ctxs,

656
sc_hypervisor_lp_execute_dichotomy, 657
sc_hypervisor_lp_find_tmax, 657
sc_hypervisor_lp_get_nworkers_per_ctx, 655
sc_hypervisor_lp_get_tmax, 655
sc_hypervisor_lp_place_resources_in_ctx, 656
sc_hypervisor_lp_redistribute_resources_in_ctxs,

656
sc_hypervisor_lp_round_double_to_int, 655
sc_hypervisor_lp_share_remaining_resources,

656
sc_hypervisor_lp_simulate_distrib_flops, 657
sc_hypervisor_lp_simulate_distrib_flops_on_sample,

657
sc_hypervisor_lp_simulate_distrib_tasks, 657

Scheduling Context Hypervisor - Regular usage, 669
act_hypervisor_mutex, 673
sc_hypervisor_add_workers_to_sched_ctx, 671
sc_hypervisor_can_resize, 672
sc_hypervisor_free_size_req, 671
sc_hypervisor_get_ctxs_on_level, 672
sc_hypervisor_get_leaves, 672
sc_hypervisor_get_nhierarchy_levels, 672
sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx,

673
sc_hypervisor_get_policy, 670
sc_hypervisor_get_size_req, 671
sc_hypervisor_init, 670
sc_hypervisor_move_workers, 671
sc_hypervisor_post_resize_request, 670
sc_hypervisor_register_ctx, 670
sc_hypervisor_remove_workers_from_sched_ctx,

671
sc_hypervisor_resize_ctxs, 670
sc_hypervisor_save_size_req, 671
sc_hypervisor_set_type_of_task, 672
sc_hypervisor_shutdown, 670
sc_hypervisor_size_ctxs, 671
sc_hypervisor_start_resize, 670
sc_hypervisor_stop_resize, 670
sc_hypervisor_unregister_ctx, 670
sc_hypervisor_update_diff_elapsed_flops, 672
sc_hypervisor_update_diff_total_flops, 672
sc_hypervisor_update_resize_interval, 672

Scheduling Contexts, 636
STARPU_DEFAULT_PRIO, 638
STARPU_MAX_PRIO, 638
STARPU_MIN_PRIO, 638

starpu_sched_ctx_add_workers, 639
STARPU_SCHED_CTX_AWAKE_WORKERS, 638
starpu_sched_ctx_contains_worker, 641
starpu_sched_ctx_create, 639
starpu_sched_ctx_create_inside_interval, 639
starpu_sched_ctx_create_worker_collection, 643
STARPU_SCHED_CTX_CUDA_NSMS, 638
starpu_sched_ctx_delete, 640
starpu_sched_ctx_delete_worker_collection, 643
starpu_sched_ctx_display_workers, 640
starpu_sched_ctx_exec_parallel_code, 642
starpu_sched_ctx_finished_submit, 640
starpu_sched_ctx_get_context, 640
starpu_sched_ctx_get_max_priority, 642
starpu_sched_ctx_get_min_priority, 642
starpu_sched_ctx_get_nshared_workers, 641
starpu_sched_ctx_get_nworkers, 641
starpu_sched_ctx_get_policy_data, 642
starpu_sched_ctx_get_sched_policy_callback, 643
starpu_sched_ctx_get_user_data, 641
starpu_sched_ctx_get_worker_collection, 643
starpu_sched_ctx_get_workers_list, 641
starpu_sched_ctx_get_workers_list_raw, 641
starpu_sched_ctx_master_get_context, 642
starpu_sched_ctx_overlapping_ctxs_on_worker,

641
STARPU_SCHED_CTX_POLICY_INIT, 638
STARPU_SCHED_CTX_POLICY_MAX_PRIO,

638
STARPU_SCHED_CTX_POLICY_MIN_PRIO, 638
STARPU_SCHED_CTX_POLICY_NAME, 637
STARPU_SCHED_CTX_POLICY_STRUCT, 638
starpu_sched_ctx_register_close_callback, 639
starpu_sched_ctx_remove_workers, 640
starpu_sched_ctx_set_context, 640
starpu_sched_ctx_set_inheritor, 640
starpu_sched_ctx_set_max_priority, 643
starpu_sched_ctx_set_min_priority, 642
starpu_sched_ctx_set_policy_data, 642
starpu_sched_ctx_stop_task_submission, 640
STARPU_SCHED_CTX_SUB_CTXS, 638
STARPU_SCHED_CTX_USER_DATA, 638
starpu_sched_ctx_worker_get_id, 641
starpu_sched_ctx_worker_is_master_for_child_ctx,

642
Scheduling Policy, 644

starpu_data_expected_transfer_time, 652
starpu_get_prefetch_flag, 650
starpu_get_sched_lib_policies, 648
starpu_get_sched_lib_policy, 647
starpu_idle_prefetch_task_input_for, 651
starpu_idle_prefetch_task_input_for_prio, 651
starpu_idle_prefetch_task_input_on_node, 650
starpu_idle_prefetch_task_input_on_node_prio,

650
STARPU_MAXIMPLEMENTATIONS, 647
STARPU_NMAX_SCHED_CTXS, 647
starpu_prefetch_task_input_for, 650

Generated by Doxygen

INDEX 819

starpu_prefetch_task_input_for_prio, 650
starpu_prefetch_task_input_on_node, 650
starpu_prefetch_task_input_on_node_prio, 650
starpu_push_local_task, 649
starpu_push_task_end, 650
starpu_sched_ctx_worker_shares_tasks_lists, 653
starpu_sched_get_max_priority, 648
starpu_sched_get_min_priority, 648
starpu_sched_get_predefined_policies, 647
starpu_sched_get_sched_policy, 648
starpu_sched_get_sched_policy_in_ctx, 648
starpu_sched_set_max_priority, 649
starpu_sched_set_min_priority, 648
starpu_sched_task_break, 653
starpu_task_data_footprint, 651
starpu_task_expected_conversion_time, 653
starpu_task_expected_data_transfer_time, 652
starpu_task_expected_data_transfer_time_for, 652
starpu_task_expected_energy, 652
starpu_task_expected_energy_average, 652
starpu_task_expected_length, 651
starpu_task_expected_length_average, 651
starpu_task_footprint, 651
starpu_task_get_job_id, 648
starpu_task_notify_ready_soon_register, 653
starpu_task_worker_expected_energy, 652
starpu_task_worker_expected_length, 651
starpu_wake_worker_locked, 653
starpu_wake_worker_no_relax, 653
starpu_wake_worker_relax, 653
starpu_wake_worker_relax_light, 654
starpu_worker_can_execute_task, 649
starpu_worker_can_execute_task_first_impl, 649
starpu_worker_can_execute_task_impl, 649
starpu_worker_get_relative_speedup, 652
starpu_worker_get_sched_condition, 648

sequential_consistency
starpu_task, 345

single_combined_worker
starpu_conf, 473

Sink, 674
size_base

starpu_perfmodel, 606
starpu_perfmodel_per_arch, 605

size_ctxs
sc_hypervisor_policy, 661

specific_nodes
starpu_codelet, 338

Standard Memory Library, 675
starpu_data_free_pinned_if_possible, 676
starpu_data_malloc_pinned_if_possible, 676
starpu_energy_use, 680
starpu_energy_used, 680
starpu_free, 677
starpu_free_flags, 677
starpu_free_noflag, 677
starpu_malloc, 677
STARPU_MALLOC_COUNT, 675

starpu_malloc_flags, 677
STARPU_MALLOC_NORECLAIM, 676
STARPU_MALLOC_PINNED, 675
starpu_malloc_set_align, 677
starpu_malloc_set_hooks, 677
STARPU_MALLOC_SIMULATION_FOLDED, 676
STARPU_MALLOC_SIMULATION_UNIQUE, 676
starpu_memory_allocate, 679
starpu_memory_deallocate, 679
starpu_memory_get_available, 678
starpu_memory_get_available_all_nodes, 678
starpu_memory_get_total, 678
starpu_memory_get_total_all_nodes, 678
starpu_memory_get_used, 678
starpu_memory_get_used_all_nodes, 679
STARPU_MEMORY_OVERFLOW, 676
starpu_memory_pin, 678
starpu_memory_unpin, 678
STARPU_MEMORY_WAIT, 676
starpu_memory_wait_available, 679
starpu_sleep, 679
starpu_usleep, 679

starpu.h, 721
STARPU_ABORT

Toolbox, 700
STARPU_ABORT_MSG

Toolbox, 700
STARPU_ACCESS_MODE_MAX

Data Management, 418
STARPU_ACQUIRE_NO_NODE

Data Management, 416
STARPU_ACQUIRE_NO_NODE_LOCK_ALL

Data Management, 416
STARPU_ANY_WORKER

Workers, 709
starpu_arbiter_create

Data Management, 422
starpu_arbiter_destroy

Data Management, 423
starpu_arbiter_t

Data Management, 416
starpu_arch_mask_to_worker_archtype

Workers, 710
STARPU_ASSERT

Toolbox, 700
STARPU_ASSERT_ACCESSIBLE

Toolbox, 700
STARPU_ASSERT_MSG

Toolbox, 700
starpu_asynchronous_copy_disabled

Initialization and Termination, 478
starpu_asynchronous_copy_disabled_for

Initialization and Termination, 479
starpu_asynchronous_cuda_copy_disabled

Initialization and Termination, 478
starpu_asynchronous_hip_copy_disabled

Initialization and Termination, 478
starpu_asynchronous_max_fpga_copy_disabled

Generated by Doxygen

820 INDEX

Initialization and Termination, 478
starpu_asynchronous_mpi_ms_copy_disabled

Initialization and Termination, 478
starpu_asynchronous_opencl_copy_disabled

Initialization and Termination, 478
starpu_asynchronous_tcpip_ms_copy_disabled

Initialization and Termination, 479
STARPU_ATTRIBUTE_ALIGNED

Toolbox, 699
STARPU_ATTRIBUTE_MALLOC

Toolbox, 699
STARPU_ATTRIBUTE_NORETURN

Toolbox, 699
STARPU_ATTRIBUTE_PURE

Toolbox, 699
STARPU_ATTRIBUTE_UNUSED

Toolbox, 699
STARPU_ATTRIBUTE_VISIBILITY_DEFAULT

Toolbox, 699
STARPU_ATTRIBUTE_WARN_UNUSED_RESULT

Toolbox, 699
starpu_autoheteroprio_priority_ordering_policy

Heteroprio Scheduler, 463
starpu_bcsr_data_register

Data Interfaces, 410
starpu_bcsr_filter_canonical_block

Data Partition, 437
starpu_bcsr_filter_canonical_block_child_ops

Data Partition, 437
starpu_bcsr_filter_canonical_block_get_nchildren

Data Partition, 437
starpu_bcsr_filter_vertical_block

Data Partition, 437
STARPU_BCSR_GET_C

Data Interfaces, 392
starpu_bcsr_get_c

Data Interfaces, 411
STARPU_BCSR_GET_COLIND

Data Interfaces, 392
STARPU_BCSR_GET_COLIND_DEV_HANDLE

Data Interfaces, 392
STARPU_BCSR_GET_ELEMSIZE

Data Interfaces, 393
starpu_bcsr_get_elemsize

Data Interfaces, 412
STARPU_BCSR_GET_FIRSTENTRY

Data Interfaces, 392
starpu_bcsr_get_firstentry

Data Interfaces, 411
starpu_bcsr_get_local_colind

Data Interfaces, 411
starpu_bcsr_get_local_nzval

Data Interfaces, 411
starpu_bcsr_get_local_rowptr

Data Interfaces, 411
STARPU_BCSR_GET_NNZ

Data Interfaces, 391
starpu_bcsr_get_nnz

Data Interfaces, 411
STARPU_BCSR_GET_NROW

Data Interfaces, 391
starpu_bcsr_get_nrow

Data Interfaces, 411
STARPU_BCSR_GET_NZVAL

Data Interfaces, 391
STARPU_BCSR_GET_NZVAL_DEV_HANDLE

Data Interfaces, 391
STARPU_BCSR_GET_OFFSET

Data Interfaces, 393
STARPU_BCSR_GET_R

Data Interfaces, 392
starpu_bcsr_get_r

Data Interfaces, 411
STARPU_BCSR_GET_RAM_COLIND

Data Interfaces, 392
STARPU_BCSR_GET_RAM_ROWPTR

Data Interfaces, 392
STARPU_BCSR_GET_ROWPTR

Data Interfaces, 392
STARPU_BCSR_GET_ROWPTR_DEV_HANDLE

Data Interfaces, 392
starpu_bcsr_interface, 382
STARPU_BCSR_INTERFACE_ID

Data Interfaces, 394
starpu_bind_thread_on

Initialization and Termination, 477
starpu_bind_thread_on_cpu

Initialization and Termination, 477
starpu_bind_thread_on_main

Initialization and Termination, 477
starpu_bind_thread_on_worker

Initialization and Termination, 477
starpu_bindid_get_workerids

Workers, 714
starpu_bitmap, 723
starpu_bitmap.h, 722
starpu_bitmap_and_get

Bitmap, 329
starpu_bitmap_cardinal

Bitmap, 329
starpu_bitmap_create

Bitmap, 328
starpu_bitmap_destroy

Bitmap, 328
starpu_bitmap_first

Bitmap, 329
starpu_bitmap_get

Bitmap, 329
starpu_bitmap_has_next

Bitmap, 330
starpu_bitmap_init

Bitmap, 328
starpu_bitmap_last

Bitmap, 330
starpu_bitmap_next

Bitmap, 330

Generated by Doxygen

INDEX 821

starpu_bitmap_or
Bitmap, 329

starpu_bitmap_set
Bitmap, 328

starpu_bitmap_unset
Bitmap, 329

starpu_bitmap_unset_all
Bitmap, 329

starpu_bitmap_unset_and
Bitmap, 329

starpu_block_data_register
Data Interfaces, 403

starpu_block_filter_block
Data Partition, 441

starpu_block_filter_block_shadow
Data Partition, 441

starpu_block_filter_depth_block
Data Partition, 442

starpu_block_filter_depth_block_shadow
Data Partition, 442

starpu_block_filter_pick_matrix_child_ops
Data Partition, 443

starpu_block_filter_pick_matrix_y
Data Partition, 443

starpu_block_filter_pick_matrix_z
Data Partition, 442

starpu_block_filter_pick_variable
Data Partition, 443

starpu_block_filter_pick_variable_child_ops
Data Partition, 443

starpu_block_filter_vertical_block
Data Partition, 441

starpu_block_filter_vertical_block_shadow
Data Partition, 442

STARPU_BLOCK_GET_DEV_HANDLE
Data Interfaces, 386

STARPU_BLOCK_GET_ELEMSIZE
Data Interfaces, 386

starpu_block_get_elemsize
Data Interfaces, 404

STARPU_BLOCK_GET_LDY
Data Interfaces, 386

STARPU_BLOCK_GET_LDZ
Data Interfaces, 386

starpu_block_get_local_ldy
Data Interfaces, 403

starpu_block_get_local_ldz
Data Interfaces, 404

starpu_block_get_local_ptr
Data Interfaces, 404

STARPU_BLOCK_GET_NX
Data Interfaces, 386

starpu_block_get_nx
Data Interfaces, 403

STARPU_BLOCK_GET_NY
Data Interfaces, 386

starpu_block_get_ny
Data Interfaces, 403

STARPU_BLOCK_GET_NZ
Data Interfaces, 386

starpu_block_get_nz
Data Interfaces, 403

STARPU_BLOCK_GET_OFFSET
Data Interfaces, 386

STARPU_BLOCK_GET_PTR
Data Interfaces, 386

starpu_block_interface, 380
STARPU_BLOCK_INTERFACE_ID

Data Interfaces, 394
starpu_block_ptr_register

Data Interfaces, 403
starpu_bound.h, 723
starpu_bound_compute

Theoretical Lower Bound on Execution Time, 686
starpu_bound_print

Theoretical Lower Bound on Execution Time, 687
starpu_bound_print_dot

Theoretical Lower Bound on Execution Time, 686
starpu_bound_print_lp

Theoretical Lower Bound on Execution Time, 686
starpu_bound_print_mps

Theoretical Lower Bound on Execution Time, 687
starpu_bound_start

Theoretical Lower Bound on Execution Time, 686
starpu_bound_stop

Theoretical Lower Bound on Execution Time, 686
STARPU_BUBBLE_FUNC

Hierarchical Dags, 331
STARPU_BUBBLE_FUNC_ARG

Hierarchical Dags, 331
starpu_bubble_func_t

Hierarchical Dags, 331
STARPU_BUBBLE_GEN_DAG_FUNC

Hierarchical Dags, 331
STARPU_BUBBLE_GEN_DAG_FUNC_ARG

Hierarchical Dags, 331
starpu_bubble_gen_dag_func_t

Hierarchical Dags, 332
STARPU_BUBBLE_PARENT

Hierarchical Dags, 331
starpu_bus_get_count

Profiling, 623
starpu_bus_get_direct

Profiling, 624
starpu_bus_get_dst

Profiling, 623
starpu_bus_get_id

Profiling, 623
starpu_bus_get_ngpus

Profiling, 624
starpu_bus_get_profiling_info

Profiling, 624
starpu_bus_get_src

Profiling, 623
starpu_bus_print_affinity

Performance Model, 611

Generated by Doxygen

822 INDEX

starpu_bus_print_bandwidth
Performance Model, 611

starpu_bus_print_filenames
Performance Model, 611

starpu_bus_set_direct
Profiling, 623

starpu_bus_set_ngpus
Profiling, 624

STARPU_CALLBACK
Task Insert Utility, 481

STARPU_CALLBACK_ARG
Task Insert Utility, 482

STARPU_CALLBACK_ARG_NFREE
Task Insert Utility, 485

STARPU_CALLBACK_WITH_ARG
Task Insert Utility, 482

STARPU_CALLBACK_WITH_ARG_NFREE
Task Insert Utility, 485

STARPU_CHECK_RETURN_VALUE
Toolbox, 700

STARPU_CHECK_RETURN_VALUE_IS
Toolbox, 700

STARPU_CL_ARGS
Task Insert Utility, 483

STARPU_CL_ARGS_NFREE
Task Insert Utility, 484

STARPU_CLUSTER_AWAKE_WORKERS
Parallel Workers, 593

STARPU_CLUSTER_CREATE_FUNC
Parallel Workers, 592

STARPU_CLUSTER_CREATE_FUNC_ARG
Parallel Workers, 593

STARPU_CLUSTER_GNU_OPENMP_MKL
Parallel Workers, 594

STARPU_CLUSTER_INTEL_OPENMP_MKL
Parallel Workers, 594

STARPU_CLUSTER_KEEP_HOMOGENEOUS
Parallel Workers, 592

starpu_cluster_machine
Parallel Workers, 594

STARPU_CLUSTER_MAX_NB
Parallel Workers, 592

STARPU_CLUSTER_MIN_NB
Parallel Workers, 592

STARPU_CLUSTER_NB
Parallel Workers, 592

STARPU_CLUSTER_NCORES
Parallel Workers, 593

STARPU_CLUSTER_NEW
Parallel Workers, 593

STARPU_CLUSTER_OPENMP
Parallel Workers, 594

STARPU_CLUSTER_PARTITION_ONE
Parallel Workers, 593

STARPU_CLUSTER_POLICY_NAME
Parallel Workers, 592

STARPU_CLUSTER_POLICY_STRUCT
Parallel Workers, 592

STARPU_CLUSTER_PREFERE_MIN
Parallel Workers, 592

starpu_cluster_print
Parallel Workers, 595

STARPU_CLUSTER_TYPE
Parallel Workers, 593

starpu_cluster_types
Parallel Workers, 594

starpu_codelet, 335
bubble_func, 338
bubble_gen_dag_func, 338
callback_func, 339
can_execute, 336
checked, 339
color, 339
cpu_func, 336
cpu_funcs, 337
cpu_funcs_name, 337
cuda_flags, 337
cuda_func, 336
cuda_funcs, 337
dyn_modes, 338
dyn_nodes, 338
energy_model, 338
flags, 339
hip_flags, 337
hip_funcs, 337
max_fpga_funcs, 337
max_parallelism, 336
model, 338
modes, 338
name, 339
nbuffers, 338
nodes, 338
opencl_flags, 337
opencl_func, 336
opencl_funcs, 337
per_worker_stats, 339
specific_nodes, 338
type, 336
where, 336

starpu_codelet_display_stats
Codelet And Tasks, 358

starpu_codelet_dup_arg
Task Insert Utility, 489

STARPU_CODELET_GET_MODE
Codelet And Tasks, 352

STARPU_CODELET_GET_NODE
Codelet And Tasks, 353

starpu_codelet_init
Codelet And Tasks, 358

starpu_codelet_nop
Codelet And Tasks, 360

STARPU_CODELET_NOPLANS
Codelet And Tasks, 350

starpu_codelet_pack_arg
Task Insert Utility, 488

starpu_codelet_pack_arg_data, 481

Generated by Doxygen

INDEX 823

starpu_codelet_pack_arg_fini
Task Insert Utility, 488

starpu_codelet_pack_arg_init
Task Insert Utility, 488

starpu_codelet_pack_args
Task Insert Utility, 488

starpu_codelet_pick_arg
Task Insert Utility, 489

STARPU_CODELET_SET_MODE
Codelet And Tasks, 352

STARPU_CODELET_SET_NODE
Codelet And Tasks, 353

STARPU_CODELET_SIMGRID_EXECUTE
Codelet And Tasks, 349

STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT
Codelet And Tasks, 349

starpu_codelet_type
Codelet And Tasks, 354

starpu_codelet_unpack_arg
Task Insert Utility, 489

starpu_codelet_unpack_arg_fini
Task Insert Utility, 489

starpu_codelet_unpack_arg_init
Task Insert Utility, 489

starpu_codelet_unpack_args
Task Insert Utility, 488

starpu_codelet_unpack_args_and_copyleft
Task Insert Utility, 489

starpu_codelet_unpack_discard_arg
Task Insert Utility, 489

starpu_combined_worker_assign_workerid
Parallel Tasks, 588

starpu_combined_worker_can_execute_task
Parallel Tasks, 589

starpu_combined_worker_get_count
Parallel Tasks, 588

starpu_combined_worker_get_description
Parallel Tasks, 589

starpu_combined_worker_get_id
Parallel Tasks, 588

starpu_combined_worker_get_rank
Parallel Tasks, 588

starpu_combined_worker_get_size
Parallel Tasks, 588

STARPU_COMMON
Performance Model, 607

STARPU_COMMUTE
Data Management, 417

starpu_conf, 469
bus_calibrate, 473
calibrate, 473
catch_signals, 475
cuda_only_fast_alloc_other_memnodes, 475
cuda_opengl_interoperability, 474
data_locality_enforce, 473
disable_asynchronous_copy, 473
disable_asynchronous_cuda_copy, 473
disable_asynchronous_hip_copy, 473

disable_asynchronous_max_fpga_copy, 474
disable_asynchronous_mpi_ms_copy, 474
disable_asynchronous_opencl_copy, 474
disable_asynchronous_tcpip_ms_copy, 474
driver_spinning_backoff_max, 475
driver_spinning_backoff_min, 475
enable_map, 474
global_sched_ctx_max_priority, 475
global_sched_ctx_min_priority, 475
magic, 471
max_fpga_load, 473
n_cuda_opengl_interoperability, 474
n_not_launched_drivers, 474
ncpus, 471
ncuda, 471
nhip, 471
nmax_fpga, 471
nmpi_ms, 471
nopencl, 471
not_launched_drivers, 474
ntcpip_ms, 472
precedence_over_environment_variables, 471
reserve_ncpus, 471
sched_policy, 471
sched_policy_callback, 471
sched_policy_name, 471
single_combined_worker, 473
start_perf_counter_collection, 475
trace_buffer_size, 474
use_explicit_workers_bindid, 472
use_explicit_workers_cuda_gpuid, 472
use_explicit_workers_hip_gpuid, 472
use_explicit_workers_max_fpga_deviceid, 472
use_explicit_workers_mpi_ms_deviceid, 473
use_explicit_workers_opencl_gpuid, 472
will_use_mpi, 471
workers_bindid, 472
workers_cuda_gpuid, 472
workers_hip_gpuid, 472
workers_max_fpga_deviceid, 472
workers_mpi_ms_deviceid, 473
workers_opencl_gpuid, 472

starpu_conf_init
Initialization and Termination, 475

starpu_conf_noworker
Initialization and Termination, 475

starpu_config.h, 724
HAVE_MPI_COMM_F2C, 727
STARPU_HAVE_HELGRIND_H, 727
STARPU_USE_CUDA0, 726
STARPU_USE_CUDA1, 726
STARPU_USE_TCPIP_MASTER_SLAVE, 726

starpu_coo_data_register
Data Interfaces, 402

STARPU_COO_GET_COLUMNS
Data Interfaces, 384

STARPU_COO_GET_COLUMNS_DEV_HANDLE
Data Interfaces, 385

Generated by Doxygen

824 INDEX

STARPU_COO_GET_ELEMSIZE
Data Interfaces, 385

STARPU_COO_GET_NVALUES
Data Interfaces, 385

STARPU_COO_GET_NX
Data Interfaces, 385

STARPU_COO_GET_NY
Data Interfaces, 385

STARPU_COO_GET_OFFSET
Data Interfaces, 385

STARPU_COO_GET_ROWS
Data Interfaces, 385

STARPU_COO_GET_ROWS_DEV_HANDLE
Data Interfaces, 385

STARPU_COO_GET_VALUES
Data Interfaces, 385

STARPU_COO_GET_VALUES_DEV_HANDLE
Data Interfaces, 385

starpu_coo_interface, 380
STARPU_COO_INTERFACE_ID

Data Interfaces, 394
STARPU_CPU

Codelet And Tasks, 349
starpu_cpu_func_t

Codelet And Tasks, 353
starpu_cpu_os_index

Initialization and Termination, 478
STARPU_CPU_RAM

Workers, 709
STARPU_CPU_WORKER

Workers, 709
starpu_cpu_worker_get_count

Workers, 710
starpu_create_callback_task

Codelet And Tasks, 359
starpu_create_sync_task

Codelet And Tasks, 359
starpu_csr_data_register

Data Interfaces, 409
starpu_csr_filter_vertical_block

Data Partition, 438
STARPU_CSR_GET_COLIND

Data Interfaces, 390
STARPU_CSR_GET_COLIND_DEV_HANDLE

Data Interfaces, 390
STARPU_CSR_GET_ELEMSIZE

Data Interfaces, 391
starpu_csr_get_elemsize

Data Interfaces, 410
STARPU_CSR_GET_FIRSTENTRY

Data Interfaces, 391
starpu_csr_get_firstentry

Data Interfaces, 409
starpu_csr_get_local_colind

Data Interfaces, 409
starpu_csr_get_local_nzval

Data Interfaces, 409
starpu_csr_get_local_rowptr

Data Interfaces, 410
STARPU_CSR_GET_NNZ

Data Interfaces, 390
starpu_csr_get_nnz

Data Interfaces, 409
STARPU_CSR_GET_NROW

Data Interfaces, 390
starpu_csr_get_nrow

Data Interfaces, 409
STARPU_CSR_GET_NZVAL

Data Interfaces, 390
STARPU_CSR_GET_NZVAL_DEV_HANDLE

Data Interfaces, 390
STARPU_CSR_GET_OFFSET

Data Interfaces, 391
STARPU_CSR_GET_RAM_COLIND

Data Interfaces, 390
STARPU_CSR_GET_RAM_ROWPTR

Data Interfaces, 391
STARPU_CSR_GET_ROWPTR

Data Interfaces, 391
STARPU_CSR_GET_ROWPTR_DEV_HANDLE

Data Interfaces, 391
starpu_csr_interface, 382
STARPU_CSR_INTERFACE_ID

Data Interfaces, 394
starpu_cublas.h, 727
starpu_cublas_get_local_handle

CUDA Extensions, 364
starpu_cublas_init

CUDA Extensions, 364
STARPU_CUBLAS_REPORT_ERROR

CUDA Extensions, 362
starpu_cublas_report_error

CUDA Extensions, 362
starpu_cublas_set_stream

CUDA Extensions, 364
starpu_cublas_shutdown

CUDA Extensions, 364
starpu_cublas_v2.h, 727
STARPU_CUDA

Codelet And Tasks, 349
starpu_cuda.h, 727
STARPU_CUDA_ASYNC

Codelet And Tasks, 350
starpu_cuda_copy2d_async_sync

CUDA Extensions, 363
starpu_cuda_copy3d_async_sync

CUDA Extensions, 363
starpu_cuda_copy_async_sync

CUDA Extensions, 362
starpu_cuda_func_t

Codelet And Tasks, 353
starpu_cuda_get_device_properties

CUDA Extensions, 362
starpu_cuda_get_local_stream

CUDA Extensions, 362
starpu_cuda_get_nvmldev

Generated by Doxygen

INDEX 825

CUDA Extensions, 364
STARPU_CUDA_RAM

Workers, 709
STARPU_CUDA_REPORT_ERROR

CUDA Extensions, 362
starpu_cuda_report_error

CUDA Extensions, 362
starpu_cuda_set_device

CUDA Extensions, 364
STARPU_CUDA_WORKER

Workers, 709
starpu_cuda_worker_get_count

Workers, 710
starpu_cusolver_init

CUDA Extensions, 364
starpu_cusparse.h, 727
starpu_cusparse_get_local_handle

CUDA Extensions, 365
starpu_cusparse_init

CUDA Extensions, 364
starpu_cusparse_shutdown

CUDA Extensions, 365
starpu_data.h, 728
starpu_data_access_mode

Data Management, 416
starpu_data_acquire

Data Management, 420
STARPU_DATA_ACQUIRE_CB

Data Management, 416
starpu_data_acquire_cb

Data Management, 420
starpu_data_acquire_cb_sequential_consistency

Data Management, 421
starpu_data_acquire_on_node

Data Management, 420
starpu_data_acquire_on_node_cb

Data Management, 420
starpu_data_acquire_on_node_cb_sequential_consistency

Data Management, 421
starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids

Data Management, 421
starpu_data_acquire_on_node_try

Data Management, 422
starpu_data_acquire_try

Data Management, 421
starpu_data_advise_as_important

Data Management, 420
STARPU_DATA_ARRAY

Task Insert Utility, 482
starpu_data_assign_arbiter

Data Management, 423
starpu_data_can_evict

Data Management, 427
starpu_data_copy_methods, 372

any_to_any, 375
can_copy, 372
cuda_to_cuda, 373
cuda_to_cuda_async, 374

cuda_to_ram, 373
cuda_to_ram_async, 374
hip_to_hip, 373
hip_to_hip_async, 374
hip_to_ram, 373
hip_to_ram_async, 374
max_fpga_to_ram, 373
max_fpga_to_ram_async, 375
opencl_to_opencl, 373
opencl_to_opencl_async, 375
opencl_to_ram, 373
opencl_to_ram_async, 375
ram_to_cuda, 373
ram_to_cuda_async, 374
ram_to_hip, 373
ram_to_hip_async, 374
ram_to_max_fpga, 373
ram_to_max_fpga_async, 375
ram_to_opencl, 373
ram_to_opencl_async, 374
ram_to_ram, 372

starpu_data_cpy
Miscellaneous Helpers, 506

starpu_data_cpy_priority
Miscellaneous Helpers, 506

starpu_data_deinitialize
Data Management, 419

starpu_data_deinitialize_submit
Data Management, 419

starpu_data_descr, 339
starpu_data_display_memory_stats

Profiling, 624
starpu_data_dup_ro

Miscellaneous Helpers, 506
starpu_data_evict_from_node

Data Management, 424
starpu_data_expected_transfer_time

Scheduling Policy, 652
starpu_data_fetch_on_node

Data Management, 423
starpu_data_filter, 432

filter_arg, 432
filter_arg_ptr, 433
filter_func, 432
get_child_ops, 432
get_nchildren, 432
nchildren, 432

starpu_data_filters.h, 730
starpu_data_free_pinned_if_possible

Standard Memory Library, 676
starpu_data_get_alloc_size

Data Interfaces, 396
starpu_data_get_child

Data Partition, 433
starpu_data_get_coordinates_array

Data Management, 418
starpu_data_get_default_sequential_consistency_flag

Data Management, 425

Generated by Doxygen

826 INDEX

starpu_data_get_home_node
Data Interfaces, 396

starpu_data_get_interface_id
Data Interfaces, 395

starpu_data_get_interface_on_node
Data Interfaces, 395

starpu_data_get_local_ptr
Data Interfaces, 395

starpu_data_get_max_size
Data Interfaces, 396

starpu_data_get_nb_children
Data Partition, 433

starpu_data_get_ooc_flag
Data Management, 425

starpu_data_get_rank
MPI Support, 533

starpu_data_get_sched_data
Data Management, 427

starpu_data_get_sequential_consistency_flag
Data Management, 425

starpu_data_get_size
Data Interfaces, 396

starpu_data_get_sub_data
Data Partition, 433

starpu_data_get_tag
MPI Support, 533

starpu_data_get_user_data
Data Management, 426

starpu_data_handle_t
Data Management, 416

starpu_data_handle_to_pointer
Data Interfaces, 395

starpu_data_idle_prefetch_on_node
Data Management, 423

starpu_data_idle_prefetch_on_node_prio
Data Management, 424

starpu_data_interface_get_next_id
Data Interfaces, 397

starpu_data_interface_id
Data Interfaces, 393

starpu_data_interface_ops, 375
alloc_compare, 378
alloc_footprint, 378
allocate_data_on_node, 376
cache_data_on_node, 377
compare, 378
copy_methods, 377
describe, 379
display, 378
dontcache, 379
footprint, 378
free_data_on_node, 377
free_meta, 379
get_alloc_size, 378
get_max_size, 378
get_size, 378
handle_to_pointer, 378
init, 377

interface_size, 379
interfaceid, 379
map_data, 377
name, 379
pack_data, 379
pack_meta, 379
peek_data, 379
register_data_handle, 376
reuse_data_on_node, 377
to_pointer, 378
unmap_data, 377
unpack_data, 379
unpack_meta, 379
unregister_data_handle, 376
update_map, 377

starpu_data_interfaces.h, 734
starpu_data_invalidate

Data Management, 419
starpu_data_invalidate_submit

Data Management, 419
starpu_data_is_on_node

Data Management, 424
starpu_data_malloc_pinned_if_possible

Standard Memory Library, 676
starpu_data_map_filters

Data Partition, 434
starpu_data_map_filters_array

Data Partition, 434
starpu_data_map_filters_parray

Data Partition, 434
STARPU_DATA_MODE_ARRAY

Task Insert Utility, 482
starpu_data_pack

Data Interfaces, 395
starpu_data_pack_node

Data Interfaces, 395
starpu_data_partition

Data Partition, 433
starpu_data_partition_clean

Data Partition, 436
starpu_data_partition_clean_node

Data Partition, 436
starpu_data_partition_plan

Data Partition, 434
starpu_data_partition_readonly_downgrade_submit

Data Partition, 435
starpu_data_partition_readonly_submit

Data Partition, 435
starpu_data_partition_readonly_submit_sequential_consistency

Data Partition, 435
starpu_data_partition_readwrite_upgrade_submit

Data Partition, 435
starpu_data_partition_submit

Data Partition, 435
starpu_data_partition_submit_sequential_consistency

Data Partition, 437
starpu_data_peek

Data Interfaces, 396

Generated by Doxygen

INDEX 827

starpu_data_peek_node
Data Interfaces, 395

starpu_data_prefetch_on_node
Data Management, 423

starpu_data_prefetch_on_node_prio
Data Management, 423

starpu_data_print
Data Interfaces, 397

starpu_data_ptr_register
Data Interfaces, 394

starpu_data_query_status
Data Management, 425

starpu_data_query_status2
Data Management, 425

starpu_data_register
Data Interfaces, 394

starpu_data_register_ops
Data Interfaces, 394

starpu_data_register_same
Data Interfaces, 394

starpu_data_release
Data Management, 422

starpu_data_release_on_node
Data Management, 422

starpu_data_release_to
Data Management, 422

starpu_data_release_to_on_node
Data Management, 422

starpu_data_request_allocation
Data Management, 423

starpu_data_set_coordinates
Data Management, 418

starpu_data_set_coordinates_array
Data Management, 418

starpu_data_set_default_sequential_consistency_flag
Data Management, 425

starpu_data_set_name
Data Management, 418

starpu_data_set_ooc_flag
Data Management, 425

starpu_data_set_rank
MPI Support, 533

starpu_data_set_reduction_methods
Data Management, 426

starpu_data_set_reduction_methods_with_args
Data Management, 426

starpu_data_set_sched_data
Data Management, 427

starpu_data_set_sequential_consistency_flag
Data Management, 424

starpu_data_set_tag
MPI Support, 532

starpu_data_set_user_data
Data Management, 426

starpu_data_set_wt_mask
Data Management, 424

starpu_data_test_if_allocated_on_node
Data Management, 426

starpu_data_test_if_mapped_on_node
Data Management, 426

starpu_data_unpack
Data Interfaces, 396

starpu_data_unpack_node
Data Interfaces, 396

starpu_data_unpartition
Data Partition, 433

starpu_data_unpartition_readonly_submit
Data Partition, 436

starpu_data_unpartition_submit
Data Partition, 436

starpu_data_unpartition_submit_sequential_consistency
Data Partition, 437

starpu_data_unpartition_submit_sequential_consistency_cb
Data Partition, 436

starpu_data_unregister
Data Management, 419

starpu_data_unregister_no_coherency
Data Management, 419

starpu_data_unregister_submit
Data Management, 419

starpu_data_vget_sub_data
Data Partition, 434

starpu_data_vmap_filters
Data Partition, 434

starpu_data_wont_use
Data Management, 424

STARPU_DEFAULT_PRIO
Scheduling Contexts, 638

starpu_deprecated_api.h, 740
starpu_disk.h, 740
starpu_disk_close

Out Of Core, 586
starpu_disk_hdf5_ops

Out Of Core, 587
starpu_disk_leveldb_ops

Out Of Core, 587
starpu_disk_open

Out Of Core, 586
starpu_disk_ops, 584

alloc, 585
async_full_read, 585
async_full_write, 585
async_read, 585
async_write, 585
bandwidth, 585
close, 585
copy, 586
free, 585
free_request, 586
full_read, 585
full_write, 585
open, 585
plug, 584
read, 585
test_request, 586
unplug, 585

Generated by Doxygen

828 INDEX

wait_request, 586
write, 585

STARPU_DISK_RAM
Workers, 709

starpu_disk_register
Out Of Core, 586

STARPU_DISK_SIZE_MIN
Out Of Core, 586

starpu_disk_stdio_ops
Out Of Core, 587

starpu_disk_swap_node
Out Of Core, 587

starpu_disk_unistd_o_direct_ops
Out Of Core, 587

starpu_disk_unistd_ops
Out Of Core, 587

starpu_display_bindings
Miscellaneous Helpers, 506

starpu_display_stats
Initialization and Termination, 479

starpu_do_schedule
Codelet And Tasks, 357

starpu_driver, 629
starpu_driver.h, 740
starpu_driver.id, 629
starpu_driver_deinit

Running Drivers, 630
starpu_driver_init

Running Drivers, 630
starpu_driver_run

Running Drivers, 629
starpu_driver_run_once

Running Drivers, 630
starpu_drivers_preinit

Running Drivers, 629
starpu_drivers_request_termination

Running Drivers, 630
starpu_energy_start

Performance Model, 608
starpu_energy_stop

Performance Model, 608
starpu_energy_use

Standard Memory Library, 680
starpu_energy_used

Standard Memory Library, 680
STARPU_EPILOGUE_CALLBACK

Task Insert Utility, 486
STARPU_EPILOGUE_CALLBACK_ARG

Task Insert Utility, 486
STARPU_EXECUTE_ON_DATA

MPI Support, 532
starpu_execute_on_each_worker

Miscellaneous Helpers, 505
starpu_execute_on_each_worker_ex

Miscellaneous Helpers, 505
STARPU_EXECUTE_ON_NODE

MPI Support, 532
starpu_execute_on_specific_workers

Miscellaneous Helpers, 505
STARPU_EXECUTE_ON_WORKER

Task Insert Utility, 483
STARPU_EXECUTE_WHERE

Task Insert Utility, 483
starpu_expert.h, 741
STARPU_FETCH

Data Management, 418
starpu_filter_nparts_compute_chunk_size_and_offset

Data Partition, 451
STARPU_FLOPS

Task Insert Utility, 482
STARPU_FORKJOIN

Codelet And Tasks, 354
starpu_free

Standard Memory Library, 677
starpu_free_flags

Standard Memory Library, 677
starpu_free_noflag

Standard Memory Library, 677
starpu_free_on_node

Data Interfaces, 400
starpu_free_on_node_flags

Data Interfaces, 400
starpu_fxt.h, 741
starpu_fxt_autostart_profiling

FxT Support, 462
starpu_fxt_codelet_event, 460
starpu_fxt_is_enabled

FxT Support, 462
STARPU_FXT_MAX_FILES

MPI Support, 532
starpu_fxt_mpi_offset, 460
starpu_fxt_options, 460
starpu_fxt_start_profiling

FxT Support, 462
starpu_fxt_stop_profiling

FxT Support, 462
starpu_fxt_trace_user_event

FxT Support, 462
starpu_fxt_trace_user_event_string

FxT Support, 462
starpu_get_env_number

Miscellaneous Helpers, 505
starpu_get_env_size_default

Miscellaneous Helpers, 505
starpu_get_env_string_var_default

Miscellaneous Helpers, 504
starpu_get_hwloc_topology

Miscellaneous Helpers, 507
starpu_get_memory_location_bitmap

Miscellaneous Helpers, 507
starpu_get_next_bindid

Initialization and Termination, 477
starpu_get_prefetch_flag

Scheduling Policy, 650
starpu_get_pu_os_index

Miscellaneous Helpers, 506

Generated by Doxygen

INDEX 829

starpu_get_sched_lib_policies
Scheduling Policy, 648

starpu_get_sched_lib_policy
Scheduling Policy, 647

starpu_get_version
Versioning, 704

starpu_getenv
Miscellaneous Helpers, 504

starpu_getenv_float_default
Miscellaneous Helpers, 504

starpu_getenv_number
Miscellaneous Helpers, 504

starpu_getenv_number_default
Miscellaneous Helpers, 504

starpu_getenv_size_default
Miscellaneous Helpers, 504

starpu_getenv_string_var_default
Miscellaneous Helpers, 504

STARPU_GNUC_PREREQ
Toolbox, 698

STARPU_HANDLES_SEQUENTIAL_CONSISTENCY
Task Insert Utility, 484

starpu_hash.h, 741
starpu_hash_crc32c_be

Data Interfaces, 412
starpu_hash_crc32c_be_n

Data Interfaces, 412
starpu_hash_crc32c_be_ptr

Data Interfaces, 412
starpu_hash_crc32c_string

Data Interfaces, 412
STARPU_HAVE_HELGRIND_H

starpu_config.h, 727
STARPU_HAVE_NVML_H

CUDA Extensions, 361
starpu_helper.h, 742
starpu_heteroprio.h, 743
starpu_heteroprio_map_wgroup_memory_nodes

Heteroprio Scheduler, 464
starpu_heteroprio_print_wgroups

Heteroprio Scheduler, 464
starpu_heteroprio_set_arch_slow_factor

Heteroprio Scheduler, 464
starpu_heteroprio_set_faster_arch

Heteroprio Scheduler, 464
starpu_heteroprio_set_mapping

Heteroprio Scheduler, 464
starpu_heteroprio_set_nb_prios

Heteroprio Scheduler, 464
starpu_heteroprio_set_use_locality

Heteroprio Scheduler, 464
STARPU_HIP

Codelet And Tasks, 349
starpu_hip.h, 743
STARPU_HIP_ASYNC

Codelet And Tasks, 350
starpu_hip_copy2d_async_sync

HIP Extensions, 467

starpu_hip_copy3d_async_sync
HIP Extensions, 468

starpu_hip_copy_async_sync
HIP Extensions, 467

starpu_hip_func_t
Codelet And Tasks, 353

starpu_hip_get_device_properties
HIP Extensions, 467

starpu_hip_get_local_stream
HIP Extensions, 467

STARPU_HIP_RAM
Workers, 709

STARPU_HIP_REPORT_ERROR
HIP Extensions, 466

starpu_hip_report_error
HIP Extensions, 467

starpu_hip_set_device
HIP Extensions, 468

STARPU_HIP_WORKER
Workers, 709

starpu_hip_worker_get_count
Workers, 710

STARPU_HIPBLAS_REPORT_ERROR
HIP Extensions, 466

starpu_hipblas_report_error
HIP Extensions, 467

STARPU_HISTORY_BASED
Performance Model, 607

STARPU_HYPERVISOR_TAG
Task Insert Utility, 482

starpu_idle_prefetch_task_input_for
Scheduling Policy, 651

starpu_idle_prefetch_task_input_for_prio
Scheduling Policy, 651

starpu_idle_prefetch_task_input_on_node
Scheduling Policy, 650

starpu_idle_prefetch_task_input_on_node_prio
Scheduling Policy, 650

STARPU_IDLEFETCH
Data Management, 418

starpu_init
Initialization and Termination, 476

starpu_initialize
Initialization and Termination, 476

starpu_insert_task
Task Insert Utility, 487

starpu_interface_copy
Data Interfaces, 397

starpu_interface_copy2d
Data Interfaces, 397

starpu_interface_copy3d
Data Interfaces, 397

starpu_interface_copy4d
Data Interfaces, 398

starpu_interface_copynd
Data Interfaces, 399

starpu_interface_data_copy
Data Interfaces, 399

Generated by Doxygen

830 INDEX

starpu_interface_end_driver_copy_async
Data Interfaces, 399

starpu_interface_map
Data Interfaces, 400

starpu_interface_start_driver_copy_async
Data Interfaces, 399

starpu_interface_unmap
Data Interfaces, 400

starpu_interface_update_map
Data Interfaces, 401

starpu_is_initialized
Initialization and Termination, 476

starpu_is_paused
Initialization and Termination, 477

starpu_is_prefetch
Data Management, 418

starpu_iteration_pop
Codelet And Tasks, 357

starpu_iteration_push
Codelet And Tasks, 357

STARPU_LIKELY
Toolbox, 699

STARPU_LOCALITY
Data Management, 417

STARPU_MAIN_RAM
Codelet And Tasks, 350

STARPU_MAJOR_VERSION
Versioning, 704

starpu_malloc
Standard Memory Library, 677

STARPU_MALLOC_COUNT
Standard Memory Library, 675

starpu_malloc_flags
Standard Memory Library, 677

STARPU_MALLOC_NORECLAIM
Standard Memory Library, 676

starpu_malloc_on_node
Data Interfaces, 400

starpu_malloc_on_node_flags
Data Interfaces, 399

starpu_malloc_on_node_set_default_flags
Data Interfaces, 400

STARPU_MALLOC_PINNED
Standard Memory Library, 675

starpu_malloc_set_align
Standard Memory Library, 677

starpu_malloc_set_hooks
Standard Memory Library, 677

STARPU_MALLOC_SIMULATION_FOLDED
Standard Memory Library, 676

STARPU_MALLOC_SIMULATION_UNIQUE
Standard Memory Library, 676

starpu_map_enabled
Initialization and Termination, 479

starpu_matrix_data_register
Data Interfaces, 401

starpu_matrix_data_register_allocsize
Data Interfaces, 401

starpu_matrix_filter_block
Data Partition, 438

starpu_matrix_filter_block_shadow
Data Partition, 438

starpu_matrix_filter_pick_variable
Data Partition, 439

starpu_matrix_filter_pick_variable_child_ops
Data Partition, 439

starpu_matrix_filter_pick_vector_child_ops
Data Partition, 439

starpu_matrix_filter_pick_vector_y
Data Partition, 439

starpu_matrix_filter_vertical_block
Data Partition, 438

starpu_matrix_filter_vertical_block_shadow
Data Partition, 438

STARPU_MATRIX_GET_ALLOCSIZE
Data Interfaces, 384

starpu_matrix_get_allocsize
Data Interfaces, 402

STARPU_MATRIX_GET_DEV_HANDLE
Data Interfaces, 383

STARPU_MATRIX_GET_ELEMSIZE
Data Interfaces, 384

starpu_matrix_get_elemsize
Data Interfaces, 402

STARPU_MATRIX_GET_LD
Data Interfaces, 384

starpu_matrix_get_local_ld
Data Interfaces, 402

starpu_matrix_get_local_ptr
Data Interfaces, 402

STARPU_MATRIX_GET_NX
Data Interfaces, 384

starpu_matrix_get_nx
Data Interfaces, 402

STARPU_MATRIX_GET_NY
Data Interfaces, 384

starpu_matrix_get_ny
Data Interfaces, 402

STARPU_MATRIX_GET_OFFSET
Data Interfaces, 383

STARPU_MATRIX_GET_PTR
Data Interfaces, 383

starpu_matrix_interface, 379
STARPU_MATRIX_INTERFACE_ID

Data Interfaces, 394
starpu_matrix_ptr_register

Data Interfaces, 401
STARPU_MATRIX_SET_LD

Data Interfaces, 384
STARPU_MATRIX_SET_NX

Data Interfaces, 384
STARPU_MATRIX_SET_NY

Data Interfaces, 384
STARPU_MAX

Miscellaneous Helpers, 503
STARPU_MAX_FPGA

Generated by Doxygen

INDEX 831

Codelet And Tasks, 349
starpu_max_fpga.h, 745
starpu_max_fpga_func_t

Codelet And Tasks, 354
starpu_max_fpga_get_local_engine

Maxeler FPGA Extensions, 502
STARPU_MAX_FPGA_RAM

Workers, 709
STARPU_MAX_FPGA_WORKER

Workers, 709
STARPU_MAX_INTERFACE_ID

Data Interfaces, 394
starpu_max_load, 502
STARPU_MAX_PRIO

Scheduling Contexts, 638
STARPU_MAX_RAM

Workers, 709
STARPU_MAXCPUS

Workers, 708
STARPU_MAXCUDADEVS

CUDA Extensions, 361
STARPU_MAXHIPDEVS

HIP Extensions, 466
STARPU_MAXIMPLEMENTATIONS

Scheduling Policy, 647
STARPU_MAXMAXFPGADEVS

Maxeler FPGA Extensions, 502
STARPU_MAXNODES

Workers, 708
STARPU_MAXNUMANODES

Workers, 708
STARPU_MAXOPENCLDEVS

OpenCL Extensions, 552
starpu_memchunk_tidy

Data Management, 426
starpu_memory_allocate

Standard Memory Library, 679
starpu_memory_deallocate

Standard Memory Library, 679
starpu_memory_get_available

Standard Memory Library, 678
starpu_memory_get_available_all_nodes

Standard Memory Library, 678
starpu_memory_get_total

Standard Memory Library, 678
starpu_memory_get_total_all_nodes

Standard Memory Library, 678
starpu_memory_get_used

Standard Memory Library, 678
starpu_memory_get_used_all_nodes

Standard Memory Library, 679
starpu_memory_node_get_devid

Workers, 715
starpu_memory_node_get_ids_by_type

Workers, 715
starpu_memory_node_get_name

Workers, 715
starpu_memory_node_get_worker_archtype

Workers, 716
starpu_memory_nodes_get_count

Workers, 715
starpu_memory_nodes_get_count_by_kind

Workers, 715
starpu_memory_nodes_get_numa_count

Workers, 716
starpu_memory_nodes_numa_devid_to_id

Workers, 716
starpu_memory_nodes_numa_id_to_devid

Workers, 716
STARPU_MEMORY_OVERFLOW

Standard Memory Library, 676
starpu_memory_pin

Standard Memory Library, 678
starpu_memory_unpin

Standard Memory Library, 678
STARPU_MEMORY_WAIT

Standard Memory Library, 676
starpu_memory_wait_available

Standard Memory Library, 679
STARPU_MIN

Miscellaneous Helpers, 503
STARPU_MIN_PRIO

Scheduling Contexts, 638
STARPU_MINOR_VERSION

Versioning, 704
starpu_mod.f90, 745
starpu_mpi.h, 746
starpu_mpi_barrier

MPI Support, 539
starpu_mpi_cache_flush

MPI Support, 542
starpu_mpi_cache_flush_all_data

MPI Support, 542
starpu_mpi_cache_is_enabled

MPI Support, 542
starpu_mpi_cache_set

MPI Support, 542
starpu_mpi_cached_receive

MPI Support, 542
starpu_mpi_cached_receive_clear

MPI Support, 542
starpu_mpi_cached_receive_set

MPI Support, 542
starpu_mpi_cached_send

MPI Support, 542
starpu_mpi_cached_send_clear

MPI Support, 543
starpu_mpi_cached_send_set

MPI Support, 543
starpu_mpi_checkpoint_init

MPI Fault Tolerance Support, 526
starpu_mpi_checkpoint_shutdown

MPI Fault Tolerance Support, 526
starpu_mpi_checkpoint_template_add_entry

MPI Fault Tolerance Support, 527
starpu_mpi_checkpoint_template_create

Generated by Doxygen

832 INDEX

MPI Fault Tolerance Support, 526
starpu_mpi_checkpoint_template_freeze

MPI Fault Tolerance Support, 527
starpu_mpi_checkpoint_template_register

MPI Fault Tolerance Support, 526
starpu_mpi_checkpoint_template_submit

MPI Fault Tolerance Support, 527
starpu_mpi_comm_get_attr

MPI Support, 535
starpu_mpi_comm_rank

MPI Support, 535
starpu_mpi_comm_register

MPI Support, 534
starpu_mpi_comm_size

MPI Support, 535
starpu_mpi_comm_stats_disable

MPI Support, 548
starpu_mpi_comm_stats_enable

MPI Support, 548
starpu_mpi_comm_stats_retrieve

MPI Support, 548
starpu_mpi_coop_sends_data_handle_nb_sends

MPI Support, 548
starpu_mpi_coop_sends_get_use

MPI Support, 548
starpu_mpi_coop_sends_set_use

MPI Support, 548
starpu_mpi_data_cpy

MPI Support, 549
starpu_mpi_data_cpy_priority

MPI Support, 549
starpu_mpi_data_get_rank

MPI Support, 543
starpu_mpi_data_get_redux_map

MPI Support, 543
starpu_mpi_data_get_tag

MPI Support, 543
starpu_mpi_data_migrate

MPI Support, 546
starpu_mpi_data_register

MPI Support, 532
starpu_mpi_data_register_comm

MPI Support, 543
starpu_mpi_data_set_rank

MPI Support, 532
starpu_mpi_data_set_rank_comm

MPI Support, 543
starpu_mpi_data_set_tag

MPI Support, 543
starpu_mpi_datatype_node_register

MPI Support, 541
starpu_mpi_datatype_register

MPI Support, 541
starpu_mpi_datatype_unregister

MPI Support, 541
starpu_mpi_ft.h, 749
starpu_mpi_gather_detached

MPI Support, 548

starpu_mpi_get_communication_tag
MPI Support, 535

starpu_mpi_get_data_on_all_nodes_detached
MPI Support, 546

starpu_mpi_get_data_on_node
MPI Support, 545

starpu_mpi_get_data_on_node_detached
MPI Support, 545

starpu_mpi_get_thread_cpuid
MPI Support, 535

starpu_mpi_init
MPI Support, 534

starpu_mpi_init_comm
MPI Support, 534

starpu_mpi_init_conf
MPI Support, 533

starpu_mpi_initialize
MPI Support, 534

starpu_mpi_initialize_extended
MPI Support, 534

starpu_mpi_insert_task
MPI Support, 544

starpu_mpi_interface_datatype_node_register
MPI Support, 541

starpu_mpi_interface_datatype_register
MPI Support, 541

starpu_mpi_interface_datatype_unregister
MPI Support, 541

starpu_mpi_irecv
MPI Support, 536

starpu_mpi_irecv_array_detached_unlock_tag
MPI Support, 540

starpu_mpi_irecv_detached
MPI Support, 537

starpu_mpi_irecv_detached_prio
MPI Support, 538

starpu_mpi_irecv_detached_sequential_consistency
MPI Support, 538

starpu_mpi_irecv_detached_unlock_tag
MPI Support, 540

starpu_mpi_isend
MPI Support, 536

starpu_mpi_isend_array_detached_unlock_tag
MPI Support, 540

starpu_mpi_isend_array_detached_unlock_tag_prio
MPI Support, 540

starpu_mpi_isend_detached
MPI Support, 537

starpu_mpi_isend_detached_prio
MPI Support, 537

starpu_mpi_isend_detached_unlock_tag
MPI Support, 539

starpu_mpi_isend_detached_unlock_tag_prio
MPI Support, 540

starpu_mpi_isend_prio
MPI Support, 536

starpu_mpi_issend
MPI Support, 538

Generated by Doxygen

INDEX 833

starpu_mpi_issend_detached
MPI Support, 538

starpu_mpi_issend_detached_prio
MPI Support, 539

starpu_mpi_issend_prio
MPI Support, 538

starpu_mpi_lb.h, 750
starpu_mpi_lb_init, 750

starpu_mpi_lb_init
starpu_mpi_lb.h, 750

STARPU_MPI_MS
Codelet And Tasks, 349

STARPU_MPI_MS_RAM
Workers, 709

STARPU_MPI_MS_WORKER
Workers, 709

starpu_mpi_ms_worker_get_count
Workers, 711

STARPU_MPI_NODE_SELECTION_CURRENT_POLICY
MPI Support, 533

starpu_mpi_node_selection_get_current_policy
MPI Support, 546

STARPU_MPI_NODE_SELECTION_MOST_R_DATA
MPI Support, 533

starpu_mpi_node_selection_register_policy
MPI Support, 546

starpu_mpi_node_selection_set_current_policy
MPI Support, 547

starpu_mpi_node_selection_unregister_policy
MPI Support, 546

STARPU_MPI_PER_NODE
MPI Support, 532

starpu_mpi_recv
MPI Support, 536

starpu_mpi_recv_prio
MPI Support, 537

STARPU_MPI_REDUX
Data Management, 417

starpu_mpi_redux_data
MPI Support, 547

starpu_mpi_redux_data_prio
MPI Support, 547

starpu_mpi_redux_data_prio_tree
MPI Support, 547

starpu_mpi_redux_data_tree
MPI Support, 547

starpu_mpi_req
MPI Support, 533

starpu_mpi_scatter_detached
MPI Support, 547

starpu_mpi_send
MPI Support, 536

starpu_mpi_send_prio
MPI Support, 536

starpu_mpi_set_communication_tag
MPI Support, 535

starpu_mpi_shutdown
MPI Support, 534

starpu_mpi_shutdown_comm
MPI Support, 534

starpu_mpi_tag_t
MPI Support, 533

STARPU_MPI_TAG_UB
MPI Support, 532

starpu_mpi_tags_allocate
MPI Support, 549

starpu_mpi_tags_free
MPI Support, 549

starpu_mpi_task_build
MPI Support, 544

starpu_mpi_task_build_v
MPI Support, 544

starpu_mpi_task_exchange_data_after_execution
MPI Support, 545

starpu_mpi_task_exchange_data_before_execution
MPI Support, 545

starpu_mpi_task_exchange_params, 531
starpu_mpi_task_insert

MPI Support, 544
starpu_mpi_task_post_build

MPI Support, 545
starpu_mpi_task_post_build_v

MPI Support, 545
starpu_mpi_test

MPI Support, 539
starpu_mpi_wait

MPI Support, 539
starpu_mpi_wait_for_all

MPI Support, 539
starpu_mpi_world_rank

MPI Support, 535
starpu_mpi_world_size

MPI Support, 535
starpu_multiformat_data_interface_ops, 383
starpu_multiformat_data_register

Data Interfaces, 412
STARPU_MULTIFORMAT_GET_CPU_PTR

Data Interfaces, 393
STARPU_MULTIFORMAT_GET_CUDA_PTR

Data Interfaces, 393
STARPU_MULTIFORMAT_GET_HIP_PTR

Data Interfaces, 393
STARPU_MULTIFORMAT_GET_NX

Data Interfaces, 393
STARPU_MULTIFORMAT_GET_OPENCL_PTR

Data Interfaces, 393
starpu_multiformat_interface, 383
STARPU_MULTIFORMAT_INTERFACE_ID

Data Interfaces, 394
STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

Codelet And Tasks, 350
STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

Codelet And Tasks, 350
STARPU_MULTIPLE_HIP_IMPLEMENTATIONS

Codelet And Tasks, 350
STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

Generated by Doxygen

834 INDEX

Codelet And Tasks, 350
STARPU_MULTIPLE_REGRESSION_BASED

Performance Model, 607
STARPU_NAME

Task Insert Utility, 483
STARPU_NARCH

Workers, 709
starpu_ndim_data_register

Data Interfaces, 406
starpu_ndim_filter_1d_pick_variable

Data Partition, 449
starpu_ndim_filter_2d_pick_vector

Data Partition, 449
starpu_ndim_filter_3d_pick_matrix

Data Partition, 448
starpu_ndim_filter_4d_pick_block

Data Partition, 448
starpu_ndim_filter_5d_pick_tensor

Data Partition, 448
starpu_ndim_filter_block

Data Partition, 446
starpu_ndim_filter_block_shadow

Data Partition, 446
starpu_ndim_filter_pick_block_child_ops

Data Partition, 450
starpu_ndim_filter_pick_matrix_child_ops

Data Partition, 450
starpu_ndim_filter_pick_ndim

Data Partition, 448
starpu_ndim_filter_pick_tensor_child_ops

Data Partition, 449
starpu_ndim_filter_pick_variable

Data Partition, 449
starpu_ndim_filter_pick_variable_child_ops

Data Partition, 450
starpu_ndim_filter_pick_vector_child_ops

Data Partition, 450
starpu_ndim_filter_to_block

Data Partition, 447
starpu_ndim_filter_to_block_child_ops

Data Partition, 450
starpu_ndim_filter_to_matrix

Data Partition, 447
starpu_ndim_filter_to_matrix_child_ops

Data Partition, 450
starpu_ndim_filter_to_tensor

Data Partition, 447
starpu_ndim_filter_to_tensor_child_ops

Data Partition, 450
starpu_ndim_filter_to_variable

Data Partition, 448
starpu_ndim_filter_to_variable_child_ops

Data Partition, 451
starpu_ndim_filter_to_vector

Data Partition, 447
starpu_ndim_filter_to_vector_child_ops

Data Partition, 450
STARPU_NDIM_GET_DEV_HANDLE

Data Interfaces, 388
STARPU_NDIM_GET_ELEMSIZE

Data Interfaces, 388
starpu_ndim_get_elemsize

Data Interfaces, 407
STARPU_NDIM_GET_LDN

Data Interfaces, 388
starpu_ndim_get_local_ldi

Data Interfaces, 407
starpu_ndim_get_local_ldn

Data Interfaces, 406
starpu_ndim_get_local_ptr

Data Interfaces, 407
STARPU_NDIM_GET_NDIM

Data Interfaces, 388
starpu_ndim_get_ndim

Data Interfaces, 407
starpu_ndim_get_ni

Data Interfaces, 406
STARPU_NDIM_GET_NN

Data Interfaces, 388
starpu_ndim_get_nn

Data Interfaces, 406
STARPU_NDIM_GET_OFFSET

Data Interfaces, 388
STARPU_NDIM_GET_PTR

Data Interfaces, 388
starpu_ndim_interface, 381
STARPU_NDIM_INTERFACE_ID

Data Interfaces, 394
starpu_ndim_ptr_register

Data Interfaces, 406
STARPU_NL_REGRESSION_BASED

Performance Model, 607
STARPU_NMAX_SCHED_CTXS

Scheduling Policy, 647
STARPU_NMAXBUFS

Codelet And Tasks, 348
STARPU_NMAXWORKERS

Workers, 708
starpu_node_get_kind

Workers, 716
starpu_node_kind

Workers, 709
STARPU_NODE_SELECTION_POLICY

MPI Support, 532
STARPU_NOFOOTPRINT

Data Management, 418
STARPU_NONE

Data Management, 417
STARPU_NOPLAN

Data Management, 417
STARPU_NOWHERE

Codelet And Tasks, 348
STARPU_NRAM

Workers, 709
starpu_omp_atomic_fallback_inline_begin

OpenMP Runtime Support, 581

Generated by Doxygen

INDEX 835

starpu_omp_atomic_fallback_inline_end
OpenMP Runtime Support, 581

starpu_omp_barrier
OpenMP Runtime Support, 564

starpu_omp_critical
OpenMP Runtime Support, 564

starpu_omp_critical_inline_begin
OpenMP Runtime Support, 564

starpu_omp_critical_inline_end
OpenMP Runtime Support, 565

starpu_omp_data_lookup
OpenMP Runtime Support, 583

starpu_omp_destroy_lock
OpenMP Runtime Support, 579

starpu_omp_destroy_nest_lock
OpenMP Runtime Support, 580

starpu_omp_for
OpenMP Runtime Support, 566

starpu_omp_for_alt
OpenMP Runtime Support, 567

starpu_omp_for_inline_first
OpenMP Runtime Support, 566

starpu_omp_for_inline_first_alt
OpenMP Runtime Support, 568

starpu_omp_for_inline_next
OpenMP Runtime Support, 567

starpu_omp_for_inline_next_alt
OpenMP Runtime Support, 568

starpu_omp_get_active_level
OpenMP Runtime Support, 575

starpu_omp_get_ancestor_thread_num
OpenMP Runtime Support, 575

starpu_omp_get_cancellation
OpenMP Runtime Support, 573

starpu_omp_get_default_arbiter
OpenMP Runtime Support, 582

starpu_omp_get_default_device
OpenMP Runtime Support, 577

starpu_omp_get_dynamic
OpenMP Runtime Support, 572

starpu_omp_get_initial_device
OpenMP Runtime Support, 578

starpu_omp_get_level
OpenMP Runtime Support, 574

starpu_omp_get_max_active_levels
OpenMP Runtime Support, 574

starpu_omp_get_max_task_priority
OpenMP Runtime Support, 578

starpu_omp_get_max_threads
OpenMP Runtime Support, 571

starpu_omp_get_nested
OpenMP Runtime Support, 573

starpu_omp_get_num_devices
OpenMP Runtime Support, 577

starpu_omp_get_num_places
OpenMP Runtime Support, 576

starpu_omp_get_num_procs
OpenMP Runtime Support, 571

starpu_omp_get_num_teams
OpenMP Runtime Support, 577

starpu_omp_get_num_threads
OpenMP Runtime Support, 571

starpu_omp_get_partition_num_places
OpenMP Runtime Support, 576

starpu_omp_get_partition_place_nums
OpenMP Runtime Support, 577

starpu_omp_get_place_num
OpenMP Runtime Support, 576

starpu_omp_get_place_num_procs
OpenMP Runtime Support, 576

starpu_omp_get_place_proc_ids
OpenMP Runtime Support, 576

starpu_omp_get_proc_bind
OpenMP Runtime Support, 576

starpu_omp_get_schedule
OpenMP Runtime Support, 573

starpu_omp_get_team_num
OpenMP Runtime Support, 578

starpu_omp_get_team_size
OpenMP Runtime Support, 575

starpu_omp_get_thread_limit
OpenMP Runtime Support, 574

starpu_omp_get_thread_num
OpenMP Runtime Support, 571

starpu_omp_get_wtick
OpenMP Runtime Support, 582

starpu_omp_get_wtime
OpenMP Runtime Support, 582

starpu_omp_handle_register
OpenMP Runtime Support, 582

starpu_omp_handle_unregister
OpenMP Runtime Support, 583

starpu_omp_in_final
OpenMP Runtime Support, 575

starpu_omp_in_parallel
OpenMP Runtime Support, 572

starpu_omp_init
OpenMP Runtime Support, 563

starpu_omp_init_lock
OpenMP Runtime Support, 578

starpu_omp_init_nest_lock
OpenMP Runtime Support, 580

starpu_omp_is_initial_device
OpenMP Runtime Support, 578

starpu_omp_lock_t, 560
starpu_omp_master

OpenMP Runtime Support, 564
starpu_omp_master_inline

OpenMP Runtime Support, 564
starpu_omp_nest_lock_t, 561
starpu_omp_ordered

OpenMP Runtime Support, 568
starpu_omp_ordered_inline_begin

OpenMP Runtime Support, 568
starpu_omp_ordered_inline_end

OpenMP Runtime Support, 569

Generated by Doxygen

836 INDEX

starpu_omp_parallel_region
OpenMP Runtime Support, 564

starpu_omp_parallel_region_attr, 561
starpu_omp_proc_bind_close

OpenMP Runtime Support, 563
starpu_omp_proc_bind_false

OpenMP Runtime Support, 563
starpu_omp_proc_bind_master

OpenMP Runtime Support, 563
starpu_omp_proc_bind_spread

OpenMP Runtime Support, 563
starpu_omp_proc_bind_true

OpenMP Runtime Support, 563
starpu_omp_proc_bind_undefined

OpenMP Runtime Support, 563
starpu_omp_proc_bind_value

OpenMP Runtime Support, 563
starpu_omp_sched_auto

OpenMP Runtime Support, 563
starpu_omp_sched_dynamic

OpenMP Runtime Support, 563
starpu_omp_sched_guided

OpenMP Runtime Support, 563
starpu_omp_sched_runtime

OpenMP Runtime Support, 563
starpu_omp_sched_static

OpenMP Runtime Support, 563
starpu_omp_sched_undefined

OpenMP Runtime Support, 563
starpu_omp_sched_value

OpenMP Runtime Support, 562
starpu_omp_sections

OpenMP Runtime Support, 569
starpu_omp_sections_combined

OpenMP Runtime Support, 569
starpu_omp_set_default_device

OpenMP Runtime Support, 577
starpu_omp_set_dynamic

OpenMP Runtime Support, 572
starpu_omp_set_lock

OpenMP Runtime Support, 579
starpu_omp_set_max_active_levels

OpenMP Runtime Support, 574
starpu_omp_set_nest_lock

OpenMP Runtime Support, 580
starpu_omp_set_nested

OpenMP Runtime Support, 572
starpu_omp_set_num_threads

OpenMP Runtime Support, 570
starpu_omp_set_schedule

OpenMP Runtime Support, 573
starpu_omp_shutdown

OpenMP Runtime Support, 563
starpu_omp_single

OpenMP Runtime Support, 565
starpu_omp_single_copyprivate

OpenMP Runtime Support, 565
starpu_omp_single_copyprivate_inline_begin

OpenMP Runtime Support, 565
starpu_omp_single_copyprivate_inline_end

OpenMP Runtime Support, 566
starpu_omp_single_inline

OpenMP Runtime Support, 565
starpu_omp_task_region

OpenMP Runtime Support, 569
starpu_omp_task_region_attr, 561
starpu_omp_taskgroup

OpenMP Runtime Support, 570
starpu_omp_taskgroup_inline_begin

OpenMP Runtime Support, 570
starpu_omp_taskgroup_inline_end

OpenMP Runtime Support, 570
starpu_omp_taskwait

OpenMP Runtime Support, 569
starpu_omp_test_lock

OpenMP Runtime Support, 579
starpu_omp_test_nest_lock

OpenMP Runtime Support, 581
starpu_omp_unset_lock

OpenMP Runtime Support, 579
starpu_omp_unset_nest_lock

OpenMP Runtime Support, 581
starpu_omp_vector_annotate

OpenMP Runtime Support, 582
STARPU_OPENCL

Codelet And Tasks, 349
starpu_opencl.h, 750
starpu_opencl_allocate_memory

OpenCL Extensions, 556
STARPU_OPENCL_ASYNC

Codelet And Tasks, 350
starpu_opencl_collect_stats

OpenCL Extensions, 555
starpu_opencl_compile_opencl_from_file

OpenCL Extensions, 554
starpu_opencl_compile_opencl_from_string

OpenCL Extensions, 554
starpu_opencl_copy_async_sync

OpenCL Extensions, 557
starpu_opencl_copy_opencl_to_opencl

OpenCL Extensions, 557
starpu_opencl_copy_opencl_to_ram

OpenCL Extensions, 556
starpu_opencl_copy_ram_to_opencl

OpenCL Extensions, 556
STARPU_OPENCL_DATADIR

OpenCL Extensions, 552
STARPU_OPENCL_DISPLAY_ERROR

OpenCL Extensions, 552
starpu_opencl_display_error

OpenCL Extensions, 555
starpu_opencl_error_string

OpenCL Extensions, 555
starpu_opencl_func_t

Codelet And Tasks, 353
starpu_opencl_get_context

Generated by Doxygen

INDEX 837

OpenCL Extensions, 553
starpu_opencl_get_current_context

OpenCL Extensions, 553
starpu_opencl_get_current_queue

OpenCL Extensions, 553
starpu_opencl_get_device

OpenCL Extensions, 553
starpu_opencl_get_queue

OpenCL Extensions, 553
starpu_opencl_load_binary_opencl

OpenCL Extensions, 554
starpu_opencl_load_kernel

OpenCL Extensions, 555
starpu_opencl_load_opencl_from_file

OpenCL Extensions, 555
starpu_opencl_load_opencl_from_string

OpenCL Extensions, 555
starpu_opencl_load_program_source

OpenCL Extensions, 554
starpu_opencl_load_program_source_malloc

OpenCL Extensions, 554
starpu_opencl_program, 552
STARPU_OPENCL_RAM

Workers, 709
starpu_opencl_release_kernel

OpenCL Extensions, 555
STARPU_OPENCL_REPORT_ERROR

OpenCL Extensions, 552
starpu_opencl_report_error

OpenCL Extensions, 556
STARPU_OPENCL_REPORT_ERROR_WITH_MSG

OpenCL Extensions, 553
starpu_opencl_set_kernel_args

OpenCL Extensions, 553
starpu_opencl_unload_opencl

OpenCL Extensions, 555
STARPU_OPENCL_WORKER

Workers, 709
starpu_opencl_worker_get_count

Workers, 711
STARPU_OPENMP

OpenMP Runtime Support, 562
starpu_openmp.h, 751
starpu_parallel_task_barrier_init

Parallel Tasks, 589
starpu_parallel_task_barrier_init_n

Parallel Tasks, 589
starpu_parallel_worker.h, 754
STARPU_PARALLEL_WORKER_AWAKE_WORKERS

Parallel Workers, 591
STARPU_PARALLEL_WORKER_CREATE_FUNC

Parallel Workers, 591
STARPU_PARALLEL_WORKER_CREATE_FUNC_ARG

Parallel Workers, 591
STARPU_PARALLEL_WORKER_GNU_OPENMP_MKL

Parallel Workers, 594
starpu_parallel_worker_init

Parallel Workers, 594

STARPU_PARALLEL_WORKER_INTEL_OPENMP_MKL
Parallel Workers, 594

STARPU_PARALLEL_WORKER_KEEP_HOMOGENEOUS
Parallel Workers, 591

STARPU_PARALLEL_WORKER_MAX_NB
Parallel Workers, 591

STARPU_PARALLEL_WORKER_MIN_NB
Parallel Workers, 590

STARPU_PARALLEL_WORKER_NB
Parallel Workers, 591

STARPU_PARALLEL_WORKER_NCORES
Parallel Workers, 592

STARPU_PARALLEL_WORKER_NEW
Parallel Workers, 591

STARPU_PARALLEL_WORKER_OPENMP
Parallel Workers, 594

starpu_parallel_worker_openmp_prologue
Parallel Workers, 594

STARPU_PARALLEL_WORKER_PARTITION_ONE
Parallel Workers, 591

STARPU_PARALLEL_WORKER_POLICY_NAME
Parallel Workers, 591

STARPU_PARALLEL_WORKER_POLICY_STRUCT
Parallel Workers, 591

STARPU_PARALLEL_WORKER_PREFERE_MIN
Parallel Workers, 591

starpu_parallel_worker_print
Parallel Workers, 594

starpu_parallel_worker_shutdown
Parallel Workers, 594

STARPU_PARALLEL_WORKER_TYPE
Parallel Workers, 591

starpu_parallel_worker_types
Parallel Workers, 593

starpu_pause
Initialization and Termination, 476

STARPU_PER_ARCH
Performance Model, 607

STARPU_PER_WORKER
Performance Model, 607

starpu_perf_counter_collection_start
Performance Monitoring Counters, 597

starpu_perf_counter_collection_stop
Performance Monitoring Counters, 597

starpu_perf_counter_get_help_string
Performance Monitoring Counters, 598

starpu_perf_counter_get_type_id
Performance Monitoring Counters, 598

starpu_perf_counter_id_to_name
Performance Monitoring Counters, 598

starpu_perf_counter_list_all_avail
Performance Monitoring Counters, 599

starpu_perf_counter_list_avail
Performance Monitoring Counters, 599

starpu_perf_counter_listener_exit
Performance Monitoring Counters, 599

starpu_perf_counter_listener_init
Performance Monitoring Counters, 599

Generated by Doxygen

838 INDEX

starpu_perf_counter_name_to_id
Performance Monitoring Counters, 598

starpu_perf_counter_nb
Performance Monitoring Counters, 598

starpu_perf_counter_nth_to_id
Performance Monitoring Counters, 598

starpu_perf_counter_sample_get_double_value
Performance Monitoring Counters, 601

starpu_perf_counter_sample_get_float_value
Performance Monitoring Counters, 601

starpu_perf_counter_sample_get_int32_value
Performance Monitoring Counters, 600

starpu_perf_counter_sample_get_int64_value
Performance Monitoring Counters, 600

starpu_perf_counter_scope
Performance Monitoring Counters, 597

starpu_perf_counter_scope_global
Performance Monitoring Counters, 597

starpu_perf_counter_scope_id_to_name
Performance Monitoring Counters, 598

starpu_perf_counter_scope_name_to_id
Performance Monitoring Counters, 598

starpu_perf_counter_scope_per_codelet
Performance Monitoring Counters, 597

starpu_perf_counter_scope_per_worker
Performance Monitoring Counters, 597

starpu_perf_counter_scope_undefined
Performance Monitoring Counters, 597

starpu_perf_counter_set_all_per_worker_listeners
Performance Monitoring Counters, 600

starpu_perf_counter_set_alloc
Performance Monitoring Counters, 599

starpu_perf_counter_set_disable_id
Performance Monitoring Counters, 599

starpu_perf_counter_set_enable_id
Performance Monitoring Counters, 599

starpu_perf_counter_set_free
Performance Monitoring Counters, 599

starpu_perf_counter_set_global_listener
Performance Monitoring Counters, 599

starpu_perf_counter_set_per_codelet_listener
Performance Monitoring Counters, 600

starpu_perf_counter_set_per_worker_listener
Performance Monitoring Counters, 600

starpu_perf_counter_type
Performance Monitoring Counters, 597

starpu_perf_counter_type_double
Performance Monitoring Counters, 597

starpu_perf_counter_type_float
Performance Monitoring Counters, 597

starpu_perf_counter_type_id_to_name
Performance Monitoring Counters, 598

starpu_perf_counter_type_int32
Performance Monitoring Counters, 597

starpu_perf_counter_type_int64
Performance Monitoring Counters, 597

starpu_perf_counter_type_name_to_id
Performance Monitoring Counters, 598

starpu_perf_counter_type_undefined
Performance Monitoring Counters, 597

starpu_perf_counter_unset_all_per_worker_listeners
Performance Monitoring Counters, 600

starpu_perf_counter_unset_global_listener
Performance Monitoring Counters, 600

starpu_perf_counter_unset_per_codelet_listener
Performance Monitoring Counters, 600

starpu_perf_counter_unset_per_worker_listener
Performance Monitoring Counters, 600

starpu_perf_knob_get_global_double_value
Performance Steering Knobs, 616

starpu_perf_knob_get_global_float_value
Performance Steering Knobs, 616

starpu_perf_knob_get_global_int32_value
Performance Steering Knobs, 616

starpu_perf_knob_get_global_int64_value
Performance Steering Knobs, 616

starpu_perf_knob_get_help_string
Performance Steering Knobs, 615

starpu_perf_knob_get_per_scheduler_double_value
Performance Steering Knobs, 618

starpu_perf_knob_get_per_scheduler_float_value
Performance Steering Knobs, 618

starpu_perf_knob_get_per_scheduler_int32_value
Performance Steering Knobs, 618

starpu_perf_knob_get_per_scheduler_int64_value
Performance Steering Knobs, 618

starpu_perf_knob_get_per_worker_double_value
Performance Steering Knobs, 617

starpu_perf_knob_get_per_worker_float_value
Performance Steering Knobs, 617

starpu_perf_knob_get_per_worker_int32_value
Performance Steering Knobs, 617

starpu_perf_knob_get_per_worker_int64_value
Performance Steering Knobs, 617

starpu_perf_knob_get_type_id
Performance Steering Knobs, 615

starpu_perf_knob_id_to_name
Performance Steering Knobs, 615

starpu_perf_knob_list_all_avail
Performance Steering Knobs, 616

starpu_perf_knob_list_avail
Performance Steering Knobs, 615

starpu_perf_knob_name_to_id
Performance Steering Knobs, 615

starpu_perf_knob_nb
Performance Steering Knobs, 615

starpu_perf_knob_nth_to_id
Performance Steering Knobs, 615

starpu_perf_knob_scope
Performance Steering Knobs, 614

starpu_perf_knob_scope_global
Performance Steering Knobs, 614

starpu_perf_knob_scope_id_to_name
Performance Steering Knobs, 615

starpu_perf_knob_scope_name_to_id
Performance Steering Knobs, 614

Generated by Doxygen

INDEX 839

starpu_perf_knob_scope_per_scheduler
Performance Steering Knobs, 614

starpu_perf_knob_scope_per_worker
Performance Steering Knobs, 614

starpu_perf_knob_scope_undefined
Performance Steering Knobs, 614

starpu_perf_knob_set_global_double_value
Performance Steering Knobs, 616

starpu_perf_knob_set_global_float_value
Performance Steering Knobs, 616

starpu_perf_knob_set_global_int32_value
Performance Steering Knobs, 616

starpu_perf_knob_set_global_int64_value
Performance Steering Knobs, 616

starpu_perf_knob_set_per_scheduler_double_value
Performance Steering Knobs, 618

starpu_perf_knob_set_per_scheduler_float_value
Performance Steering Knobs, 618

starpu_perf_knob_set_per_scheduler_int32_value
Performance Steering Knobs, 618

starpu_perf_knob_set_per_scheduler_int64_value
Performance Steering Knobs, 618

starpu_perf_knob_set_per_worker_double_value
Performance Steering Knobs, 617

starpu_perf_knob_set_per_worker_float_value
Performance Steering Knobs, 617

starpu_perf_knob_set_per_worker_int32_value
Performance Steering Knobs, 617

starpu_perf_knob_set_per_worker_int64_value
Performance Steering Knobs, 617

starpu_perf_knob_type
Performance Steering Knobs, 614

starpu_perf_knob_type_double
Performance Steering Knobs, 614

starpu_perf_knob_type_float
Performance Steering Knobs, 614

starpu_perf_knob_type_id_to_name
Performance Steering Knobs, 615

starpu_perf_knob_type_int32
Performance Steering Knobs, 614

starpu_perf_knob_type_int64
Performance Steering Knobs, 614

starpu_perf_knob_type_name_to_id
Performance Steering Knobs, 615

starpu_perf_knob_type_undefined
Performance Steering Knobs, 614

starpu_perf_monitoring.h, 755
starpu_perf_steering.h, 756
starpu_perfmodel, 605

arch_cost_function, 606
combinations, 607
cost_function, 606
footprint, 606
is_loaded, 607
ncombinations, 607
nparameters, 607
parameters_names, 607
path, 607

size_base, 606
symbol, 607
type, 606
worker_cost_function, 606

starpu_perfmodel.h, 757
starpu_perfmodel_arch, 603
starpu_perfmodel_debugfilepath

Performance Model, 609
starpu_perfmodel_deinit

Performance Model, 608
starpu_perfmodel_device, 603
starpu_perfmodel_directory

Performance Model, 611
starpu_perfmodel_dump_xml

Performance Model, 609
starpu_perfmodel_free_sampling

Performance Model, 609
starpu_perfmodel_get_arch_name

Performance Model, 610
starpu_perfmodel_get_model_path

Performance Model, 609
starpu_perfmodel_history_based_expected_perf

Performance Model, 610
starpu_perfmodel_history_entry, 604
starpu_perfmodel_history_list, 604
starpu_perfmodel_init

Performance Model, 607
starpu_perfmodel_initialize

Performance Model, 610
starpu_perfmodel_list

Performance Model, 610
starpu_perfmodel_load_file

Performance Model, 608
starpu_perfmodel_load_symbol

Performance Model, 608
starpu_perfmodel_nop

Performance Model, 611
starpu_perfmodel_per_arch, 605

cost_function, 605
history, 605
list, 605
regression, 605
size_base, 605

starpu_perfmodel_regression_model, 604
starpu_perfmodel_type

Performance Model, 607
starpu_perfmodel_unload_model

Performance Model, 609
starpu_perfmodel_update_history

Performance Model, 610
starpu_perfmodel_update_history_n

Performance Model, 610
STARPU_POISON_PTR

Miscellaneous Helpers, 504
STARPU_POSSIBLY_PARALLEL

Task Insert Utility, 483
STARPU_PREFETCH

Data Management, 418

Generated by Doxygen

840 INDEX

starpu_prefetch_task_input_for
Scheduling Policy, 650

starpu_prefetch_task_input_for_prio
Scheduling Policy, 650

starpu_prefetch_task_input_on_node
Scheduling Policy, 650

starpu_prefetch_task_input_on_node_prio
Scheduling Policy, 650

STARPU_PRIORITY
Task Insert Utility, 482

starpu_private
starpu_task, 348

starpu_prof_tool_api_info, 627
starpu_prof_tool_command

Profiling Tool, 627
starpu_prof_tool_driver_type

Profiling Tool, 627
starpu_prof_tool_entry_func

Profiling Tool, 627
starpu_prof_tool_entry_register_func

Profiling Tool, 627
starpu_prof_tool_event

Profiling Tool, 627
starpu_prof_tool_event_info, 626
starpu_prof_tool_info, 626
starpu_profiling.h, 759
starpu_profiling_bus_helper_display_summary

Profiling, 624
starpu_profiling_bus_info, 622
STARPU_PROFILING_DISABLE

Profiling, 622
STARPU_PROFILING_ENABLE

Profiling, 622
starpu_profiling_init

Profiling, 622
starpu_profiling_set_id

Profiling, 622
starpu_profiling_status_get

Profiling, 623
starpu_profiling_status_set

Profiling, 623
starpu_profiling_task_info, 620
starpu_profiling_tool.h, 760
starpu_profiling_worker_get_info

Profiling, 623
starpu_profiling_worker_helper_display_summary

Profiling, 624
starpu_profiling_worker_info, 621
starpu_progression_hook_deregister

Expert Mode, 452
starpu_progression_hook_register

Expert Mode, 452
STARPU_PROLOGUE_CALLBACK

Task Insert Utility, 482
STARPU_PROLOGUE_CALLBACK_ARG

Task Insert Utility, 483
STARPU_PROLOGUE_CALLBACK_ARG_NFREE

Task Insert Utility, 485

STARPU_PROLOGUE_CALLBACK_POP
Task Insert Utility, 483

STARPU_PROLOGUE_CALLBACK_POP_ARG
Task Insert Utility, 483

STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE
Task Insert Utility, 485

starpu_pthread_attr_destroy
Threads, 693

starpu_pthread_attr_init
Threads, 693

starpu_pthread_attr_setdetachstate
Threads, 693

starpu_pthread_attr_t, 777
STARPU_PTHREAD_BARRIER_DESTROY

Threads, 692
starpu_pthread_barrier_destroy

Threads, 697
STARPU_PTHREAD_BARRIER_INIT

Threads, 692
starpu_pthread_barrier_init

Threads, 696
starpu_pthread_barrier_t, 778
STARPU_PTHREAD_BARRIER_WAIT

Threads, 692
starpu_pthread_barrier_wait

Threads, 697
STARPU_PTHREAD_COND_BROADCAST

Threads, 692
starpu_pthread_cond_broadcast

Threads, 695
STARPU_PTHREAD_COND_DESTROY

Threads, 691
starpu_pthread_cond_destroy

Threads, 696
STARPU_PTHREAD_COND_INIT

Threads, 691
starpu_pthread_cond_init

Threads, 695
STARPU_PTHREAD_COND_INIT0

Threads, 691
STARPU_PTHREAD_COND_INITIALIZER

Threads, 692
STARPU_PTHREAD_COND_SIGNAL

Threads, 692
starpu_pthread_cond_signal

Threads, 695
starpu_pthread_cond_timedwait

Threads, 695
STARPU_PTHREAD_COND_WAIT

Threads, 692
starpu_pthread_cond_wait

Threads, 695
STARPU_PTHREAD_CREATE

Threads, 689
starpu_pthread_create

Threads, 692
STARPU_PTHREAD_CREATE_ON

Threads, 689

Generated by Doxygen

INDEX 841

starpu_pthread_exit
Threads, 693

STARPU_PTHREAD_GETSPECIFIC
Threads, 690

starpu_pthread_getspecific
Threads, 695

starpu_pthread_join
Threads, 693

STARPU_PTHREAD_KEY_CREATE
Threads, 690

starpu_pthread_key_create
Threads, 694

STARPU_PTHREAD_KEY_DELETE
Threads, 690

starpu_pthread_key_delete
Threads, 695

STARPU_PTHREAD_MUTEX_DESTROY
Threads, 690

starpu_pthread_mutex_destroy
Threads, 693

STARPU_PTHREAD_MUTEX_INIT
Threads, 689

starpu_pthread_mutex_init
Threads, 693

STARPU_PTHREAD_MUTEX_INIT0
Threads, 690

STARPU_PTHREAD_MUTEX_INITIALIZER
Threads, 692

STARPU_PTHREAD_MUTEX_LOCK
Threads, 690

starpu_pthread_mutex_lock
Threads, 694

starpu_pthread_mutex_trylock
Threads, 694

STARPU_PTHREAD_MUTEX_UNLOCK
Threads, 690

starpu_pthread_mutex_unlock
Threads, 694

starpu_pthread_mutexattr_destroy
Threads, 694

starpu_pthread_mutexattr_gettype
Threads, 694

starpu_pthread_mutexattr_init
Threads, 694

starpu_pthread_mutexattr_settype
Threads, 694

starpu_pthread_queue_t, 778
STARPU_PTHREAD_RWLOCK_DESTROY

Threads, 691
starpu_pthread_rwlock_destroy

Threads, 696
STARPU_PTHREAD_RWLOCK_INIT

Threads, 690
starpu_pthread_rwlock_init

Threads, 696
STARPU_PTHREAD_RWLOCK_INIT0

Threads, 691
STARPU_PTHREAD_RWLOCK_RDLOCK

Threads, 691
starpu_pthread_rwlock_rdlock

Threads, 696
starpu_pthread_rwlock_tryrdlock

Threads, 696
starpu_pthread_rwlock_trywrlock

Threads, 696
STARPU_PTHREAD_RWLOCK_UNLOCK

Threads, 691
starpu_pthread_rwlock_unlock

Threads, 696
STARPU_PTHREAD_RWLOCK_WRLOCK

Threads, 691
starpu_pthread_rwlock_wrlock

Threads, 696
STARPU_PTHREAD_SETSPECIFIC

Threads, 690
starpu_pthread_setspecific

Threads, 695
starpu_pthread_spin_destroy

Threads, 697
starpu_pthread_spin_init

Threads, 697
starpu_pthread_spin_lock

Threads, 697
starpu_pthread_spin_trylock

Threads, 697
starpu_pthread_spin_unlock

Threads, 697
starpu_pthread_spinlock_t, 778
starpu_pthread_wait_t, 778
starpu_push_local_task

Scheduling Policy, 649
starpu_push_task_end

Scheduling Policy, 650
STARPU_R

Data Management, 417
starpu_rand.h, 760
STARPU_REDUX

Data Management, 417
STARPU_REGRESSION_BASED

Performance Model, 607
STARPU_RELEASE_VERSION

Versioning, 704
starpu_resume

Initialization and Termination, 476
STARPU_RMB

Toolbox, 701
STARPU_RW

Data Management, 417
starpu_save_history_based_model

Performance Model, 609
starpu_sched_component, 511

add_child, 513
can_pull, 513
can_push, 513
children, 512
data, 512

Generated by Doxygen

842 INDEX

deinit_data, 513
do_schedule, 513
estimated_end, 513
estimated_load, 513
nchildren, 512
notify_change_workers, 514
nparents, 512
obj, 514
parents, 512
pull_task, 513
push_task, 513
remove_child, 513
tree, 512
workers, 512
workers_in_ctx, 512

starpu_sched_component.h, 761
starpu_sched_component_best_implementation_create

Modularized Scheduler Interface, 523
starpu_sched_component_can_execute_task

Modularized Scheduler Interface, 520
starpu_sched_component_can_pull

Modularized Scheduler Interface, 522
starpu_sched_component_can_pull_all

Modularized Scheduler Interface, 522
starpu_sched_component_can_push

Modularized Scheduler Interface, 522
starpu_sched_component_composed_component_create

Modularized Scheduler Interface, 524
starpu_sched_component_composed_recipe_add

Modularized Scheduler Interface, 524
starpu_sched_component_composed_recipe_create

Modularized Scheduler Interface, 524
starpu_sched_component_composed_recipe_create_singleton

Modularized Scheduler Interface, 524
starpu_sched_component_composed_recipe_destroy

Modularized Scheduler Interface, 524
starpu_sched_component_connect

Modularized Scheduler Interface, 520
starpu_sched_component_create

Modularized Scheduler Interface, 520
starpu_sched_component_destroy

Modularized Scheduler Interface, 520
starpu_sched_component_destroy_rec

Modularized Scheduler Interface, 520
starpu_sched_component_estimated_end_average

Modularized Scheduler Interface, 522
starpu_sched_component_estimated_end_min

Modularized Scheduler Interface, 522
starpu_sched_component_estimated_end_min_add

Modularized Scheduler Interface, 522
starpu_sched_component_estimated_load

Modularized Scheduler Interface, 522
starpu_sched_component_execute_preds

Modularized Scheduler Interface, 520
starpu_sched_component_fifo_create

Modularized Scheduler Interface, 522
starpu_sched_component_fifo_data, 514
starpu_sched_component_heteroprio_data, 515

STARPU_SCHED_COMPONENT_HOMOGENEOUS
Modularized Scheduler Interface, 518

starpu_sched_component_initialize_simple_scheduler
Modularized Scheduler Interface, 524

starpu_sched_component_initialize_simple_schedulers
Modularized Scheduler Interface, 525

starpu_sched_component_is_combined_worker
Modularized Scheduler Interface, 521

starpu_sched_component_is_fifo
Modularized Scheduler Interface, 523

STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS
Modularized Scheduler Interface, 516

starpu_sched_component_is_random
Modularized Scheduler Interface, 523

starpu_sched_component_is_simple_worker
Modularized Scheduler Interface, 521

STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE
Modularized Scheduler Interface, 516

starpu_sched_component_is_work_stealing
Modularized Scheduler Interface, 523

starpu_sched_component_is_worker
Modularized Scheduler Interface, 521

starpu_sched_component_make_scheduler
Modularized Scheduler Interface, 524

starpu_sched_component_mct_create
Modularized Scheduler Interface, 523

starpu_sched_component_mct_data, 514
starpu_sched_component_parallel_worker_create

Modularized Scheduler Interface, 521
starpu_sched_component_parents_pull_task

Modularized Scheduler Interface, 521
starpu_sched_component_perfmodel_select_data, 515
starpu_sched_component_prio_data, 514
starpu_sched_component_properties

Modularized Scheduler Interface, 518
starpu_sched_component_pull_task

Modularized Scheduler Interface, 519
starpu_sched_component_push_task

Modularized Scheduler Interface, 519
starpu_sched_component_random_create

Modularized Scheduler Interface, 523
STARPU_SCHED_COMPONENT_SINGLE_MEMORY_NODE

Modularized Scheduler Interface, 518
starpu_sched_component_specs, 515

hwloc_cache_composed_sched_component, 516
hwloc_component_composed_sched_component,

515
hwloc_machine_composed_sched_component,

515
hwloc_socket_composed_sched_component, 515
mix_heterogeneous_workers, 516
worker_composed_sched_component, 516

starpu_sched_component_transfer_length
Modularized Scheduler Interface, 520

starpu_sched_component_work_stealing_create
Modularized Scheduler Interface, 523

starpu_sched_component_worker_get
Modularized Scheduler Interface, 521

Generated by Doxygen

INDEX 843

starpu_sched_component_worker_get_workerid
Modularized Scheduler Interface, 521

starpu_sched_component_worker_post_exec_hook
Modularized Scheduler Interface, 521

starpu_sched_component_worker_pre_exec_hook
Modularized Scheduler Interface, 521

STARPU_SCHED_CTX
Task Insert Utility, 482

starpu_sched_ctx.h, 765
starpu_sched_ctx_add_workers

Scheduling Contexts, 639
STARPU_SCHED_CTX_AWAKE_WORKERS

Scheduling Contexts, 638
starpu_sched_ctx_call_pushed_task_cb

starpu_sched_ctx_hypervisor.h, 767
starpu_sched_ctx_check_if_hypervisor_exists

starpu_sched_ctx_hypervisor.h, 767
starpu_sched_ctx_contains_worker

Scheduling Contexts, 641
starpu_sched_ctx_create

Scheduling Contexts, 639
starpu_sched_ctx_create_inside_interval

Scheduling Contexts, 639
starpu_sched_ctx_create_worker_collection

Scheduling Contexts, 643
STARPU_SCHED_CTX_CUDA_NSMS

Scheduling Contexts, 638
starpu_sched_ctx_delete

Scheduling Contexts, 640
starpu_sched_ctx_delete_worker_collection

Scheduling Contexts, 643
starpu_sched_ctx_display_workers

Scheduling Contexts, 640
starpu_sched_ctx_exec_parallel_code

Scheduling Contexts, 642
starpu_sched_ctx_finished_submit

Scheduling Contexts, 640
starpu_sched_ctx_get_context

Scheduling Contexts, 640
starpu_sched_ctx_get_max_priority

Scheduling Contexts, 642
starpu_sched_ctx_get_min_priority

Scheduling Contexts, 642
starpu_sched_ctx_get_nshared_workers

Scheduling Contexts, 641
starpu_sched_ctx_get_nworkers

Scheduling Contexts, 641
starpu_sched_ctx_get_policy_data

Scheduling Contexts, 642
starpu_sched_ctx_get_sched_policy_callback

Scheduling Contexts, 643
starpu_sched_ctx_get_user_data

Scheduling Contexts, 641
starpu_sched_ctx_get_worker_collection

Scheduling Contexts, 643
starpu_sched_ctx_get_workers_list

Scheduling Contexts, 641
starpu_sched_ctx_get_workers_list_raw

Scheduling Contexts, 641
starpu_sched_ctx_hypervisor.h, 766

starpu_sched_ctx_call_pushed_task_cb, 767
starpu_sched_ctx_check_if_hypervisor_exists, 767
starpu_sched_ctx_notify_hypervisor_exists, 767
starpu_sched_ctx_set_perf_counters, 767

starpu_sched_ctx_iterator, 707
starpu_sched_ctx_master_get_context

Scheduling Contexts, 642
starpu_sched_ctx_notify_hypervisor_exists

starpu_sched_ctx_hypervisor.h, 767
starpu_sched_ctx_overlapping_ctxs_on_worker

Scheduling Contexts, 641
STARPU_SCHED_CTX_POLICY_INIT

Scheduling Contexts, 638
STARPU_SCHED_CTX_POLICY_MAX_PRIO

Scheduling Contexts, 638
STARPU_SCHED_CTX_POLICY_MIN_PRIO

Scheduling Contexts, 638
STARPU_SCHED_CTX_POLICY_NAME

Scheduling Contexts, 637
STARPU_SCHED_CTX_POLICY_STRUCT

Scheduling Contexts, 638
starpu_sched_ctx_register_close_callback

Scheduling Contexts, 639
starpu_sched_ctx_remove_workers

Scheduling Contexts, 640
starpu_sched_ctx_set_context

Scheduling Contexts, 640
starpu_sched_ctx_set_inheritor

Scheduling Contexts, 640
starpu_sched_ctx_set_max_priority

Scheduling Contexts, 643
starpu_sched_ctx_set_min_priority

Scheduling Contexts, 642
starpu_sched_ctx_set_perf_counters

starpu_sched_ctx_hypervisor.h, 767
starpu_sched_ctx_set_policy_data

Scheduling Contexts, 642
starpu_sched_ctx_stop_task_submission

Scheduling Contexts, 640
STARPU_SCHED_CTX_SUB_CTXS

Scheduling Contexts, 638
STARPU_SCHED_CTX_USER_DATA

Scheduling Contexts, 638
starpu_sched_ctx_worker_get_id

Scheduling Contexts, 641
starpu_sched_ctx_worker_is_master_for_child_ctx

Scheduling Contexts, 642
starpu_sched_ctx_worker_shares_tasks_lists

Scheduling Policy, 653
starpu_sched_find_all_worker_combinations

Workers, 711
starpu_sched_get_max_priority

Scheduling Policy, 648
starpu_sched_get_min_priority

Scheduling Policy, 648
starpu_sched_get_predefined_policies

Generated by Doxygen

844 INDEX

Scheduling Policy, 647
starpu_sched_get_sched_policy

Scheduling Policy, 648
starpu_sched_get_sched_policy_in_ctx

Scheduling Policy, 648
starpu_sched_policy, 645

add_workers, 647
deinit_sched, 646
do_schedule, 647
init_sched, 646
policy_description, 647
policy_name, 647
pop_task, 646
post_exec_hook, 647
pre_exec_hook, 646
prefetches, 647
push_task, 646
push_task_notify, 646
remove_workers, 647
submit_hook, 646

starpu_sched_set_max_priority
Scheduling Policy, 649

starpu_sched_set_min_priority
Scheduling Policy, 648

STARPU_SCHED_SIMPLE_COMBINED_WORKERS
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_DECIDE_ALWAYS
Modularized Scheduler Interface, 516

STARPU_SCHED_SIMPLE_DECIDE_ARCHS
Modularized Scheduler Interface, 516

STARPU_SCHED_SIMPLE_DECIDE_MEMNODES
Modularized Scheduler Interface, 516

STARPU_SCHED_SIMPLE_DECIDE_WORKERS
Modularized Scheduler Interface, 516

STARPU_SCHED_SIMPLE_FIFO_ABOVE
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_FIFOS_BELOW
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_FIFOS_BELOW_EXP
Modularized Scheduler Interface, 518

STARPU_SCHED_SIMPLE_FIFOS_BELOW_NOLIMIT
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_IMPL
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_PERFMODEL
Modularized Scheduler Interface, 517

STARPU_SCHED_SIMPLE_PRE_DECISION
Modularized Scheduler Interface, 518

STARPU_SCHED_SIMPLE_WS_BELOW
Modularized Scheduler Interface, 517

starpu_sched_task_break
Scheduling Policy, 653

starpu_sched_tree, 514
starpu_sched_tree_add_workers

Modularized Scheduler Interface, 519
starpu_sched_tree_create

Modularized Scheduler Interface, 518
starpu_sched_tree_deinitialize

Modularized Scheduler Interface, 518
starpu_sched_tree_destroy

Modularized Scheduler Interface, 518
starpu_sched_tree_do_schedule

Modularized Scheduler Interface, 519
starpu_sched_tree_get

Modularized Scheduler Interface, 518
starpu_sched_tree_pop_task

Modularized Scheduler Interface, 519
starpu_sched_tree_push_task

Modularized Scheduler Interface, 519
starpu_sched_tree_remove_workers

Modularized Scheduler Interface, 519
starpu_sched_tree_update_workers

Modularized Scheduler Interface, 519
starpu_sched_tree_update_workers_in_ctx

Modularized Scheduler Interface, 519
starpu_sched_tree_work_stealing_push_task

Modularized Scheduler Interface, 523
starpu_scheduler.h, 767
starpu_scheduler_toolbox.h, 744
STARPU_SCRATCH

Data Management, 417
STARPU_SEQ

Codelet And Tasks, 354
STARPU_SEQUENTIAL_CONSISTENCY

Task Insert Utility, 484
starpu_set_limit_max_submitted_tasks

Codelet And Tasks, 360
starpu_set_limit_min_submitted_tasks

Codelet And Tasks, 360
STARPU_SHIFTED_MODE_MAX

Task Insert Utility, 486
starpu_shutdown

Initialization and Termination, 476
starpu_simgrid_wrap.h, 769
starpu_sink.h, 769
starpu_sleep

Standard Memory Library, 679
STARPU_SPECIFIC_NODE_CPU

Codelet And Tasks, 351
STARPU_SPECIFIC_NODE_FAST

Codelet And Tasks, 351
STARPU_SPECIFIC_NODE_LOCAL

Codelet And Tasks, 351
STARPU_SPECIFIC_NODE_LOCAL_OR_CPU

Codelet And Tasks, 351
STARPU_SPECIFIC_NODE_NONE

Codelet And Tasks, 351
STARPU_SPECIFIC_NODE_SLOW

Codelet And Tasks, 351
STARPU_SPMD

Generated by Doxygen

INDEX 845

Codelet And Tasks, 354
STARPU_SSEND

Data Management, 417
starpu_st_fifo_exp_end_get

Scheduler Toolbox, 633
starpu_st_fifo_exp_end_set

Scheduler Toolbox, 633
starpu_st_fifo_exp_len_get

Scheduler Toolbox, 633
starpu_st_fifo_exp_len_inc

Scheduler Toolbox, 633
starpu_st_fifo_exp_len_per_priority_get

Scheduler Toolbox, 633
starpu_st_fifo_exp_len_set

Scheduler Toolbox, 633
starpu_st_fifo_exp_start_get

Scheduler Toolbox, 633
starpu_st_fifo_exp_start_set

Scheduler Toolbox, 633
starpu_st_fifo_nprocessed_get

Scheduler Toolbox, 632
starpu_st_fifo_nprocessed_inc

Scheduler Toolbox, 633
starpu_st_fifo_ntasks_get

Scheduler Toolbox, 632
starpu_st_fifo_ntasks_inc

Scheduler Toolbox, 632
starpu_st_fifo_ntasks_per_priority_get

Scheduler Toolbox, 632
starpu_st_fifo_pipeline_len_get

Scheduler Toolbox, 634
starpu_st_fifo_pipeline_len_inc

Scheduler Toolbox, 634
starpu_st_fifo_pipeline_len_set

Scheduler Toolbox, 634
starpu_st_fifo_taskq_create

Scheduler Toolbox, 632
starpu_st_fifo_taskq_pop_first_ready_task

Scheduler Toolbox, 634
starpu_st_fifo_taskq_pop_local_task

Scheduler Toolbox, 634
starpu_st_fifo_taskq_t

Scheduler Toolbox, 632
starpu_st_prio_deque_deque_task_for_worker

Scheduler Toolbox, 635
starpu_st_prio_deque_init

Scheduler Toolbox, 634
starpu_st_prio_deque_is_empty

Scheduler Toolbox, 634
starpu_st_prio_deque_pop_task_for_worker

Scheduler Toolbox, 634
starpu_st_prio_deque_push_front_task

Scheduler Toolbox, 634
starpu_st_prio_deque_t

Scheduler Toolbox, 632
STARPU_STATIC_ASSERT

Toolbox, 700
starpu_stdlib.h, 769

STARPU_TAG
Task Insert Utility, 482

starpu_tag_declare_deps
Explicit Dependencies, 455

starpu_tag_declare_deps_array
Explicit Dependencies, 455

starpu_tag_get_task
Explicit Dependencies, 456

starpu_tag_notify_from_apps
Explicit Dependencies, 456

starpu_tag_notify_restart_from_apps
Explicit Dependencies, 456

STARPU_TAG_ONLY
Task Insert Utility, 483

starpu_tag_remove
Explicit Dependencies, 456

starpu_tag_restart
Explicit Dependencies, 456

starpu_tag_t
Explicit Dependencies, 453

starpu_tag_wait
Explicit Dependencies, 455

starpu_tag_wait_array
Explicit Dependencies, 455

starpu_task, 339
bubble_func, 348
bubble_func_arg, 348
bubble_gen_dag_func, 348
bubble_gen_dag_func_arg, 348
bubble_parent, 348
bundle, 347
callback_arg, 343
callback_arg_free, 344
callback_func, 343
cl, 341
cl_arg, 342
cl_arg_free, 344
cl_arg_size, 342
cl_ret, 342
cl_ret_free, 344
cl_ret_size, 343
color, 347
destroy, 345
detach, 345
dyn_handles, 341
dyn_interfaces, 341
dyn_modes, 341
epilogue_callback_arg, 343
epilogue_callback_arg_free, 344
epilogue_callback_func, 343
execute_on_a_specific_worker, 345
failed, 346
file, 341
flops, 347
handles, 342
handles_sequential_consistency, 342
hypervisor_tag, 347
interfaces, 342

Generated by Doxygen

846 INDEX

line, 341
magic, 347
mf_skip, 346
modes, 342
name, 341
nb_termination_call_required, 348
nbuffers, 341
next, 348
no_submitorder, 345
omp_task, 348
possibly_parallel, 347
predicted, 347
predicted_transfer, 347
prefetched, 346
prev, 348
priority, 346
profiling_info, 347
prologue_callback_arg, 343
prologue_callback_arg_free, 344
prologue_callback_func, 343
prologue_callback_pop_arg, 344
prologue_callback_pop_arg_free, 344
prologue_callback_pop_func, 343
regenerate, 345
sched_ctx, 347
sched_data, 348
scheduled, 346
sequential_consistency, 345
starpu_private, 348
status, 347
synchronous, 345
tag_id, 344
transaction, 344
trs_epoch, 344
type, 347
use_tag, 345
where, 341
workerid, 346
workerids, 346
workerids_len, 346
workerorder, 346

starpu_task.h, 770
STARPU_TASK_INVALID, 772

STARPU_TASK_BLOCKED
Codelet And Tasks, 354

STARPU_TASK_BLOCKED_ON_DATA
Codelet And Tasks, 354

STARPU_TASK_BLOCKED_ON_TAG
Codelet And Tasks, 354

STARPU_TASK_BLOCKED_ON_TASK
Codelet And Tasks, 354

starpu_task_build
Task Insert Utility, 486

starpu_task_bundle.h, 772
starpu_task_bundle_close

Task Bundles, 682
starpu_task_bundle_create

Task Bundles, 681

starpu_task_bundle_expected_data_transfer_time
Task Bundles, 682

starpu_task_bundle_expected_energy
Task Bundles, 682

starpu_task_bundle_expected_length
Task Bundles, 682

starpu_task_bundle_insert
Task Bundles, 681

starpu_task_bundle_remove
Task Bundles, 681

starpu_task_bundle_t
Task Bundles, 681

starpu_task_clean
Codelet And Tasks, 355

STARPU_TASK_COLOR
Task Insert Utility, 484

starpu_task_create
Codelet And Tasks, 355

starpu_task_create_sync
Codelet And Tasks, 355

starpu_task_data_footprint
Scheduling Policy, 651

starpu_task_declare_deps
Explicit Dependencies, 454

starpu_task_declare_deps_array
Explicit Dependencies, 453

starpu_task_declare_end_deps
Explicit Dependencies, 454

starpu_task_declare_end_deps_array
Explicit Dependencies, 454

starpu_task_dep.h, 773
STARPU_TASK_DEPS_ARRAY

Task Insert Utility, 484
starpu_task_destroy

Codelet And Tasks, 355
starpu_task_dup

Codelet And Tasks, 358
STARPU_TASK_END_DEP

Task Insert Utility, 484
starpu_task_end_dep_add

Explicit Dependencies, 455
starpu_task_end_dep_release

Explicit Dependencies, 455
STARPU_TASK_END_DEPS_ARRAY

Task Insert Utility, 484
starpu_task_expected_conversion_time

Scheduling Policy, 653
starpu_task_expected_data_transfer_time

Scheduling Policy, 652
starpu_task_expected_data_transfer_time_for

Scheduling Policy, 652
starpu_task_expected_energy

Scheduling Policy, 652
starpu_task_expected_energy_average

Scheduling Policy, 652
starpu_task_expected_length

Scheduling Policy, 651
starpu_task_expected_length_average

Generated by Doxygen

INDEX 847

Scheduling Policy, 651
STARPU_TASK_FILE

Task Insert Utility, 485
STARPU_TASK_FINISHED

Codelet And Tasks, 354
starpu_task_finished

Codelet And Tasks, 356
starpu_task_footprint

Scheduling Policy, 651
starpu_task_ft_create_retry

Codelet And Tasks, 359
starpu_task_ft_failed

Codelet And Tasks, 359
starpu_task_ft_prologue

Codelet And Tasks, 359
starpu_task_ft_success

Codelet And Tasks, 360
starpu_task_get_current

Codelet And Tasks, 358
starpu_task_get_current_data_node

Codelet And Tasks, 358
STARPU_TASK_GET_HANDLE

Codelet And Tasks, 352
STARPU_TASK_GET_HANDLES

Codelet And Tasks, 352
starpu_task_get_implementation

Codelet And Tasks, 359
starpu_task_get_job_id

Scheduling Policy, 648
STARPU_TASK_GET_MODE

Codelet And Tasks, 353
starpu_task_get_model_name

Codelet And Tasks, 358
starpu_task_get_name

Codelet And Tasks, 358
STARPU_TASK_GET_NBUFFERS

Codelet And Tasks, 352
starpu_task_get_task_scheduled_succs

Explicit Dependencies, 454
starpu_task_get_task_succs

Explicit Dependencies, 454
STARPU_TASK_INIT

Codelet And Tasks, 354
starpu_task_init

Codelet And Tasks, 354
STARPU_TASK_INITIALIZER

Codelet And Tasks, 352
starpu_task_insert

Task Insert Utility, 486
starpu_task_insert_data_make_room

Task Insert Utility, 487
starpu_task_insert_data_process_arg

Task Insert Utility, 487
starpu_task_insert_data_process_array_arg

Task Insert Utility, 487
starpu_task_insert_data_process_mode_array_arg

Task Insert Utility, 488
STARPU_TASK_INVALID

starpu_task.h, 772
STARPU_TASK_LINE

Task Insert Utility, 485
starpu_task_list, 683
starpu_task_list.h, 773
starpu_task_list_back

Task Lists, 684
starpu_task_list_begin

Task Lists, 684
starpu_task_list_empty

Task Lists, 684
starpu_task_list_end

Task Lists, 684
starpu_task_list_erase

Task Lists, 684
starpu_task_list_front

Task Lists, 684
starpu_task_list_init

Task Lists, 683
starpu_task_list_ismember

Task Lists, 685
starpu_task_list_move

Task Lists, 685
starpu_task_list_next

Task Lists, 684
starpu_task_list_pop_back

Task Lists, 684
starpu_task_list_pop_front

Task Lists, 684
starpu_task_list_push_back

Task Lists, 683
starpu_task_list_push_front

Task Lists, 683
STARPU_TASK_NO_SUBMITORDER

Task Insert Utility, 485
starpu_task_notify_ready_soon_register

Scheduling Policy, 653
starpu_task_nready

Codelet And Tasks, 357
starpu_task_nsubmitted

Codelet And Tasks, 357
STARPU_TASK_PREFETCH

Data Management, 418
STARPU_TASK_PROFILING_INFO

Task Insert Utility, 484
STARPU_TASK_READY

Codelet And Tasks, 354
STARPU_TASK_RUNNING

Codelet And Tasks, 354
STARPU_TASK_SCHED_DATA

Task Insert Utility, 485
starpu_task_set

Task Insert Utility, 486
starpu_task_set_destroy

Codelet And Tasks, 355
STARPU_TASK_SET_HANDLE

Codelet And Tasks, 352
starpu_task_set_implementation

Generated by Doxygen

848 INDEX

Codelet And Tasks, 358
STARPU_TASK_SET_MODE

Codelet And Tasks, 353
starpu_task_status

Codelet And Tasks, 354
starpu_task_status_get_as_string

Codelet And Tasks, 360
STARPU_TASK_STOPPED

Codelet And Tasks, 354
starpu_task_submit

Codelet And Tasks, 355
starpu_task_submit_nodeps

Codelet And Tasks, 356
starpu_task_submit_to_ctx

Codelet And Tasks, 356
STARPU_TASK_SYNCHRONOUS

Task Insert Utility, 484
STARPU_TASK_TYPE_DATA_ACQUIRE

Codelet And Tasks, 351
STARPU_TASK_TYPE_INTERNAL

Codelet And Tasks, 351
STARPU_TASK_TYPE_NORMAL

Codelet And Tasks, 351
starpu_task_util.h, 774
starpu_task_wait

Codelet And Tasks, 356
starpu_task_wait_array

Codelet And Tasks, 356
starpu_task_wait_for_all

Codelet And Tasks, 356
starpu_task_wait_for_all_in_ctx

Codelet And Tasks, 357
starpu_task_wait_for_n_submitted

Codelet And Tasks, 356
starpu_task_wait_for_n_submitted_in_ctx

Codelet And Tasks, 357
starpu_task_wait_for_no_ready

Codelet And Tasks, 357
starpu_task_watchdog_set_hook

Codelet And Tasks, 360
starpu_task_worker_expected_energy

Scheduling Policy, 652
starpu_task_worker_expected_length

Scheduling Policy, 651
STARPU_TASK_WORKERIDS

Task Insert Utility, 484
STARPU_TCPIP_MS

Codelet And Tasks, 349
STARPU_TCPIP_MS_RAM

Workers, 709
STARPU_TCPIP_MS_WORKER

Workers, 709
starpu_tcpip_ms_worker_get_count

Workers, 711
starpu_tensor_data_register

Data Interfaces, 404
starpu_tensor_filter_block

Data Partition, 443

starpu_tensor_filter_block_shadow
Data Partition, 443

starpu_tensor_filter_depth_block
Data Partition, 444

starpu_tensor_filter_depth_block_shadow
Data Partition, 444

starpu_tensor_filter_pick_block_child_ops
Data Partition, 446

starpu_tensor_filter_pick_block_t
Data Partition, 445

starpu_tensor_filter_pick_block_y
Data Partition, 445

starpu_tensor_filter_pick_block_z
Data Partition, 445

starpu_tensor_filter_pick_variable
Data Partition, 446

starpu_tensor_filter_pick_variable_child_ops
Data Partition, 446

starpu_tensor_filter_time_block
Data Partition, 445

starpu_tensor_filter_time_block_shadow
Data Partition, 445

starpu_tensor_filter_vertical_block
Data Partition, 444

starpu_tensor_filter_vertical_block_shadow
Data Partition, 444

STARPU_TENSOR_GET_DEV_HANDLE
Data Interfaces, 387

STARPU_TENSOR_GET_ELEMSIZE
Data Interfaces, 388

starpu_tensor_get_elemsize
Data Interfaces, 405

STARPU_TENSOR_GET_LDT
Data Interfaces, 388

STARPU_TENSOR_GET_LDY
Data Interfaces, 387

STARPU_TENSOR_GET_LDZ
Data Interfaces, 387

starpu_tensor_get_local_ldt
Data Interfaces, 405

starpu_tensor_get_local_ldy
Data Interfaces, 405

starpu_tensor_get_local_ldz
Data Interfaces, 405

starpu_tensor_get_local_ptr
Data Interfaces, 405

STARPU_TENSOR_GET_NT
Data Interfaces, 387

starpu_tensor_get_nt
Data Interfaces, 405

STARPU_TENSOR_GET_NX
Data Interfaces, 387

starpu_tensor_get_nx
Data Interfaces, 405

STARPU_TENSOR_GET_NY
Data Interfaces, 387

starpu_tensor_get_ny
Data Interfaces, 405

Generated by Doxygen

INDEX 849

STARPU_TENSOR_GET_NZ
Data Interfaces, 387

starpu_tensor_get_nz
Data Interfaces, 405

STARPU_TENSOR_GET_OFFSET
Data Interfaces, 387

STARPU_TENSOR_GET_PTR
Data Interfaces, 387

starpu_tensor_interface, 380
STARPU_TENSOR_INTERFACE_ID

Data Interfaces, 394
starpu_tensor_ptr_register

Data Interfaces, 404
starpu_thread.h, 775
STARPU_THREAD_ACTIVE

Initialization and Termination, 475
starpu_thread_util.h, 778
starpu_timing_now

Miscellaneous Helpers, 506
starpu_timing_timespec_delay_us

Profiling, 624
starpu_timing_timespec_to_us

Profiling, 624
starpu_topology_print

Initialization and Termination, 478
STARPU_TRANSACTION

Task Insert Utility, 485
starpu_transaction_close

Transactions, 702
starpu_transaction_next_epoch

Transactions, 702
starpu_transaction_open

Transactions, 702
starpu_transfer_bandwidth

Performance Model, 611
starpu_transfer_latency

Performance Model, 611
starpu_transfer_predict

Performance Model, 611
starpu_tree, 703
starpu_tree.h, 779
starpu_uncluster_machine

Parallel Workers, 595
STARPU_UNKNOWN_INTERFACE_ID

Data Interfaces, 393
STARPU_UNKNOWN_WORKER

Workers, 709
STARPU_UNLIKELY

Toolbox, 699
STARPU_UNMAP

Data Management, 417
STARPU_USE_CUDA

CUDA Extensions, 361
STARPU_USE_CUDA0

starpu_config.h, 726
STARPU_USE_CUDA1

starpu_config.h, 726
STARPU_USE_HIP

HIP Extensions, 466
STARPU_USE_HIPBLAS

HIP Extensions, 466
STARPU_USE_MAX_FPGA

Maxeler FPGA Extensions, 502
STARPU_USE_MPI

MPI Support, 532
STARPU_USE_MPI_MASTER_SLAVE

MPI Support, 531
STARPU_USE_OPENCL

OpenCL Extensions, 552
STARPU_USE_TCPIP_MASTER_SLAVE

starpu_config.h, 726
starpu_usleep

Standard Memory Library, 679
starpu_util.h, 780
STARPU_VALUE

Task Insert Utility, 481
starpu_variable_data_register

Data Interfaces, 408
STARPU_VARIABLE_GET_DEV_HANDLE

Data Interfaces, 390
STARPU_VARIABLE_GET_ELEMSIZE

Data Interfaces, 390
starpu_variable_get_elemsize

Data Interfaces, 408
starpu_variable_get_local_ptr

Data Interfaces, 409
STARPU_VARIABLE_GET_OFFSET

Data Interfaces, 390
STARPU_VARIABLE_GET_PTR

Data Interfaces, 389
starpu_variable_interface, 381
STARPU_VARIABLE_INTERFACE_ID

Data Interfaces, 394
STARPU_VARIABLE_NBUFFERS

Codelet And Tasks, 351
starpu_variable_ptr_register

Data Interfaces, 408
starpu_vector_data_register

Data Interfaces, 407
starpu_vector_data_register_allocsize

Data Interfaces, 407
starpu_vector_filter_block

Data Partition, 439
starpu_vector_filter_block_shadow

Data Partition, 440
starpu_vector_filter_divide_in_2

Data Partition, 440
starpu_vector_filter_list

Data Partition, 440
starpu_vector_filter_list_long

Data Partition, 440
starpu_vector_filter_pick_variable

Data Partition, 441
starpu_vector_filter_pick_variable_child_ops

Data Partition, 441
STARPU_VECTOR_GET_ALLOCSIZE

Generated by Doxygen

850 INDEX

Data Interfaces, 389
starpu_vector_get_allocsize

Data Interfaces, 408
STARPU_VECTOR_GET_DEV_HANDLE

Data Interfaces, 389
STARPU_VECTOR_GET_ELEMSIZE

Data Interfaces, 389
starpu_vector_get_elemsize

Data Interfaces, 408
starpu_vector_get_local_ptr

Data Interfaces, 408
STARPU_VECTOR_GET_NX

Data Interfaces, 389
starpu_vector_get_nx

Data Interfaces, 408
STARPU_VECTOR_GET_OFFSET

Data Interfaces, 389
STARPU_VECTOR_GET_PTR

Data Interfaces, 389
STARPU_VECTOR_GET_SLICE_BASE

Data Interfaces, 389
starpu_vector_interface, 381
STARPU_VECTOR_INTERFACE_ID

Data Interfaces, 394
starpu_vector_ptr_register

Data Interfaces, 407
STARPU_VECTOR_SET_NX

Data Interfaces, 389
STARPU_VISIBILITY_POP

Toolbox, 699
STARPU_VISIBILITY_PUSH_HIDDEN

Toolbox, 699
starpu_void_data_register

Data Interfaces, 409
STARPU_VOID_INTERFACE_ID

Data Interfaces, 394
STARPU_W

Data Management, 417
starpu_wait_initialized

Initialization and Termination, 476
starpu_wake_all_blocked_workers

Expert Mode, 452
starpu_wake_worker_locked

Scheduling Policy, 653
starpu_wake_worker_no_relax

Scheduling Policy, 653
starpu_wake_worker_relax

Scheduling Policy, 653
starpu_wake_worker_relax_light

Scheduling Policy, 654
STARPU_WMB

Toolbox, 701
starpu_worker.h, 781
starpu_worker_archtype

Workers, 709
starpu_worker_archtype_is_valid

Workers, 710
starpu_worker_can_execute_task

Scheduling Policy, 649
starpu_worker_can_execute_task_first_impl

Scheduling Policy, 649
starpu_worker_can_execute_task_impl

Scheduling Policy, 649
starpu_worker_collection, 707

add, 708
deinit, 708
get_next, 708
has_next, 707
init, 708
init_iterator, 708
nworkers, 707
remove, 708
type, 707
workerids, 707

starpu_worker_collection_type
Workers, 709

starpu_worker_display_all
Workers, 712

starpu_worker_display_count
Workers, 713

starpu_worker_display_names
Workers, 712

starpu_worker_get_bindid
Workers, 711

starpu_worker_get_by_devid
Workers, 712

starpu_worker_get_by_type
Workers, 712

starpu_worker_get_count
Workers, 710

starpu_worker_get_count_by_type
Workers, 711

starpu_worker_get_current_task_exp_end
Workers, 713

starpu_worker_get_devid
Workers, 713

starpu_worker_get_devids
Workers, 714

starpu_worker_get_devnum
Workers, 713

starpu_worker_get_hwloc_cpuset
Workers, 714

starpu_worker_get_hwloc_obj
Workers, 715

starpu_worker_get_id
Workers, 711

starpu_worker_get_id_check
Workers, 708

starpu_worker_get_ids_by_type
Workers, 712

starpu_worker_get_local_memory_node
Workers, 715

starpu_worker_get_memory_node
Workers, 715

starpu_worker_get_memory_node_kind
Workers, 716

Generated by Doxygen

INDEX 851

starpu_worker_get_name
Workers, 712

starpu_worker_get_perf_archtype
Performance Model, 609

starpu_worker_get_relative_speedup
Scheduling Policy, 652

starpu_worker_get_relax_state
Workers, 717

starpu_worker_get_sched_condition
Scheduling Policy, 648

starpu_worker_get_sched_ctx_list
Workers, 713

starpu_worker_get_stream_workerids
Workers, 714

starpu_worker_get_subworkerid
Workers, 713

starpu_worker_get_type
Workers, 711

starpu_worker_get_type_as_env_var
Workers, 714

starpu_worker_get_type_as_string
Workers, 714

starpu_worker_get_type_from_string
Workers, 714

starpu_worker_is_blocked_in_parallel
Workers, 713

starpu_worker_is_combined_worker
Parallel Tasks, 588

starpu_worker_is_slave_somewhere
Workers, 714

STARPU_WORKER_LIST
Workers, 710

starpu_worker_lock
Workers, 717

starpu_worker_lock_self
Workers, 717

STARPU_WORKER_ORDER
Task Insert Utility, 483

starpu_worker_relax_off
Workers, 717

starpu_worker_relax_on
Workers, 716

starpu_worker_sched_op_pending
Workers, 716

starpu_worker_set_going_to_sleep_callback
Workers, 717

starpu_worker_set_waking_up_callback
Workers, 718

STARPU_WORKER_TO_MASK
Codelet And Tasks, 349

STARPU_WORKER_TREE
Workers, 710

starpu_worker_trylock
Workers, 717

starpu_worker_type_can_execute_task
Workers, 712

starpu_worker_unlock
Workers, 717

starpu_worker_unlock_self
Workers, 717

starpu_worker_wait_for_initialisation
Workers, 710

starpu_workers_get_tree
Workers, 713

starpufft.h, 783
starpufft_cleanup

FFT Support, 458
starpufft_destroy_plan

FFT Support, 458
starpufft_execute

FFT Support, 458
starpufft_execute_handle

FFT Support, 458
starpufft_malloc

FFT Support, 457
starpufft_plan_dft_1d

FFT Support, 457
starpufft_plan_dft_2d

FFT Support, 457
starpufft_start

FFT Support, 457
starpufft_start_handle

FFT Support, 457
starpurm.h, 790
starpurm_acquire

Interoperability Support, 496
starpurm_acquire_all_devices

Interoperability Support, 500
starpurm_acquire_cpu

Interoperability Support, 496
starpurm_acquire_cpu_mask

Interoperability Support, 496
starpurm_acquire_cpus

Interoperability Support, 496
starpurm_acquire_device

Interoperability Support, 499
starpurm_acquire_device_mask

Interoperability Support, 500
starpurm_acquire_devices

Interoperability Support, 499
starpurm_assign_all_cpus_to_starpu

Interoperability Support, 494
starpurm_assign_all_devices_to_starpu

Interoperability Support, 498
starpurm_assign_cpu_mask_to_starpu

Interoperability Support, 494
starpurm_assign_cpu_to_starpu

Interoperability Support, 494
starpurm_assign_cpus_to_starpu

Interoperability Support, 494
starpurm_assign_device_mask_to_starpu

Interoperability Support, 497
starpurm_assign_device_to_starpu

Interoperability Support, 497
starpurm_assign_devices_to_starpu

Interoperability Support, 497

Generated by Doxygen

852 INDEX

starpurm_DRS_DISABLD
Interoperability Support, 493

starpurm_DRS_EINVAL
Interoperability Support, 493

starpurm_drs_enabled_p
Interoperability Support, 494

starpurm_DRS_PERM
Interoperability Support, 493

starpurm_DRS_SUCCESS
Interoperability Support, 493

starpurm_get_all_cpu_workers_cpuset
Interoperability Support, 500

starpurm_get_all_device_workers_cpuset
Interoperability Support, 501

starpurm_get_all_device_workers_cpuset_by_type
Interoperability Support, 501

starpurm_get_device_id
Interoperability Support, 497

starpurm_get_device_type_id
Interoperability Support, 497

starpurm_get_device_type_name
Interoperability Support, 497

starpurm_get_device_worker_cpuset
Interoperability Support, 500

starpurm_get_global_cpuset
Interoperability Support, 500

starpurm_get_nb_devices_by_type
Interoperability Support, 497

starpurm_get_selected_cpuset
Interoperability Support, 500

starpurm_initialize
Interoperability Support, 493

starpurm_initialize_with_cpuset
Interoperability Support, 493

starpurm_lend
Interoperability Support, 495

starpurm_lend_all_devices
Interoperability Support, 499

starpurm_lend_cpu
Interoperability Support, 495

starpurm_lend_cpu_mask
Interoperability Support, 495

starpurm_lend_cpus
Interoperability Support, 495

starpurm_lend_device
Interoperability Support, 498

starpurm_lend_device_mask
Interoperability Support, 499

starpurm_lend_devices
Interoperability Support, 498

starpurm_reclaim
Interoperability Support, 496

starpurm_reclaim_all_devices
Interoperability Support, 499

starpurm_reclaim_cpu
Interoperability Support, 496

starpurm_reclaim_cpu_mask
Interoperability Support, 496

starpurm_reclaim_cpus
Interoperability Support, 496

starpurm_reclaim_device
Interoperability Support, 499

starpurm_reclaim_device_mask
Interoperability Support, 499

starpurm_reclaim_devices
Interoperability Support, 499

starpurm_return_all
Interoperability Support, 496

starpurm_return_all_devices
Interoperability Support, 500

starpurm_return_cpu
Interoperability Support, 497

starpurm_return_device
Interoperability Support, 500

starpurm_set_drs_disable
Interoperability Support, 494

starpurm_set_drs_enable
Interoperability Support, 494

starpurm_set_max_parallelism
Interoperability Support, 494

starpurm_shutdown
Interoperability Support, 493

starpurm_spawn_kernel_on_cpus
Interoperability Support, 493

starpurm_spawn_kernel_on_cpus_callback
Interoperability Support, 493

starpurm_withdraw_all_cpus_from_starpu
Interoperability Support, 495

starpurm_withdraw_all_devices_from_starpu
Interoperability Support, 498

starpurm_withdraw_cpu_from_starpu
Interoperability Support, 495

starpurm_withdraw_cpu_mask_from_starpu
Interoperability Support, 495

starpurm_withdraw_cpus_from_starpu
Interoperability Support, 495

starpurm_withdraw_device_from_starpu
Interoperability Support, 498

starpurm_withdraw_device_mask_from_starpu
Interoperability Support, 498

starpurm_withdraw_devices_from_starpu
Interoperability Support, 498

start_ctx
sc_hypervisor_policy, 662

start_perf_counter_collection
starpu_conf, 475

status
starpu_task, 347

submit_hook
starpu_sched_policy, 646

symbol
starpu_perfmodel, 607

synchronous
starpu_task, 345

tag_id
starpu_task, 344

Generated by Doxygen

INDEX 853

Task Bundles, 681
starpu_task_bundle_close, 682
starpu_task_bundle_create, 681
starpu_task_bundle_expected_data_transfer_time,

682
starpu_task_bundle_expected_energy, 682
starpu_task_bundle_expected_length, 682
starpu_task_bundle_insert, 681
starpu_task_bundle_remove, 681
starpu_task_bundle_t, 681

Task Insert Utility, 480
STARPU_CALLBACK, 481
STARPU_CALLBACK_ARG, 482
STARPU_CALLBACK_ARG_NFREE, 485
STARPU_CALLBACK_WITH_ARG, 482
STARPU_CALLBACK_WITH_ARG_NFREE, 485
STARPU_CL_ARGS, 483
STARPU_CL_ARGS_NFREE, 484
starpu_codelet_dup_arg, 489
starpu_codelet_pack_arg, 488
starpu_codelet_pack_arg_fini, 488
starpu_codelet_pack_arg_init, 488
starpu_codelet_pack_args, 488
starpu_codelet_pick_arg, 489
starpu_codelet_unpack_arg, 489
starpu_codelet_unpack_arg_fini, 489
starpu_codelet_unpack_arg_init, 489
starpu_codelet_unpack_args, 488
starpu_codelet_unpack_args_and_copyleft, 489
starpu_codelet_unpack_discard_arg, 489
STARPU_DATA_ARRAY, 482
STARPU_DATA_MODE_ARRAY, 482
STARPU_EPILOGUE_CALLBACK, 486
STARPU_EPILOGUE_CALLBACK_ARG, 486
STARPU_EXECUTE_ON_WORKER, 483
STARPU_EXECUTE_WHERE, 483
STARPU_FLOPS, 482
STARPU_HANDLES_SEQUENTIAL_CONSISTENCY,

484
STARPU_HYPERVISOR_TAG, 482
starpu_insert_task, 487
STARPU_NAME, 483
STARPU_POSSIBLY_PARALLEL, 483
STARPU_PRIORITY, 482
STARPU_PROLOGUE_CALLBACK, 482
STARPU_PROLOGUE_CALLBACK_ARG, 483
STARPU_PROLOGUE_CALLBACK_ARG_NFREE,

485
STARPU_PROLOGUE_CALLBACK_POP, 483
STARPU_PROLOGUE_CALLBACK_POP_ARG,

483
STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE,

485
STARPU_SCHED_CTX, 482
STARPU_SEQUENTIAL_CONSISTENCY, 484
STARPU_SHIFTED_MODE_MAX, 486
STARPU_TAG, 482
STARPU_TAG_ONLY, 483

starpu_task_build, 486
STARPU_TASK_COLOR, 484
STARPU_TASK_DEPS_ARRAY, 484
STARPU_TASK_END_DEP, 484
STARPU_TASK_END_DEPS_ARRAY, 484
STARPU_TASK_FILE, 485
starpu_task_insert, 486
starpu_task_insert_data_make_room, 487
starpu_task_insert_data_process_arg, 487
starpu_task_insert_data_process_array_arg, 487
starpu_task_insert_data_process_mode_array_arg,

488
STARPU_TASK_LINE, 485
STARPU_TASK_NO_SUBMITORDER, 485
STARPU_TASK_PROFILING_INFO, 484
STARPU_TASK_SCHED_DATA, 485
starpu_task_set, 486
STARPU_TASK_SYNCHRONOUS, 484
STARPU_TASK_WORKERIDS, 484
STARPU_TRANSACTION, 485
STARPU_VALUE, 481
STARPU_WORKER_ORDER, 483

Task Lists, 683
starpu_task_list_back, 684
starpu_task_list_begin, 684
starpu_task_list_empty, 684
starpu_task_list_end, 684
starpu_task_list_erase, 684
starpu_task_list_front, 684
starpu_task_list_init, 683
starpu_task_list_ismember, 685
starpu_task_list_move, 685
starpu_task_list_next, 684
starpu_task_list_pop_back, 684
starpu_task_list_pop_front, 684
starpu_task_list_push_back, 683
starpu_task_list_push_front, 683

test_request
starpu_disk_ops, 586

Theoretical Lower Bound on Execution Time, 686
starpu_bound_compute, 686
starpu_bound_print, 687
starpu_bound_print_dot, 686
starpu_bound_print_lp, 686
starpu_bound_print_mps, 687
starpu_bound_start, 686
starpu_bound_stop, 686

Threads, 688
starpu_pthread_attr_destroy, 693
starpu_pthread_attr_init, 693
starpu_pthread_attr_setdetachstate, 693
STARPU_PTHREAD_BARRIER_DESTROY, 692
starpu_pthread_barrier_destroy, 697
STARPU_PTHREAD_BARRIER_INIT, 692
starpu_pthread_barrier_init, 696
STARPU_PTHREAD_BARRIER_WAIT, 692
starpu_pthread_barrier_wait, 697
STARPU_PTHREAD_COND_BROADCAST, 692

Generated by Doxygen

854 INDEX

starpu_pthread_cond_broadcast, 695
STARPU_PTHREAD_COND_DESTROY, 691
starpu_pthread_cond_destroy, 696
STARPU_PTHREAD_COND_INIT, 691
starpu_pthread_cond_init, 695
STARPU_PTHREAD_COND_INIT0, 691
STARPU_PTHREAD_COND_INITIALIZER, 692
STARPU_PTHREAD_COND_SIGNAL, 692
starpu_pthread_cond_signal, 695
starpu_pthread_cond_timedwait, 695
STARPU_PTHREAD_COND_WAIT, 692
starpu_pthread_cond_wait, 695
STARPU_PTHREAD_CREATE, 689
starpu_pthread_create, 692
STARPU_PTHREAD_CREATE_ON, 689
starpu_pthread_exit, 693
STARPU_PTHREAD_GETSPECIFIC, 690
starpu_pthread_getspecific, 695
starpu_pthread_join, 693
STARPU_PTHREAD_KEY_CREATE, 690
starpu_pthread_key_create, 694
STARPU_PTHREAD_KEY_DELETE, 690
starpu_pthread_key_delete, 695
STARPU_PTHREAD_MUTEX_DESTROY, 690
starpu_pthread_mutex_destroy, 693
STARPU_PTHREAD_MUTEX_INIT, 689
starpu_pthread_mutex_init, 693
STARPU_PTHREAD_MUTEX_INIT0, 690
STARPU_PTHREAD_MUTEX_INITIALIZER, 692
STARPU_PTHREAD_MUTEX_LOCK, 690
starpu_pthread_mutex_lock, 694
starpu_pthread_mutex_trylock, 694
STARPU_PTHREAD_MUTEX_UNLOCK, 690
starpu_pthread_mutex_unlock, 694
starpu_pthread_mutexattr_destroy, 694
starpu_pthread_mutexattr_gettype, 694
starpu_pthread_mutexattr_init, 694
starpu_pthread_mutexattr_settype, 694
STARPU_PTHREAD_RWLOCK_DESTROY, 691
starpu_pthread_rwlock_destroy, 696
STARPU_PTHREAD_RWLOCK_INIT, 690
starpu_pthread_rwlock_init, 696
STARPU_PTHREAD_RWLOCK_INIT0, 691
STARPU_PTHREAD_RWLOCK_RDLOCK, 691
starpu_pthread_rwlock_rdlock, 696
starpu_pthread_rwlock_tryrdlock, 696
starpu_pthread_rwlock_trywrlock, 696
STARPU_PTHREAD_RWLOCK_UNLOCK, 691
starpu_pthread_rwlock_unlock, 696
STARPU_PTHREAD_RWLOCK_WRLOCK, 691
starpu_pthread_rwlock_wrlock, 696
STARPU_PTHREAD_SETSPECIFIC, 690
starpu_pthread_setspecific, 695
starpu_pthread_spin_destroy, 697
starpu_pthread_spin_init, 697
starpu_pthread_spin_lock, 697
starpu_pthread_spin_trylock, 697
starpu_pthread_spin_unlock, 697

to_pointer
starpu_data_interface_ops, 378

Toolbox, 698
STARPU_ABORT, 700
STARPU_ABORT_MSG, 700
STARPU_ASSERT, 700
STARPU_ASSERT_ACCESSIBLE, 700
STARPU_ASSERT_MSG, 700
STARPU_ATTRIBUTE_ALIGNED, 699
STARPU_ATTRIBUTE_MALLOC, 699
STARPU_ATTRIBUTE_NORETURN, 699
STARPU_ATTRIBUTE_PURE, 699
STARPU_ATTRIBUTE_UNUSED, 699
STARPU_ATTRIBUTE_VISIBILITY_DEFAULT, 699
STARPU_ATTRIBUTE_WARN_UNUSED_RESULT,

699
STARPU_CHECK_RETURN_VALUE, 700
STARPU_CHECK_RETURN_VALUE_IS, 700
STARPU_GNUC_PREREQ, 698
STARPU_LIKELY, 699
STARPU_RMB, 701
STARPU_STATIC_ASSERT, 700
STARPU_UNLIKELY, 699
STARPU_VISIBILITY_POP, 699
STARPU_VISIBILITY_PUSH_HIDDEN, 699
STARPU_WMB, 701

trace_buffer_size
starpu_conf, 474

transaction
starpu_task, 344

Transactions, 702
starpu_transaction_close, 702
starpu_transaction_next_epoch, 702
starpu_transaction_open, 702

Tree, 703
tree

starpu_sched_component, 512
trs_epoch

starpu_task, 344
type

starpu_codelet, 336
starpu_perfmodel, 606
starpu_task, 347
starpu_worker_collection, 707

types_of_workers, 660

unmap_data
starpu_data_interface_ops, 377

unpack_data
starpu_data_interface_ops, 379

unpack_meta
starpu_data_interface_ops, 379

unplug
starpu_disk_ops, 585

unregister_data_handle
starpu_data_interface_ops, 376

update_map
starpu_data_interface_ops, 377

use_explicit_workers_bindid

Generated by Doxygen

INDEX 855

starpu_conf, 472
use_explicit_workers_cuda_gpuid

starpu_conf, 472
use_explicit_workers_hip_gpuid

starpu_conf, 472
use_explicit_workers_max_fpga_deviceid

starpu_conf, 472
use_explicit_workers_mpi_ms_deviceid

starpu_conf, 473
use_explicit_workers_opencl_gpuid

starpu_conf, 472
use_tag

starpu_task, 345

Versioning, 704
starpu_get_version, 704
STARPU_MAJOR_VERSION, 704
STARPU_MINOR_VERSION, 704
STARPU_RELEASE_VERSION, 704

wait_request
starpu_disk_ops, 586

where
starpu_codelet, 336
starpu_task, 341

will_use_mpi
starpu_conf, 471

worker_composed_sched_component
starpu_sched_component_specs, 516

worker_cost_function
starpu_perfmodel, 606

workerid
starpu_task, 346

workerids
starpu_task, 346
starpu_worker_collection, 707

workerids_len
starpu_task, 346

workerorder
starpu_task, 346

Workers, 705
STARPU_ANY_WORKER, 709
starpu_arch_mask_to_worker_archtype, 710
starpu_bindid_get_workerids, 714
STARPU_CPU_RAM, 709
STARPU_CPU_WORKER, 709
starpu_cpu_worker_get_count, 710
STARPU_CUDA_RAM, 709
STARPU_CUDA_WORKER, 709
starpu_cuda_worker_get_count, 710
STARPU_DISK_RAM, 709
STARPU_HIP_RAM, 709
STARPU_HIP_WORKER, 709
starpu_hip_worker_get_count, 710
STARPU_MAX_FPGA_RAM, 709
STARPU_MAX_FPGA_WORKER, 709
STARPU_MAX_RAM, 709
STARPU_MAXCPUS, 708
STARPU_MAXNODES, 708

STARPU_MAXNUMANODES, 708
starpu_memory_node_get_devid, 715
starpu_memory_node_get_ids_by_type, 715
starpu_memory_node_get_name, 715
starpu_memory_node_get_worker_archtype, 716
starpu_memory_nodes_get_count, 715
starpu_memory_nodes_get_count_by_kind, 715
starpu_memory_nodes_get_numa_count, 716
starpu_memory_nodes_numa_devid_to_id, 716
starpu_memory_nodes_numa_id_to_devid, 716
STARPU_MPI_MS_RAM, 709
STARPU_MPI_MS_WORKER, 709
starpu_mpi_ms_worker_get_count, 711
STARPU_NARCH, 709
STARPU_NMAXWORKERS, 708
starpu_node_get_kind, 716
starpu_node_kind, 709
STARPU_NRAM, 709
STARPU_OPENCL_RAM, 709
STARPU_OPENCL_WORKER, 709
starpu_opencl_worker_get_count, 711
starpu_sched_find_all_worker_combinations, 711
STARPU_TCPIP_MS_RAM, 709
STARPU_TCPIP_MS_WORKER, 709
starpu_tcpip_ms_worker_get_count, 711
STARPU_UNKNOWN_WORKER, 709
starpu_worker_archtype, 709
starpu_worker_archtype_is_valid, 710
starpu_worker_collection_type, 709
starpu_worker_display_all, 712
starpu_worker_display_count, 713
starpu_worker_display_names, 712
starpu_worker_get_bindid, 711
starpu_worker_get_by_devid, 712
starpu_worker_get_by_type, 712
starpu_worker_get_count, 710
starpu_worker_get_count_by_type, 711
starpu_worker_get_current_task_exp_end, 713
starpu_worker_get_devid, 713
starpu_worker_get_devids, 714
starpu_worker_get_devnum, 713
starpu_worker_get_hwloc_cpuset, 714
starpu_worker_get_hwloc_obj, 715
starpu_worker_get_id, 711
starpu_worker_get_id_check, 708
starpu_worker_get_ids_by_type, 712
starpu_worker_get_local_memory_node, 715
starpu_worker_get_memory_node, 715
starpu_worker_get_memory_node_kind, 716
starpu_worker_get_name, 712
starpu_worker_get_relax_state, 717
starpu_worker_get_sched_ctx_list, 713
starpu_worker_get_stream_workerids, 714
starpu_worker_get_subworkerid, 713
starpu_worker_get_type, 711
starpu_worker_get_type_as_env_var, 714
starpu_worker_get_type_as_string, 714
starpu_worker_get_type_from_string, 714

Generated by Doxygen

856 INDEX

starpu_worker_is_blocked_in_parallel, 713
starpu_worker_is_slave_somewhere, 714
STARPU_WORKER_LIST, 710
starpu_worker_lock, 717
starpu_worker_lock_self, 717
starpu_worker_relax_off, 717
starpu_worker_relax_on, 716
starpu_worker_sched_op_pending, 716
starpu_worker_set_going_to_sleep_callback, 717
starpu_worker_set_waking_up_callback, 718
STARPU_WORKER_TREE, 710
starpu_worker_trylock, 717
starpu_worker_type_can_execute_task, 712
starpu_worker_unlock, 717
starpu_worker_unlock_self, 717
starpu_worker_wait_for_initialisation, 710
starpu_workers_get_tree, 713

workers
starpu_sched_component, 512

workers_bindid
starpu_conf, 472

workers_cuda_gpuid
starpu_conf, 472

workers_hip_gpuid
starpu_conf, 472

workers_in_ctx
starpu_sched_component, 512

workers_max_fpga_deviceid
starpu_conf, 472

workers_mpi_ms_deviceid
starpu_conf, 473

workers_opencl_gpuid
starpu_conf, 472

write
starpu_disk_ops, 585

xrank
MPI Support, 550

Generated by Doxygen

	1 Introduction
	1.1 Motivation
	1.2 StarPU in a Nutshell
	1.3 Application Taskification
	1.4 Research Papers

	2 Documentation Organization
	3 Glossary
	I StarPU Installation
	4 Organization
	5 Building and Installing StarPU
	5.1 Installing a Binary Package
	5.2 Installing a Source Package
	5.3 Building from Source

	6 Compilation Configuration
	6.1 Common Configuration
	6.2 Configuring Workers
	6.3 Extension Configuration
	6.4 Advanced Configuration

	7 Execution Configuration Through Environment Variables
	7.1 Configuring Workers
	7.2 Configuring The Scheduling Engine
	7.3 Configuring The Heteroprio Scheduler
	7.4 Extensions
	7.5 Miscellaneous And Debug
	7.6 Configuring The Hypervisor

	8 Configuration and initialization

	II StarPU Basics
	9 Organization
	10 StarPU Applications
	10.1 Setting Flags for Compiling, Linking and Running Applications
	10.2 Integrating StarPU in a Build System
	10.3 Running a Basic StarPU Application
	10.4 Running a Basic StarPU Application on Microsoft Visual C
	10.5 Kernel Threads Started by StarPU
	10.6 Enabling OpenCL
	10.7 Storing Performance Model Files

	11 Basic Examples
	11.1 Hello World
	11.2 Vector Scaling
	11.3 Vector Scaling on an Hybrid CPU/GPU Machine

	12 Full Source Code for the ’Scaling a Vector’ Example
	12.1 Main Application
	12.2 CPU Kernel
	12.3 CUDA Kernel
	12.4 OpenCL Kernel

	13 Tasks In StarPU
	13.1 Task Granularity
	13.2 Task Submission
	13.3 Task Priorities
	13.4 Setting Many Data Handles For a Task
	13.5 Setting a Variable Number Of Data Handles For a Task
	13.6 Insert Task Utility
	13.7 Other Task Utility Functions

	14 Data Management
	14.1 Data Interface
	14.2 Partitioning Data
	14.3 Asynchronous Partitioning
	14.4 Commute Data Access
	14.5 Data Reduction
	14.6 Concurrent Data Accesses
	14.7 Temporary Buffers

	15 Scheduling
	15.1 Task Scheduling Policies
	15.2 Task Distribution Vs Data Transfer

	16 Examples in StarPU Sources

	III StarPU Applications
	17 Organization
	18 A Vector Scaling Application
	18.1 Base version
	18.2 StarPU C version
	18.3 Building and Running

	19 A Stencil Application
	19.1 The Original Application
	19.2 The StarPU Application
	19.3 The StarPU MPI Application
	19.4 Running the application

	IV StarPU Performances
	20 Organization
	21 Benchmarking StarPU
	21.1 Task Size Overhead
	21.2 Data Transfer Latency
	21.3 Matrix-Matrix Multiplication
	21.4 Cholesky Factorization
	21.5 LU Factorization
	21.6 Simulated Benchmarks

	22 Online Performance Tools
	22.1 On-line Performance Feedback
	22.2 Task And Worker Profiling
	22.3 Performance Model Example
	22.4 Performance Monitoring Counters
	22.5 Performance Steering Knobs

	23 Offline Performance Tools
	23.1 Generating Traces With FxT
	23.2 Performance Of Codelets
	23.3 Energy Of Codelets
	23.4 Data trace and tasks length
	23.5 Trace Statistics
	23.6 PAPI counters
	23.7 Theoretical Lower Bound On Execution Time
	23.8 Trace visualization with StarVZ
	23.9 StarPU Eclipse Plugin
	23.10 Memory Feedback
	23.11 Data Statistics
	23.12 Tracing MPI applications
	23.13 Verbose Traces

	V StarPU FAQ
	24 Organization
	25 Check List When Performance Are Not There
	25.1 Check Task Size
	25.2 Configuration Which May Improve Performance
	25.3 Data Related Features Which May Improve Performance
	25.4 Task Related Features Which May Improve Performance
	25.5 Scheduling Related Features Which May Improve Performance
	25.6 CUDA-specific Optimizations
	25.7 OpenCL-specific Optimizations
	25.8 Detecting Stuck Conditions
	25.9 How to Limit Memory Used By StarPU And Cache Buffer Allocations
	25.10 How To Reduce The Memory Footprint Of Internal Data Structures
	25.11 How To Reuse Memory
	25.12 Performance Model Calibration
	25.13 Profiling
	25.14 Overhead Profiling

	26 Frequently Asked Questions
	26.1 How To Initialize A Computation Library Once For Each Worker?
	26.2 Hardware Topology
	26.3 Using The Driver API
	26.4 On-GPU Rendering
	26.5 Using StarPU With MKL 11 (Intel Composer XE 2013)
	26.6 Thread Binding on NetBSD
	26.7 StarPU permanently eats 100% of all CPUs
	26.8 Interleaving StarPU and non-StarPU code
	26.9 When running with CUDA or OpenCL devices, I am seeing less CPU cores
	26.10 StarPU does not see my CUDA device
	26.11 StarPU does not see my OpenCL device
	26.12 There seems to be errors when copying to and from CUDA devices
	26.13 I keep getting a `¨Incorrect performance model file`¨ error

	VI StarPU Language Bindings
	27 Organization
	28 Native Fortran Support
	28.1 Implementation Details and Specificities
	28.2 Fortran Translation for Common StarPU API Idioms
	28.3 Uses, Initialization and Shutdown
	28.4 Fortran Flavor of StarPU's Variadic Insert_task
	28.5 Functions and Subroutines Expecting Data Structures Arguments
	28.6 Additional Notes about the Native Fortran Support

	29 StarPU Java Interface
	30 Python Interface
	30.1 Installation of the Python Interface
	30.2 Python Parallelism
	30.3 Using StarPU in Python
	30.4 StarPU Data Interface for Python Objects
	30.5 Benchmark
	30.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library)
	30.7 Multiple Interpreters
	30.8 Master Slave Support
	30.9 StarPUPY and Simgrid

	31 The StarPU OpenMP Runtime Support (SORS)
	31.1 Implementation Details and Specificities
	31.2 Configuration
	31.3 Initialization and Shutdown
	31.4 Parallel Regions and Worksharing
	31.5 Tasks
	31.6 Synchronization Support
	31.7 Example: An OpenMP LLVM Support
	31.8 OpenMP Standard Functions in StarPU

	VII StarPU Extensions
	32 Organization
	33 Advanced Tasks In StarPU
	33.1 Task Dependencies
	33.2 Waiting For Tasks
	33.3 Using Multiple Implementations Of A Codelet
	33.4 Enabling Implementation According To Capabilities
	33.5 Getting Task Children
	33.6 Parallel Tasks
	33.7 Synchronization Tasks

	34 Advanced Data Management
	34.1 Data Interface with Variable Size
	34.2 Data Management Allocation
	34.3 Data Access
	34.4 Data Prefetch
	34.5 Manual Partitioning
	34.6 Data handles helpers
	34.7 Handles data buffer pointers
	34.8 Defining A New Data Filter
	34.9 Defining A New Data Interface
	34.10 The Multiformat Interface
	34.11 Specifying A Target Node For Task Data

	35 Advanced Scheduling
	35.1 Energy-based Scheduling
	35.2 Static Scheduling
	35.3 Configuring Heteroprio

	36 Scheduling Contexts
	36.1 General Ideas
	36.2 Creating A Context
	36.3 Creating A Context To Partition a GPU
	36.4 Modifying A Context
	36.5 Submitting Tasks To A Context
	36.6 Deleting A Context
	36.7 Emptying A Context

	37 Scheduling Context Hypervisor
	37.1 What Is The Hypervisor
	37.2 Start the Hypervisor
	37.3 Interrogate The Runtime
	37.4 Trigger the Hypervisor
	37.5 Resizing Strategies
	37.6 Defining A New Hypervisor Policy

	38 How To Define a New Scheduling Policy
	38.1 Introduction
	38.2 Helper functions for defining a scheduling policy (Basic or modular)
	38.3 Defining A New Basic Scheduling Policy
	38.4 Defining A New Modular Scheduling Policy
	38.5 Using a New Scheduling Policy
	38.6 Graph-based Scheduling
	38.7 Debugging Scheduling

	39 CUDA Support
	40 OpenCL Support
	41 Maxeler FPGA Support
	41.1 Introduction
	41.2 Porting Applications to Maxeler FPGA

	42 Out Of Core
	42.1 Introduction
	42.2 Use a new disk memory
	42.3 Data Registration
	42.4 Using Wont Use
	42.5 Examples: disk_copy
	42.6 Examples: disk_compute
	42.7 Performances
	42.8 Feedback Figures
	42.9 Disk functions

	43 MPI Support
	43.1 Building with MPI support
	43.2 Example Used In This Documentation
	43.3 About Not Using The MPI Support
	43.4 Simple Example
	43.5 How to Initialize StarPU-MPI
	43.6 Point To Point Communication
	43.7 Exchanging User Defined Data Interface
	43.8 MPI Insert Task Utility
	43.9 Other MPI Utility Functions
	43.10 Pruning MPI Task Insertion
	43.11 Temporary Data
	43.12 Per-node Data
	43.13 Inter-node reduction
	43.14 Priorities
	43.15 MPI Cache Support
	43.16 MPI Data Migration
	43.17 MPI Collective Operations
	43.18 Make StarPU-MPI Progression Thread Execute Tasks
	43.19 Debugging MPI
	43.20 More MPI examples
	43.21 Using the NewMadeleine communication library
	43.22 MPI Master Slave Support
	43.23 MPI Checkpoint Support

	44 TCP/IP Support
	44.1 TCP/IP Master Slave Support

	45 Transactions
	45.1 General Ideas
	45.2 Usage
	45.3 Known limitations

	46 Fault Tolerance
	46.1 Introduction
	46.2 Retrying tasks

	47 FFT Support
	47.1 Compilation

	48 SOCL OpenCL Extensions
	49 Hierarchical DAGS
	49.1 An Example

	50 Parallel Workers
	50.1 General Ideas
	50.2 Workers Creating Parallel Workers
	50.3 Example Of Constraining OpenMP
	50.4 Creating Custom Parallel Workers
	50.5 Parallel Workers With Scheduling

	51 Interoperability Support
	51.1 StarPU Resource Management

	52 SimGrid Support
	52.1 Preparing Your Application For Simulation
	52.2 Calibration
	52.3 Simulation
	52.4 Simulation On Another Machine
	52.5 Simulation Examples
	52.6 Simulations On Fake Machines
	52.7 Tweaking Simulation
	52.8 MPI Applications
	52.9 Debugging Applications
	52.10 Memory Usage

	53 Helpers
	54 Debugging Tools
	54.1 TroubleShooting In General
	54.2 Using The Gdb Debugger
	54.3 Using Other Debugging Tools
	54.4 Watchdog Support
	54.5 Using The Temanejo Task Debugger

	VIII Appendix
	55 The GNU Free Documentation License
	55.1 ADDENDUM: How to use this License for your documents

	56 Module Index
	56.1 Modules

	57 Module Documentation a.k.a StarPU's API
	57.1 Bitmap
	57.2 Hierarchical Dags
	57.3 Codelet And Tasks
	57.4 CUDA Extensions
	57.5 Data Interfaces
	57.6 Data Management
	57.7 Data Partition
	57.8 Expert Mode
	57.9 Explicit Dependencies
	57.10 FFT Support
	57.11 Fortran Support
	57.12 FxT Support
	57.13 Heteroprio Scheduler
	57.14 HIP Extensions
	57.15 Initialization and Termination
	57.16 Task Insert Utility
	57.17 Interoperability Support
	57.18 Maxeler FPGA Extensions
	57.19 Miscellaneous Helpers
	57.20 Modularized Scheduler Interface
	57.21 MPI Fault Tolerance Support
	57.22 MPI Support
	57.23 OpenCL Extensions
	57.24 OpenMP Runtime Support
	57.25 Out Of Core
	57.26 Parallel Tasks
	57.27 Parallel Workers
	57.28 Performance Monitoring Counters
	57.29 Performance Model
	57.30 Performance Steering Knobs
	57.31 Profiling
	57.32 Profiling Tool
	57.33 Random Functions
	57.34 Running Drivers
	57.35 Scheduler Toolbox
	57.36 Scheduling Contexts
	57.37 Scheduling Policy
	57.38 Scheduling Context Hypervisor - Linear Programming
	57.39 Scheduling Context Hypervisor - Building a new resizing policy
	57.40 Scheduling Context Hypervisor - Regular usage
	57.41 Sink
	57.42 Standard Memory Library
	57.43 Task Bundles
	57.44 Task Lists
	57.45 Theoretical Lower Bound on Execution Time
	57.46 Threads
	57.47 Toolbox
	57.48 Transactions
	57.49 Tree
	57.50 Versioning
	57.51 Workers

	58 File Index
	58.1 File List

	59 File Documentation
	59.1 starpu.h File Reference
	59.2 starpu_bitmap.h File Reference
	59.3 starpu_bound.h File Reference
	59.4 starpu_config.h File Reference
	59.5 starpu_cublas.h File Reference
	59.6 starpu_cublas_v2.h File Reference
	59.7 starpu_cusparse.h File Reference
	59.8 starpu_cuda.h File Reference
	59.9 starpu_data.h File Reference
	59.10 starpu_data_filters.h File Reference
	59.11 starpu_data_interfaces.h File Reference
	59.12 starpu_deprecated_api.h File Reference
	59.13 starpu_disk.h File Reference
	59.14 starpu_driver.h File Reference
	59.15 starpu_expert.h File Reference
	59.16 starpu_fxt.h File Reference
	59.17 starpu_hash.h File Reference
	59.18 starpu_helper.h File Reference
	59.19 starpu_heteroprio.h File Reference
	59.20 starpu_hip.h File Reference
	59.21 starpu_scheduler_toolbox.h File Reference
	59.22 starpu_max_fpga.h File Reference
	59.23 starpu_mod.f90 File Reference
	59.24 starpu_mpi.h File Reference
	59.25 starpu_mpi_ft.h File Reference
	59.26 starpu_mpi_lb.h File Reference
	59.27 starpu_opencl.h File Reference
	59.28 starpu_openmp.h File Reference
	59.29 starpu_parallel_worker.h File Reference
	59.30 starpu_perf_monitoring.h File Reference
	59.31 starpu_perf_steering.h File Reference
	59.32 starpu_perfmodel.h File Reference
	59.33 starpu_profiling.h File Reference
	59.34 starpu_profiling_tool.h File Reference
	59.35 starpu_rand.h File Reference
	59.36 starpu_sched_component.h File Reference
	59.37 starpu_sched_ctx.h File Reference
	59.38 starpu_sched_ctx_hypervisor.h File Reference
	59.39 starpu_scheduler.h File Reference
	59.40 starpu_simgrid_wrap.h File Reference
	59.41 starpu_sink.h File Reference
	59.42 starpu_stdlib.h File Reference
	59.43 starpu_task.h File Reference
	59.44 starpu_task_bundle.h File Reference
	59.45 starpu_task_dep.h File Reference
	59.46 starpu_task_list.h File Reference
	59.47 starpu_task_util.h File Reference
	59.48 starpu_thread.h File Reference
	59.49 starpu_thread_util.h File Reference
	59.50 starpu_tree.h File Reference
	59.51 starpu_util.h File Reference
	59.52 starpu_worker.h File Reference
	59.53 starpufft.h File Reference
	59.54 sc_hypervisor.h File Reference
	59.55 sc_hypervisor_config.h File Reference
	59.56 sc_hypervisor_lp.h File Reference
	59.57 sc_hypervisor_monitoring.h File Reference
	59.58 sc_hypervisor_policy.h File Reference
	59.59 starpurm.h File Reference

	60 Deprecated List
	Index

